Current Treatment Options in Pediatrics

, Volume 3, Issue 2, pp 77–97 | Cite as

The Pediatric Surgeon’s Role in Prenatal Counseling

  • Mitchell R. Ladd
  • Eric B. JelinEmail author
General Surgery (D Carney, Section Editor)
Part of the following topical collections:
  1. Topical Collection on General Surgery

Opinion statement

The purpose of this article is to provide an overview of surgical disease for which the pediatric surgeon may be called upon to provide prenatal counseling to parents. Many surgical diseases are detected prenatally and benefit from pediatric surgical consultation. Moreover, there are increasing numbers of fetal interventions that can be performed for certain diseases in select cases. For example, investigation of fetal tracheal occlusion for congenital diaphragmatic hernia (TOTAL trial) is underway, and therapy for congenital bilateral renal agenesis (RAFT trial) is in the planning phase. For these reasons, many pediatric surgical diseases should be referred to a fetal center. Prenatal diagnosis of surgical disease will continue to increase, and the pediatric surgeon will have an important role in prenatal counseling and management. Pediatric surgeons should have a working knowledge of these diseases and know which ones will benefit from a referral to a fetal center.


Surgery Prenatal counseling Surgical disease Pediatric surgery 


Compliance with Ethical Standards

Conflict of Interest

Mitchell R. Ladd declares that she has no conflict of interest. Eric B. Jelin declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    D’Antonio F, Familiari A, Thilaganathan B, Papageorghiou AT, Manzoli L, Khalil A, Bhide A. Sensitivity of first trimester ultrasound in the detection of congenital anomalies in twin pregnancies: population study and systematic review. Acta Obstet Gynecol Scand. 2016;95:1359–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Rossi AC, Prefumo F. Accuracy of ultrasonography at 11–14 weeks of gestation for detection of fetal structural anomalies a systematic review. Obstet Gynecol. 2013;122:1160–7.PubMedCrossRefGoogle Scholar
  3. 3.
    ACOG. Practice bulletin number 175. ACOG. 2016;128:e241–56.Google Scholar
  4. 4.
    Crombleholme TM, D’Alton M, Cendron M, Alman B, Goldberg MD, Klauber GT, Cohen A, Heilman C, Lewis M, Harris BH. Prenatal diagnosis and the pediatric surgeon: the impact of prenatal consultation on perinatal management. J Pediatr Surg. 1996;31:156–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Nwomeh BC, Caniano DA. Ethical considerations. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 237–46.CrossRefGoogle Scholar
  6. 6.
    • Caniano DA. Ethical issues in the management of neonatal surgical anomalies. Semin Perinatol. 2004;28:240–5. Excellent discussion of ethical issues encountered by the pediatric surgeon during prenatal counseling.PubMedCrossRefGoogle Scholar
  7. 7.
    Caniano DA, Baylis F. Ethical considerations in prenatal diagnosis. West J Med. 1999;15:303–9.Google Scholar
  8. 8.
    Aite L, Trucchi A, Nahom A, Spina V, Bilancioni E, Bagolan P. Multidisciplinary management of fetal surgical anomalies: the impact on maternal anxiety. Eur J Pediatr Surg. 2002;12:90–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Aite L, Trucchi A, Nahom A, Zaccara A, La Sala E, Bagolan P. Antenatal diagnosis of surgically correctable anomalies: effects of repeated consultations on parental anxiety. J Perinatol. 2003;23:652–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee H, Hirose S, Harrison MR. Prenatal diagnosis and fetal therapy. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 77–88.CrossRefGoogle Scholar
  11. 11.
    Sulkowski JP, Cooper JN, Lopez JJ, Jadcherla Y, Cuenot A, Mattei P, Deans KJ, Minneci PC. Morbidity and mortality in patients with esophageal atresia. Surgery. 2014;156:483–91.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sfeir R, Bonnard A, Khen-Dunlop N, et al. Esophageal atresia: data from a national cohort. J Pediatr Surg. 2013;48:1664–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Pedersen RN, Calzolari E, Husby S, Garne E. Oesophageal atresia: prevalence, prenatal diagnosis and associated anomalies in 23 European regions. Arch Dis Child. 2012;97:227–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Brantberg A, Blaas HGK, Haugen SE, Eik-Nes SH. Esophageal obstruction—prenatal detection rate and outcome. Ultrasound Obstet Gynecol. 2007;30:180–7.PubMedCrossRefGoogle Scholar
  15. 15.
    • Fallon SC, Ethun CG, Olutoye OO, Brandt ML, Lee TC, Welty SE, Ruano R, Cass DL. Comparing characteristics and outcomes in infants with prenatal and postnatal diagnosis of esophageal atresia. J Surg Res. 2014;190:242–5. Showed no difference in mortality and no increase in associated anomalies compared to postnatal diagnosed EA. Did show that prenatal diagnosis has higher rate of pure EA.PubMedCrossRefGoogle Scholar
  16. 16.
    Kunisaki SM, Bruch SW, Hirschl RB, Mychaliska GB, Treadwell MC, Coran AG. The diagnosis of fetal esophageal atresia and its implications on perinatal outcome. Pediatr Surg Int. 2014;30:971–7.PubMedCrossRefGoogle Scholar
  17. 17.
    • Garabedian C, Sfeir R, Langlois C, Bonnard A, Khen-Dunlop N, Gelas T, Michaud L, Auber F, Gottrand F, Houfflin-Debarge V. Does prenatal diagnosis modify neonatal treatment and early outcome of children with esophageal atresia? Am J Obstet Gynecol. 2015;212:340.e1–7. A prospective cohort study from France that showed prenatal diagnosis of neonates with esophageal atresia did not affect mortality; however, those diagnosed prenatally had higher morbidity likely related to the higher percentage pure EA in prenatal diagnosis group compared to postnatal diagnosis group.CrossRefGoogle Scholar
  18. 18.
    de Jong E, de Haan M, Gischler S, Hop W, Cohen-Overbeek T, Bax N, de Klein A, Tibboel D, Grijseels E. Pre- and postnatal diagnosis and outcome of fetuses and neonates with esophageal atresia and tracheoesophageal fistula. Prenat Diagn. 2010;30:274–9.PubMedGoogle Scholar
  19. 19.
    Takahashi D, Hiroma T, Takamizawa S, Nakamura T. Population-based study of esophageal and small intestinal atresia/stenosis. Pediatr Int. 2014;56:838–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang B, Tashiro J, Allan BJ, Sola JE, Parikh PP, Hogan AR, Neville HL, Perez EA. A nationwide analysis of clinical outcomes among newborns with esophageal atresia and tracheoesophageal fistulas in the United States. J Surg Res. 2014;190:604–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Harmon CM, Coran AG. Congenital anomalies of the esophagus treatment and management. In: Oran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 893–918.CrossRefGoogle Scholar
  22. 22.
    Applebaum H, Sydorak R. Duodenal atresia and stenosis—annular pancreas. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 1051–7.CrossRefGoogle Scholar
  23. 23.
    Best KE, Tennant PWG, Addor M-C, et al. Epidemiology of small intestinal atresia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed. 2012;97:F353–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Choudhry MS, Rahman N, Boyd P, Lakhoo K. Duodenal atresia: associated anomalies, prenatal diagnosis and outcome. Pediatr Surg Int. 2009;25:727–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Hemming V, Rankin J. Small intestinal atresia in a defined population: occurence, prenatal diagnosis and survival. Prenat Diagn. 2007;27:1205–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Stoll C, Alembik Y, Dott B, Roth PMM, De Geeter B. Evaluation of prenatal diagnosis of congenital heart disease. Prenat Diagn. 1993;13:453–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Adams SD, Stanton MP. Malrotation and intestinal atresias. Early Hum Dev. 2014;90:921–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Cohen-Overbeek TE, Grijseels EWM, Niemeijer ND, Hop WCJ, Wladimiroff JW, Tibboel D. Isolated or non-isolated duodenal obstruction: perinatal outcome following prenatal or postnatal diagnosis. Ultrasound Obstet Gynecol. 2008;32:784–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen QJ, Gao ZG, Tou JF, Qian YZ, Li MJ, Xiong QX, Shu Q. Congenital duodenal obstruction in neonates: a decade’s experience from one center. World J Pediatr. 2014;10:238–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Frischer JS, Azizkhan RG. Jejunoileal atresia and stenosis. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 1059–71.CrossRefGoogle Scholar
  31. 31.
    Morris G, Kennedy A, Cochran W. Small bowel congenital anomalies: a review and update. Curr Gastroenterol Rep. 2016;18:1–12.Google Scholar
  32. 32.
    • Virgone C, D’Antonio F, Khalil A, Jonh R, Manzoli L, Giuliani S. Accuracy of prenatal ultrasound in detecting jejunal and ileal atresia: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015;45:523–9. Systematic review about the accuracy of prenatal ultrasound diagnosis of non-duodenal small bowel atresia which is low. The review was limited by the heterogeneity of the included studies.PubMedCrossRefGoogle Scholar
  33. 33.
    • John R, D’Antonio F, Khalil A, Bradley S, Giuliani S. Diagnostic accuracy of prenatal ultrasound in identifying jejunal and ileal atresia. Fetal Diagn Ther. 2015;38:142–6. Retrospective study of the predictive accuracy of ultrasound for prenatal detection of small bowel atresia which demonstrated a low accuracy overall, but best accuracy after 32 weeks gestation.PubMedCrossRefGoogle Scholar
  34. 34.
    Stollman TH, de Blaauw I, Wijnen MHWA, van der Staak FHJM, Rieu PNMA, Draaisma JMT, Wijnen RMH. Decreased mortality but increased morbidity in neonates with jejunoileal atresia; a study of 114 cases over a 34-year period. J Pediatr Surg. 2009;44:217–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Arca MJ, Oldham KT. Atresia, stenosis, and other obstructions of the colon. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery, 7th ed. Philadelphia: Elsevier; 2012. p. 1247–53.CrossRefGoogle Scholar
  36. 36.
    Anderson N, Malpas T, Robertson R. Prenatal diagnosis of colon atresia. Pediatr Radiol. 1993;23:63–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Vajtai Z, Sohaey R. Colonic atresia. Ultrasound Q. 2013;29:249–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Burjonrappa S, Crete E, Bouchard S. Comparative outcomes in intestinal atresia: a clinical outcome and pathophysiology analysis. Pediatr Surg Int. 2011;27:437–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Klein MD. Congenital defects of the abdominal wall. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 973–84.CrossRefGoogle Scholar
  40. 40.
    Brantberg A, Blaas HGK, Haugen SE, Eik-Nes SH. Characteristics and outcome of 90 cases of fetal omphalocele. Ultrasound Obstet Gynecol. 2005;26:527–37.PubMedCrossRefGoogle Scholar
  41. 41.
    Mayer T, Black R, Matlak ME, Johnson DG. Gastroschisis and omphalocele. An eight-year review. Ann Surg. 1980;192:783–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Henrich K, Huemmer HP, Reingruber B, Weber PG. Gastroschisis and omphalocele: treatments and long-term outcomes. Pediatr Surg Int. 2008;24:167–73.PubMedCrossRefGoogle Scholar
  43. 43.
    • Corey KM, Hornik CP, Laughon MM, McHutchison K, Clark RH, Smith PB. Frequency of anomalies and hospital outcomes in infants with gastroschisis and omphalocele. Early Hum Dev. 2014;90:421–4. Recent retrospective series of omphalocele vs. gastroschisis in the North America that showd that omphalocele has a higher likelihood to other anomalies, to have pulmonary hypertension, and to have a higher mortality than gastroschisis.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gamba P, Midrio P. Abdominal wall defects: prenatal diagnosis, newborn management, and long-term outcomes. Semin Pediatr Surg. 2014;23:283–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Mastroiacovo P, Lisi A, Castilla EE, et al. Gastroschisis and associated defects: an international study. Am J Med Genet A. 2007;143A:660–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Abdullah F, Arnold MA, Nabaweesi R, Fischer AC, Colombani PM, Anderson KD, Lau H, Chang DC. Gastroschisis in the United States 1988-2003: analysis and risk categorization of 4344 patients. J Perinatol. 2007;27:50–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Overcash RT, DeUgarte DA, Stephenson ML, Gutkin RM, Norton ME, Parmar S, Porto M, Poulain FR, Schrimmer DB, University of California Fetal Consortium (UCfC). Factors associated with gastroschisis outcomes. Obstet Gynecol. 2014;124:551–7.Google Scholar
  48. 48.
    Syngelaki A, Chelemen T, Themistoklis D, Allan L, Nicolaides KH. Challenges in the diagnosis of fetal non-chromosomal abnormalties at 11-13 weeks. Prenat Diagn. 2011;31:90–102.PubMedCrossRefGoogle Scholar
  49. 49.
    Cohen-Overbeek TE, Tong WH, Hatzmann TR, Wilms JF, Govaerts LCP, Galjaard RJH, Steegers EA, Hop WC, Wladimiroff JW, Tibboel D. Omphalocele: comparison of outcome following prenatal or postnatal diagnosis. Ultrasound Obstet Gynecol. 2010;36:687–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Porter A, Benson CB, Hawley P, Wilkins-Haug L. Outcome of fetuses with a prenatal ultrasound diagnosis of isolated omphalocele. Prenat Diagn. 2006;26:980–4.CrossRefGoogle Scholar
  51. 51.
    Stolar CJH, Dillon PW. Congenital diaphragmatic hernia and eventration. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 809–24.CrossRefGoogle Scholar
  52. 52.
    Dott MM, Wong LYC, Rasmussen SA. Population-based study of congenital diaphragmatic hernia: risk factors and survival in Metropolitan Atlanta, 1968-1999. Birth Defects Res Part A - Clin Mol Teratol. 2003;67:261–7.PubMedCrossRefGoogle Scholar
  53. 53.
    McGivern MR, Best KE, Rankin J, et al. Epidemiology of congenital diaphragmatic hernia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed. 2015;100:F137–44.PubMedCrossRefGoogle Scholar
  54. 54.
    • Balayla J, Abenhaim HA. Incidence, predictors and outcomes of congenital diaphragmatic hernia: a population-based study of 32 million births in the United States. J Matern Fetal Neonatal Med. 2013;7058:1438–44. Large series of CDH in the United States to define incidence, risk factors for development of CDH, and outcomes.Google Scholar
  55. 55.
    Garne E, Haeusler M, Barisic I, Gjergja R, Stoll C, Clementi M. Congenital diaphragmatic hernia: evaluation of prenatal diagnosis in 20 european regions. Ultrasound Obstet Gynecol. 2002;19:329–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Burgos CM, Frenckner B, Luco M, Harting MT, Lally PA, Lally KP . Prenatally diagnosed congenital diaphragmatic hernia: optimal mode of delivery? J Perinatol. 2017;37:134–8.Google Scholar
  57. 57.
    Fauza DO, Wilson JM. Congenital diaphragmatic hernia and associated anomalies: their incidence, identification, and impact on prognosis. J Pediatr Surg. 1994;29:1113–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Burge DM, Atwell JD, Freeman NV. Could the stomach site help predict outcome in babies with left sided congenital diaphragmatic hernia diagnosed antenatally? J Pediatr Surg. 1989;24:567–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Hatch EI, Kendall J, Blumhagen J. Stomach position as an in utero predictor of neonatal outcome in left-sided diaphragmatic hernia. J Pediatr Surg. 1992;27:778–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Kitano Y, Okuyama H, Saito M, et al. Re-evaluation of stomach position as a simple prognostic factor in fetal left congenital diaphragmatic hernia: a multicenter survey in Japan. Ultrasound Obstet Gynecol. 2011;37:277–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Cordier A-G, Cannie MM, Guilbaud L, et al. Stomach position versus liver-to-thoracic volume ratio in left-sided congenital diaphragmatic hernia. J Matern Fetal Neonatal Med. 2015;28:190–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Mullassery D, Ba’Ath ME, Jesudason EC, Losty PD. Value of liver herniation in prediction of outcome in fetal congenital diaphragmatic hernia: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2010;35:609–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Mayer S, Klaritsch P, Petersen S, Done E, Sandaite I, Till H, Claus F, Deprest JA. The correlation between lung volume and liver herniation measurements by fetal MRI in isolated congenital diaphragmatic hernia: a systematic review and meta-analysis of obervational studies. Prenat Diagn. 2011;31:1086–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Jani J, Nicolaides KH, Keller RL, et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol. 2007;30:67–71.PubMedCrossRefGoogle Scholar
  65. 65.
    Odibo AO, Najaf T, Vachharajani A, Warner B, Mathur A, Warner B. Predictors of the need for extracorporeal membrane oxygenation and survival in congenital diaphragmatic hernia: a center’s 10-year experience. Prenat Diagn. 2010;30:518–21.PubMedGoogle Scholar
  66. 66.
    Russo FM, Eastwood MP, Keijzer R, Al-Maary J, Toelen J, Mieghem T Van, Deprest JA. Lung size and liver herniation predict the need for extra corporeal membrane oxygenation but not pulmonary hypertension in isolated congenital diaphragmatic hernia: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2016. doi: 10.1002/uog.16000.
  67. 67.
    Schaible T, Büsing KA, Felix JF, et al. Prediction of chronic lung disease, survival and need for ECMO therapy in infants with congenital diaphragmatic hernia: additional value of fetal MRI measurements? Eur J Radiol. 2012;81:1076–82.PubMedCrossRefGoogle Scholar
  68. 68.
    Takahashi S, Oishi Y, Ito N, et al. Evaluating mortality and disease severity in congenital diaphragmatic hernia using the McGoon and pulmonary artery indices. J Pediatr Surg. 2009;44:2101–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Casaccia G, Crescenzi F, Dotta A, et al. Birth weight and McGoon index predict mortality in newborn infants with congenital diaphragmatic hernia. J Pediatr Surg. 2006;41:25–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Deprest J, Brady P, Nicolaides K, Benachi A, Berg C, Vermeesch J, Gardener G, Gratacos E. Prenatal management of the fetus with isolated congenital diaphragmatic hernia in the era of the TOTAL trial. Semin Fetal Neonatal Med. 2014;19:338–48.PubMedCrossRefGoogle Scholar
  71. 71.
    Dekoninck P, Gomez O, Sandaite I, Richter J, Nawapun K, Eerdekens A, Ramirez JC, Claus F, Gratacos E, Deprest J. Right-sided congenital diaphragmatic hernia in a decade of fetal surgery. BJOG An Int J Obstet Gynaecol. 2015;122:940–6.CrossRefGoogle Scholar
  72. 72.
    • Junior EA, Tonni G, Martins WP, Ruano R. Procedure-related complications and survival following fetoscopic endotracheal occlusion (FETO) for severe congenital diaphragmatic hernia: systematic review and meta-analysis in the FETO era. Eur J Pediatr Surg. doi: 10.1055/s-0036-1587331. Systematic review and meta-analysis of FETO which demonstrated overall low level evidence of improved 30 day survival at the expense of premature birth.
  73. 73.
    Grivell RM, Chad A, Dodd JM. Prenatal interventions for congenital diaphragmatic hernia forimproving outcomes (Review). Cochrane Database Syst Rev. 2015:(11):CD008925. doi: 10.1002/14651858.CD008925.pub2.
  74. 74.
    Snoek KG, Capolupo I, van Rosmalen J, Hout LJ, Vijfhuize S, Greenough A, Wijnen RM, Tibboel D, Reiss IKM, CDH EURO Consortium. Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia: a randomized clinical trial (the VICI-trial). Ann Surg. 2016;263:867–74.Google Scholar
  75. 75.
    Puligandla PS, Grabowski J, Austin M, et al. Management of congenital diaphragmatic hernia: a systematic review from the APSA outcomes and evidence based practice committee. J Pediatr Surg. 2015;50:1958–70.PubMedCrossRefGoogle Scholar
  76. 76.
    Haliburton B, Mouzaki M, Chiang M, Scaini V, Marcon M, Moraes TJ, Chiu PP. Long-term nutritional morbidity for congenital diaphragmatic hernia survivors: failure to thrive extends well into childhood and adolescence. J Pediatr Surg. 2015;50:734–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Caruso AM, Di Pace MR, Catalano P, Farina F, Casuccio A, Cimador M, De Grazia E. Gastroesophageal reflux in patients treated for congenital diaphragmatic hernia: short- and long-term evaluation with multichannel intraluminal impedance. Pediatr Surg Int. 2013;29:553–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Partridge EA, Bridge C, Donaher JG, et al. Incidence and factors associated with sensorineural and conductive hearing loss among survivors of congenital diaphragmatic hernia. J Pediatr Surg. 2014;49:890–4.PubMedCrossRefGoogle Scholar
  79. 79.
    •• Bienstock JL, Birsner ML, Coleman F, Hueppchen NA. Successful in utero intervention for bilateral renal agenesis. Obstet Gynecol. 2014;124:413–5. Initial case report of using serial amnioinfusions to treat anhydramnios and subsequent pulmonary hypoplasia associated with congenital bilateral renal agenesis. This patient went on to have a kidney transplant.PubMedCrossRefGoogle Scholar
  80. 80.
    • Smith-Harrison LI, Hougen HY, Timberlake MD, Corbett ST. Current applications of in utero intervention for lower urinary tract obstruction. J Pediatr Urol. 2015;11:341–7. Excellent review article of the current evidence in LUTO and suggested clinical algorithms for the work-up and management of prenatally diagnosed LUTO.PubMedCrossRefGoogle Scholar
  81. 81.
    Lissauer D, Morris RK, Kilby MD. Fetal lower urinary tract obstruction. Semin Fetal Neonatal Med. 2007;12:464–70.PubMedCrossRefGoogle Scholar
  82. 82.
    Anumba DO, Scott JE, Plant ND, Robson SC. Diagnosis and outcome of fetal lower urinary tract obstruction in the northern region of England. Prenat Diagn. 2005;25:7–13.PubMedCrossRefGoogle Scholar
  83. 83.
    Malin G, Tonks AM, Morris RK, Gardosi J, Kilby MD. Congenital lower urinary tract obstruction: a population-based epidemiological study. BJOG An Int J Obstet Gynaecol. 2012;119:1455–64.CrossRefGoogle Scholar
  84. 84.
    •• Morris RK, Malin GL, Quinlan-Jones E, Middleton LJ, Hemming K, Burke D, Daniels JP, Khan KS, Deeks J, Kilby MD. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet. 2013;382:1496–506. Landmark trial that did not demonstrate clear survival benefit of vesicoamniotic shunting for LUTO but did demonstrate that shunting did not improve renal function.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    • Ruano R, Sananes N, Wilson C, et al. Fetal lower urinary tract obstruction: proposal for standardized multidisciplinary prenatal management based on disease severity. Ultrasound Obstet Gynecol. 2016;48:476–82. A retrospective cohort of 25 patients from which was derived a three tier severity staging system with suggested management for each stage.PubMedCrossRefGoogle Scholar
  86. 86.
    Morris RK, Middleton LJ, Malin GL, Quinlan-Jones E, Daniels J, Khan KS, Deeks J, Kilby MD. Outcome in fetal lower urinary tract obstruction: a prospective registry study. Ultrasound Obstet Gynecol. 2015;46:424–31.PubMedCrossRefGoogle Scholar
  87. 87.
    Glassberg KI, Hyun G. Renal Agenesis, Dysplasia, and Cystic Disease. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery, 7th ed., Elsevier: Philadelphia. 2012. pp 1395–1403.Google Scholar
  88. 88.
    Cardwell MS. Biltaral renal agenesis: clinical implications. South Med J. 1988;81:327–8.PubMedCrossRefGoogle Scholar
  89. 89.
    • Polzin WJ, Lim FY, Habli M, Van Hook J, Minges M, Jaekle R, Crombleholme TM. Use of an amnioport to maintain amniotic fluid volume in fetuses with oligohydramnios secondary to lower urinary tract obstruction or fetal renal anomalies. Fetal Diagn Ther. 2016;41:51–7. Description of an implantable amnioport that can be used to maintain amniotic fluid in oligo- or anhydrmanios.Google Scholar
  90. 90.
    • David M, Lamas-Pinheiro R, Henriques-Coelho T. Prenatal and postnatal management of congenital pulmonary airway malformation. Neonatology. 2016;110:101–15. Excellent review of congenital pulmonary airway formations with prenatal and postnatal management algorithms.PubMedCrossRefGoogle Scholar
  91. 91.
    Adzick NS, Farmer DL. Cysts of the lungs and mediastinum. In: Coran AG, Adzick NS, Krummel TM, FordSB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier. 2012. p. 825–35.Google Scholar
  92. 92.
    Lau CT, Kan A, Shek N, Tam P, Wong KK. Is congenital pulmonary airway malformation really a raredisease? Result of a prospective registry with universal antenatal screening program. Pediatr Surg Int. 2017;33:105–8.Google Scholar
  93. 93.
    Cavoretto P, Molina F, Poggi S, Davenport M, Nicolaides KH. Prenatal diagnosis and outcome of echogenic fetal lung lesions. Ultrasound Obstet Gynecol. 2008;32:769–83.PubMedCrossRefGoogle Scholar
  94. 94.
    Kunisaki SM, Barnewolt CE, Estroff JA, Ward VL, Nemes LP, Fauza DO, Jennings RW. Large fetal congenital cystic adenomatoid malformations: growth trends and patient survival. J Pediatr Surg. 2007;42:404–10.PubMedCrossRefGoogle Scholar
  95. 95.
    Khalek N, Johnson MP. Management of prenatally diagnosed lung lesions. Semin Pediatr Surg. 2013;22:24–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Laberge JM, Flageole H, Pugash D, Khalife S, Blair G, Filiatrault D, Russo P, Lees G, Wilson RD. Outcome of the prenatally diagnosed congenital cystic adenomatoid lung malformation: a Canadian experience. Fetal Diagn Ther. 2001;16:178–86.PubMedCrossRefGoogle Scholar
  97. 97.
    Peiró JL, Sbragia L, Scorletti F, Lim FY, Shaaban A. Management of fetal teratomas. Pediatr Surg Int. 2016;32:635–47.PubMedCrossRefGoogle Scholar
  98. 98.
    Rescorla FJ. Teratomas and other germ cells tumors. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 507–16.CrossRefGoogle Scholar
  99. 99.
    Pauniaho S-LL, Heikinheimo O, Vettenranta K, Salonen J, Stefanovic V, Ritvanen A, Rintala R, Heikinheimo M. High prevalence of sacrococcygeal teratoma in Finland—a nationwide population-based study. Acta Paediatr. 2013;102:e251–6.PubMedCrossRefGoogle Scholar
  100. 100.
    • Hambraeus M, Arnbjörnsson E, Börjesson A, Salvesen K, Hagander L. Sacrococcygeal teratoma: a population-based study of incidence and prenatal prognostic factors. J Pediatr Surg. 2016;51:481–5. A modern retrospective series of SCTs defining incidence and outcomes.PubMedCrossRefGoogle Scholar
  101. 101.
    Swamy R, Embleton N, Hale J. Sacrococcygeal teratoma over two decades: birth prevalence, prenatal diagnosis and clinical outcomes. Prenat Diagn. 2008;28:1048–51.PubMedCrossRefGoogle Scholar
  102. 102.
    Partridge EA, Canning D, Long C, Peranteau WH, Hedrick HL, Adzick NS, Flake AW. Urologic and anorectal complications of sacrococcygeal teratomas: prenatal and postnatal predictors. J Pediatr Surg. 2014;49:139–43.PubMedCrossRefGoogle Scholar
  103. 103.
    Adzick NS. Open fetal surgery for life-threatening fetal anomalies. Semin Fetal Neonatal Med. 2010;15:1–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Shue E, Bolouri M, Jelin EB, et al. Tumor metrics and morphology predict poor prognosis in prenatally diagnosed sacrococcygeal teratoma: a 25-year experience at a single institution. J Pediatr Surg. 2013;48:1225–31.PubMedCrossRefGoogle Scholar
  105. 105.
    Makin EC, Hyett J, Ade-Ajayi N, Patel S, Nicolaides K, Davenport M. Outcome of antenatally diagnosed sacrococcygeal teratomas: single-center experience (1993-2004). J Pediatr Surg. 2006;41:388–93.PubMedCrossRefGoogle Scholar
  106. 106.
    Rodriguez MA, Cass DL, Lazar DA, Cassady CI, Moise KJ, Johnson A, Mushin OP, Hassan SF, Belleza-Bascon B, Olutoye OO. Tumor volume to fetal weight ratio as an early prognostic classification for fetal sacrococcygeal teratoma. J Pediatr Surg. 2011;46:1182–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Akinkuotu AC, Coleman A, Shue E, Sheikh F, Hirose S, Lim FY, Olutoye OO. Predictors of poor prognosis in prenatally diagnosed sacrococcygeal teratoma: a multiinstitutional review. J Pediatr Surg. 2015;50:771–4.PubMedCrossRefGoogle Scholar
  108. 108.
    Coleman A, Shaaban A, Keswani S, Lim FY. Sacrococcygeal teratoma growth rate predicts adverse outcomes. J Pediatr Surg. 2014;49:985–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Hedrick HL, Flake AW, Crombleholme TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39:430–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Ladd A, Rescorla F. Long-term follow-up after bowel resection for necrotizing enterocolitis: factors affecting outcome. J Pediatr. 1998;33:967–72.Google Scholar
  111. 111.
    Bruny J, Crombleholme TM. Perinatal management of infant tumors and the promise of fetal surgery. Curr Opin Pediatr. 2013;25:31–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Rich BS, La Quaglia MP. Neuroblastoma. In: Coran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 441–58.CrossRefGoogle Scholar
  113. 113.
    Nuchtern JG. Perinatal neuroblastoma. Semin Pediatr Surg. 2006;15:10–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Salloum R, Garrison A, von Allmen D, Sheridan R, Towbin AJ, Adams D, Weiss B. Relapsed perinatal neuroblastoma after expectant management. Pediatr Blood Cancer. 2015;62:160–2.PubMedCrossRefGoogle Scholar
  115. 115.
    Bowman RM, Boshnjaku V, McLone DG. The changing incidence of myelomeningocele and its impact on pediatric neurosurgery: a review from the children’s memorial hospital. Childs Nerv Syst. 2009;25:801–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Smith JL. Management of neural tube defects, hydrocephalus, refractory epilepsy, and central nervous system infections neural tube defects. In: Oran AG, Adzick NS, Krummel TM, Ford SB, Laberge J-M, Shamberger RC, Caldamone AA, editors. Pediatr. Surgery. 7th ed. Philadelphia: Elsevier; 2012. p. 1673–97.CrossRefGoogle Scholar
  117. 117.
    Tulipan N, Wellons II JC, Thom EA, et al. Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr. 2015;16:613–20.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sutton LN, Adzick NS, Bilaniuk LT, Johnson MP, Crombleholme TM, Flake AW. Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA. 1999;282:1826–31.PubMedCrossRefGoogle Scholar
  119. 119.
    •• Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004. MOMS Trial – a landmark randomized controlled trial demonstrating the benefit of fetal surgery to correct myelomeningocele.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Peranteau WH, Adzick NS. Prenatal surgery for myelomeningocele. Curr Opin Obstet Gynecol. 2016;28:111–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Cameron M, Moran P. Prenatal screening and diagnosis of neural tube defects. Prenat Diagn. 2009;29:402–11.PubMedCrossRefGoogle Scholar
  122. 122.
    Stoll C, Dott B, Alembik Y, Roth MP. Associated malformations among infants with neural tube defects. Am J Med Genet Part A. 2011;155:565–8.CrossRefGoogle Scholar
  123. 123.
    • Oakeshott P, Reid F, Poulton A, Markus H, Whitaker RH, Hunt GM. Neurological level at birth predicts survival to the mid-40s and urological deaths in open spina bifida: a complete prospective cohort study. Dev Med Child Neurol. 2015;57:634–8. Long-term, 50 year cohort study in the United Kingdon, of the outcomes of patients with spina bifida.PubMedCentralCrossRefGoogle Scholar
  124. 124.
    Tennant PW, Pearce MS, Bythell M, Rankin J. 20-year survival of children born with congenital anomalies: a population-based study. Lancet. 2010;375:649–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Pediatric SurgeryJohns Hopkins Department of SurgeryBaltimoreUSA

Personalised recommendations