Skip to main content

Advertisement

Log in

A Comprehensive Review on Computer Vision and Fuzzy Logic in Forensic Science Application

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

Criminalistics is another name for forensic science. It uses science in a criminal investigation as governed by judicial criteria of acceptable, relevant, and admissible evidence and criminal procedure. Forensic science has been around for a long time and has seen considerable changes, from fingerprint identification to DNA analysis and digital forensics. The study focuses on the most critical technologies in forensic science, then deconstructs numerous computer vision, image processing, and fuzzy logic methodologies in the large subject of forensic research. It also addresses the prospects for using the technology in approaches ranging from biometric identification to a 3D reconstruction of a crime scene. To some extent, adopting the numerous methodologies outlined in the paper helps overcome the disadvantages and challenges of traditional forensics procedures. Furthermore, some constraints are taken into account. For example, in various ways, the primary evidence is pre-processed and translated to an intermediate or more lucid form before the crux algorithms are applied. As a result, there is still plenty of room for research in this subject, such as developing solid algorithms, making the technology accept raw data, etc. If utilized correctly, forensic science technology has the potential to affect a paradigm shift in the criminal justice system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All relevant data and material are presented in the main paper.

References

  1. Hans G (2020) Criminal investigation. World of Forensic Science. https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/gross-hans

  2. James Brix H (2016) Forensic anthropology | science | Britannica. Encyclopædia Britannica. https://www.britannica.com/science/forensic-anthropology#ref1197681

  3. Gahlaut A, Dhull V, Dahiya M, Dabur R (2016) Analytical techniques in forensic science: MS & bio-sensor based diagnostics. Inter J Chem Anal Sci 6–10

  4. Roux C, Crispino F, Ribaux O (2012) From forensics to forensic science. Curr Issues Crim Just 24(1):7–24. https://doi.org/10.1080/10345329.2012.12035941

    Article  Google Scholar 

  5. Fakiha B (2020) Technology in forensic science. Technol Foren Sci 7:1–10. https://doi.org/10.1002/9783527827688

    Article  Google Scholar 

  6. Allwood JS, Fierer N, Dunn RR (2020) The future of environmental DNA in forensic science. Appl Environ Microbiol 86(2):1–26. https://doi.org/10.1128/AEM.01504-19

    Article  Google Scholar 

  7. Saiz M, Martínez-Gonzalez LJ, Lorente JA, Alvarez-Cubero MJ (2020) Applications of next-generation sequencing in forensic field. In: Forensic DNA typing: principles, applications and advancements (pp 451–471). Springer Singapore. https://doi.org/10.1007/978-981-15-6655-4_23

  8. Fernandes CMS, da Costa Serra M, da Silva JVL, Yoshito Noritomi P, de Sena Pereira FDA, Melani RFH (2012) Tests of one Brazilian facial reconstruction method using three soft tissue depth sets and familiar assessors. Foren Sci Int 214(1–3):211.e1-211.e7. https://doi.org/10.1016/j.forsciint.2011.08.017

    Article  Google Scholar 

  9. Zoppi U, Skopec Z, Skopec J, Jones G, Fink D, Hua Q, Jacobsen G, Tuniz C, Williams A (2004) Forensic applications of 14C bomb-pulse dating. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 223–224(SPEC. ISS.), 770–775. https://doi.org/10.1016/j.nimb.2004.04.143

  10. Dror IE, Mnookin JL (2010) The use of technology in human expert domains: challenges and risks arising from the use of automated fingerprint identification systems in forensic science. Law Probab Risk 9(1):47–67. https://doi.org/10.1093/lpr/mgp031

    Article  Google Scholar 

  11. Wish ED, Gropper BA (1990) Drug testing by the criminal justice system: methods, research, and applications. Crime Justice 13:321–391. https://doi.org/10.1086/449178

    Article  Google Scholar 

  12. Kshirsagar A, Sanghavi P (2022) Geothermal, oil and gas well subsurface temperature prediction employing machine learning. In: 47 th workshop on geothermal reservoir engineering. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2022/Kshirsagar.pdf

  13. Solanki P, Baldaniya D, Jogani D, Chaudhary B, Shah M, Kshirsagar A (2021) Artificial intelligence: new age of transformation in petroleum upstream. Petrol Res. https://doi.org/10.1016/j.ptlrs.2021.07.002

    Article  Google Scholar 

  14. Costantini S, De Gasperis G, Olivieri R (2019) Digital forensics and investigations meet artificial intelligence. Ann Math Artif Intell 86(1–3):193–229. https://doi.org/10.1007/s10472-019-09632-y

    Article  Google Scholar 

  15. Raghavan S (2013) Digital forensic research: current state of the art. CSI Trans ICT 1(1):91–114. https://doi.org/10.1007/s40012-012-0008-7

    Article  Google Scholar 

  16. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer vision: a brief review. Comput Intell Neurosci. https://doi.org/10.1155/2018/7068349

    Article  Google Scholar 

  17. Raneri D (2018) Enhancing forensic investigation through the use of modern three-dimensional (3D) imaging technologies for crime scene reconstruction. Aust J Forensic Sci 50(6):697–707. https://doi.org/10.1080/00450618.2018.1424245

    Article  Google Scholar 

  18. Zeng J, Qiu X, Shi S, Bian X, Zhu H (2020) 3D imaging techniques for forensic identification of human images. In: ACM international conference proceeding series, 1–5. https://doi.org/10.1145/3424978.3425104

  19. Andaló FA, Goldenstein S (2016) Computer vision methods applicable to forensic science. February.

  20. Scheidt N, Akkuzu G, Adda M (2020) Making decision on sharing forensic data with the fuzzy logic approach. In: 2020 IEEE 10th international conference on intelligent systems, IS 2020 - Proceedings, 44–50. https://doi.org/10.1109/IS48319.2020.9200142

  21. Shalaginov A (2017) Fuzzy logic model for digital forensics: a trade-off between accuracy, complexity and interpretability. In: IJCAI international joint conference on artificial intelligence, 0(i):5207–5208. https://doi.org/10.24963/ijcai.2017/763

  22. Stoffel K, Cotofrei P, Han D (2012) Fuzzy clustering based methodology for multidimensional data analysis in computational forensic domain. Int J Comput Inform Syst Ind Manag Appl 4:400–410

    Google Scholar 

  23. Shalaginov A, Franke K (2016) Automated generation of fuzzy rules from large-scale network traffic analysis in digital forensics investigations. In: Proceedings of the 2015 7th international conference of soft computing and pattern recognition, SoCPaR 2015, 0(1):31–36.https://doi.org/10.1109/SOCPAR.2015.7492778

  24. Shi Y (2022) Advances in big data analytics. Adv Big Data Anal. https://doi.org/10.1007/978-981-16-3607-3

    Article  Google Scholar 

  25. Feng X, Zhao Y (2018) Digital forensics challenges to big data in the cloud. In: Proceedings - 2017 IEEE international conference on internet of things, IEEE green computing and communications, IEEE cyber, physical and social computing, IEEE smart data, IThings-GreenCom-CPSCom-SmartData 2017, 2018-Janua, 858–862.https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.132

  26. Giacalone M, Cusatelli C, Romano A, Buondonno A, Santarcangelo V (2018) Big data and forensics: an innovative approach for a predictable jurisprudence. Inf Sci 426:160–170. https://doi.org/10.1016/j.ins.2017.10.036

    Article  Google Scholar 

  27. Zhu X, Qian Y, Zhao X, Sun B, Sun Y (2018) A deep learning approach to patch-based image inpainting forensics. Signal Process Image Commun 67:90–99. https://doi.org/10.1016/j.image.2018.05.015

    Article  Google Scholar 

  28. Li Y, Huang Z, Dong X, Liang W, Xue H, Zhang L, Zhang Y, Deng Z (2019) Forensic age estimation for pelvic X-ray images using deep learning. Eur Radiol 29(5):2322–2329. https://doi.org/10.1007/s00330-018-5791-6

    Article  Google Scholar 

  29. Conti M, Dehghantanha A, Franke K, Watson S (2018) Internet of things security and forensics: challenges and opportunities. ArXiv, 10–13

  30. Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178. https://doi.org/10.1007/s40745-017-0112-5

    Article  Google Scholar 

  31. Karabiyik U, Akkaya K (2019) Digital forensics for IoT and WSNs. Stud Syst Decis Control 164:171–207. https://doi.org/10.1007/978-3-319-92384-0_6

    Article  Google Scholar 

  32. Kakkad V, Patel M, Shah M (2019) Biometric authentication and image encryption for image security in cloud framework. Multiscale Multidis Model Exp Des 2(4):233–248. https://doi.org/10.1007/s41939-019-00049-y

    Article  Google Scholar 

  33. Chinnikatti SK (2018) Artificial intelligence in forensic science. Foren Sci Addict Res https://doi.org/10.31031/fsar.2018.03.000554

  34. Hoelz BWP, Ralha CG, Geeverghese R (2009). Artificial intelligence applied to computer forensics. In: Proceedings of the ACM symposium on applied computing, 883–888. https://doi.org/10.1145/1529282.1529471

  35. McCord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, Taglia F, Zapico SC, Mariot RF, Lee SB, Duncan G (2019). Forensic DNA analysis. In: Analytical Chemistry (Vol. 91, Issue 1, pp. 673–688). American Chemical Society. https://doi.org/10.1021/acs.analchem.8b05318

  36. Mahdian B, Saic S (2009) Using noise inconsistencies for blind image forensics. Image Vis Comput 27(10):1497–1503. https://doi.org/10.1016/j.imavis.2009.02.001

    Article  Google Scholar 

  37. Mahdian B, Saic S (2009) Detecting double compressed JPEG images. IET Seminar Digest. https://doi.org/10.1049/ic.2009.0240

    Article  Google Scholar 

  38. James H, Gupta O, Raviv D (2020) Printing and scanning attack for image counter forensics. ArXiv

  39. Pandey RC, Singh SK, Shukla KK (2016) Passive forensics in image and video using noise features: a review. Digit Investig 19(182):1–28. https://doi.org/10.1016/j.diin.2016.08.002

    Article  Google Scholar 

  40. Popescu AC, Farid H (2004) Statistical tools for digital forensics. Lecture notes in computer science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3200, 128–147. https://doi.org/10.1007/978-3-540-30114-1_10

  41. Baltieri D, Vezzani R, Cucchiara R (2011) 3DPeS: 3D people dataset for surveillance and forensics. MM’11 - Proceedings of the 2011 ACM multimedia conference and co-located workshops - JHGBU 2011 Workshop, J-HGBU’11, 59–64.https://doi.org/10.1145/2072572.2072590

  42. Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 2360–2367. https://doi.org/10.1109/CVPR.2010.5539926

  43. Bazzani L, Cristani M, Murino V (2014) SDALF: modeling human appearance with symmetry-driven accumulation of local features. In: Advances in computer vision and pattern recognition (Vol. 56, pp. 43–69). Springer-Verlag London Ltd. https://doi.org/10.1007/978-1-4471-6296-4_3

  44. Cole SA (2006) History of fingerprint pattern recognition. In: Automatic fingerprint recognition systems. Springer-Verlag, pp 1–25 https://doi.org/10.1007/0-387-21685-5_1

  45. Needham JA, Sharp JS (2016) Watch your step! A frustrated total internal reflection approach to forensic footwear imaging. Sci Rep 6(1):1–7. https://doi.org/10.1038/srep21290

    Article  Google Scholar 

  46. Chaajer P, Kshirsagar A, Shah M (2021) A comprehensive study of artificial neural network (ANN) and support vector machines (SVM) and long short-term memory (LSTM) on stock forecasting. decision analytics

  47. Verma MS, Pratt L, Ganesh C, Medina C (2002) Hair-MAP: a prototype automated system for forensic hair comparison and analysis. Forensic Sci Int 129(3):168–186. https://doi.org/10.1016/S0379-0738(02)00277-3

    Article  Google Scholar 

  48. Fu LM (1994) Rule generation from neural networks. IEEE Trans Syst Man Cybern 24(8):1114–1124. https://doi.org/10.1109/21.299696

    Article  Google Scholar 

  49. Ripley BD (1994) Neural networks and related methods for classification. J Roy Stat Soc: Ser B (Methodol) 56(3):409–437. https://doi.org/10.1111/j.2517-6161.1994.tb01990.x

    Article  Google Scholar 

  50. Boonkhong K, Karnjanadecha M, Aiyarak P (2010) Impact angle analysis of bloodstains using a simple image processing technique. Songklanakarin J Sci Technol 32(2):169–173

    Google Scholar 

  51. Illes MB, Carter AL, Laturnus PL, Yamashita AB (2005) Use of the backtrack™ computer program for bloodstain pattern analysis of stains from downward-moving drops. J Can Soc Foren Sci 38(4):213–217. https://doi.org/10.1080/00085030.2005.10757593

    Article  Google Scholar 

  52. Janardanan RP (2018) Recent image processing techniques in forensic odontology - a systematic review. Biomed J Sci Tech Res 2(5):1–6

    Google Scholar 

  53. Shamsafar F (2013) A new feature extraction method from dental X-ray images for human identification. Iranian conference on machine vision and image processing, MVIP, 397–402. https://doi.org/10.1109/IranianMVIP.2013.6780018

  54. Said EH, Nassar DEM, Fahmy G, Ammar HH (2006) Teeth segmentation in digitized dental x-ray films using mathematical morphology. IEEE Trans Inf Forensics Secur 1(2):178–189. https://doi.org/10.1109/TIFS.2006.873606

    Article  Google Scholar 

  55. Lee JH, Han SS, Kim YH, Lee C, Kim I (2020) Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 129(6):635–642. https://doi.org/10.1016/j.oooo.2019.11.007

    Article  Google Scholar 

  56. Beebe NL, Clark JG (2005) A hierarchical, objectives-based framework for the digital investigations process. Digit Investig 2(2):147–167. https://doi.org/10.1016/j.diin.2005.04.002

    Article  Google Scholar 

  57. Hayes D, Kyobe M (2020) The adoption of automation in cyber forensics. In: 2020 conference on information communications technology and society, ICTAS 2020 - proceedings. https://doi.org/10.1109/ICTAS47918.2020.233977

  58. Claes P, Vandermeulen D, De Greef S, Willems G, Suetens P (2006) Statistically deformable face models for cranio-facial reconstruction. J Comput Inf Technol 14(1):21–30. https://doi.org/10.2498/cit.2006.01.03

    Article  Google Scholar 

  59. Gietzen T, Brylka R, Achenbach J, Hebel K, Schömer E, Botsch M, Schwanecke U, Schulze R (2018) A method for automatic forensic facial reconstruction based on dense statistics of soft tissue thickness. ArXiv, 1–19

  60. Hamid S, Abuaffan AH (2016) Facial soft tissue thickness in a sample of Sudanese adults with different occlusions. Forensic Sci Int 266:209–214. https://doi.org/10.1016/j.forsciint.2016.05.018

    Article  Google Scholar 

  61. Ma M, Zheng H, Lallie H (2010) Virtual reality and 3D animation in forensic visualization. J Forensic Sci 55(5):1227–1231. https://doi.org/10.1111/j.1556-4029.2010.01453.x

    Article  Google Scholar 

  62. Burton AM, Schofield D, Goodwin LM (2005) Gates of global perception: forensic graphics for evidence presentation. In: Proceedings of the 13th ACM international conference on multimedia, MM, 103–111.https://doi.org/10.1145/1101149.1101165

  63. Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller—part I. IEEE Trans Syst Man Cybern 20(2):404–418. https://doi.org/10.1109/21.52551

    Article  Google Scholar 

  64. Zuo Z, Li J, Wei B, Yang L, Chao F, Naik N (2019) Adaptive activation function generation for artificial neural networks through fuzzy inference with application in grooming text categorisation. IEEE International Conference on Fuzzy Systems, 2019-June. https://doi.org/10.1109/FUZZ-IEEE.2019.8858838

  65. Kshirsagar A (2018) Bio-remediation use of nature in a technical way to fight pollution for a long run. ResearchGate. https://doi.org/10.13140/RG.2.2.26906.70088

  66. Ribaux O, Walsh SJ, Margot P (2006) The contribution of forensic science to crime analysis and investigation: forensic intelligence. Forensic Sci Int 156(2–3):171–181. https://doi.org/10.1016/j.forsciint.2004.12.028

    Article  Google Scholar 

  67. Mohindru P, Sharma G, Pooja P (2014) Fingerprint minutiae extraction using fuzzy logic. Int J Comput Appl 101(10):24–26. https://doi.org/10.5120/17724-8086

    Article  Google Scholar 

  68. Gao Y, Er MJ (2002) Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems. IFAC Proc Vol (IFAC-PapersOnline) 15(1):301–306. https://doi.org/10.3182/20020721-6-es-1901.00703

    Article  Google Scholar 

  69. Selvarani P, Malarvizhi N (2018) Multibiometric authentication with MATLAB simulation. Int J Eng Technol (UAE) 7(1):47–50

    Article  Google Scholar 

  70. Yu JH, Yuh HH, Jyh BK (2011) The modified DNA identification classification on fuzzy relation. Appl Mech Mater 48–49:1275–1281. https://doi.org/10.4028/www.scientific.net/AMM.48-49.1275

    Article  Google Scholar 

  71. Faleh HN, Karidi HK (2020) Fuzzy association rule classification system for human DNA profile identification. In: IOP Conference Series: Materials Science and Engineering, 928:032076. https://doi.org/10.1088/1757-899x/928/3/032076

  72. Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC, Botstein D, Brown P (2000) “Gene shaving” as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol 1(2):1–21. https://doi.org/10.1186/gb-2000-1-2-research0003

    Article  Google Scholar 

  73. Khan MJ, Yousaf A, Khurshid K, Abbas A, Shafait F (2018) Automated forgery detection in multispectral document images using fuzzy clustering. In: Proceedings - 13th IAPR international workshop on document analysis systems, DAS 2018, 393–398. https://doi.org/10.1109/DAS.2018.26

  74. Xiao J, Li S, Xu Q (2019) Video-based evidence analysis and extraction in digital forensic investigation. IEEE Access 7(8):55432–55442. https://doi.org/10.1109/ACCESS.2019.2913648

    Article  Google Scholar 

  75. Bramble S, Compton S, KlasÈn L (2001) Forensic Image Analysis. http://www.close-range.com/docs/Forensic_Image_Analysis--Bramble-etal2001_INTERPOL.pdf

  76. Singh N, Gupta A, Jain RC (2018) Adaptive histogram equalization based image forensics using statistics of DC DCT coefficients. Adv Electr Electron Eng 16(1):125–134

    Google Scholar 

  77. Dardi F, Cervelli F, Carrato S (2009) A texture based shoe retrieval system for shoe marks of real crime scenes. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5716 LNCS, 384–393. https://doi.org/10.1007/978-3-642-04146-4_42

  78. Kong B, Supancic J, Ramanan D, Fowlkes C (2017) Cross-domain forensic shoeprint matching. British Machine Vision Conference 2017, BMVC 2017

  79. Liu Z, Feng D (2005) Incremental fuzzy decision tree-based network forensic system. Lecture notes in computer science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3802 LNAI, 995–1002. https://doi.org/10.1007/11596981_148

  80. Mukkamala S, Sung AH (2003) Identifying significant features for network forensic analysis using artificial intelligent techniques. Int J Digit Evid 1(4):1–17

    Google Scholar 

  81. Chen Q, Huang J, Feris R, Brown LM, Dong J, Yan S (2015) Deep domain adaptation for describing people based on fine-grained clothing attributes. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, 07–12-June, 5315–5324.https://doi.org/10.1109/CVPR.2015.7299169

  82. Bedeli M, Geradts Z, van Eijk E (2018) Clothing identification via deep learning: forensic applications. Foren Sci Res 3(3):219–229. https://doi.org/10.1080/20961790.2018.1526251

    Article  Google Scholar 

  83. Barni M, Costanzo A (2012) A fuzzy approach to deal with uncertainty in image forensics. Sig Process Image Commun 27(9):998–1010. https://doi.org/10.1016/j.image.2012.07.006

    Article  Google Scholar 

  84. da Costa KAP, Papa JP, Passos LA, Colombo D, Ser JD, Muhammad K, de Albuquerque VHC (2020) A critical literature survey and prospects on tampering and anomaly detection in image data. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2020.106727

    Article  Google Scholar 

  85. Redi JA, Taktak W, Dugelay JL (2011) Digital image forensics: a booklet for beginners. Multimed Tools Appl 51(1):133–162. https://doi.org/10.1007/s11042-010-0620-1

    Article  Google Scholar 

  86. Loia V, Mattiucci M, Senatore S, Veniero M (2009) Computer crime investigation by means of fuzzy semantic maps. In: Proceedings - 2009 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology - workshops, WI-IAT Workshops 2009, 3, 183–186. https://doi.org/10.1109/WI-IAT.2009.258

  87. Olsen D, Shi Y (2006) Introduction to business data mining. McGraw-Hill/Irwin

  88. Sugawara E, Nikaido H (2014) Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother 58(12):7250–7257. https://doi.org/10.1128/AAC.03728-14

    Article  Google Scholar 

  89. Formica A (2010) Concept similarity in fuzzy formal concept analysis for semantic web. Int J Uncertain Fuzziness Knowl Based Syst 18(2):153–167. https://doi.org/10.1142/S0218488510006465

    Article  Google Scholar 

  90. Saad SM (2011) Application of fuzzy logic and genetic algorithm in biometric text-independent writer identification. IET Inf Secur 5(1):1–9. https://doi.org/10.1049/iet-ifs.2010.0100

    Article  Google Scholar 

  91. Bharathi S, Sudhakar R (2019) Biometric recognition using finger and palm vein images. Soft Comput 23(6):1843–1855. https://doi.org/10.1007/s00500-018-3295-6

    Article  Google Scholar 

  92. Sahu S, Rao AP, Mishra ST (2015) Fingerprints based gender classification using Adaptive Neuro Fuzzy Inference System. In: 2015 international conference on communication and signal processing, ICCSP 2015, 1218–1222.https://doi.org/10.1109/ICCSP.2015.7322700

  93. Dongre GB, Jagade SM (2017) Singular value decomposition and discrete wavelet transform-based fingerprint gender classification. Adv Intell Syst Comput 468:1–7. https://doi.org/10.1007/978-981-10-1675-2_1

    Article  Google Scholar 

  94. Imran BM, Beg MMS (2011) Elements of sketching with words. Int J Gran Comput Rough Sets Intell Syst 2(2):166. https://doi.org/10.1504/ijgcrsis.2011.043371

    Article  Google Scholar 

  95. Zadeh LA (2009) Toward extended fuzzy logic-A first step. Fuzzy Sets Syst 160(21):3175–3181. https://doi.org/10.1016/j.fss.2009.04.009

    Article  Google Scholar 

  96. Shanmugavadivu R, Nagarajan DN (2011) Network intrusion detection system using fuzzy logic. Indian J Comput Sci Eng 2(1):101–111

    Google Scholar 

  97. Hankins R, Uehara T, Liu J (2009) A comparative study of forensic science and computer forensics. In: SSIRI 2009 - 3rd IEEE international conference on secure software integration reliability improvement, 230–239.https://doi.org/10.1109/SSIRI.2009.42

  98. Bouchrika I, Goffredo M, Carter J, Nixon M (2011) On using gait in forensic biometrics. J Foren Sci 56(4):882–889. https://doi.org/10.1111/j.1556-4029.2011.01793.x

    Article  Google Scholar 

  99. Campomanes-Alvarez C, Ibáñez O, Cordón O (2016) Design of criteria to assess craniofacial correspondence in forensic identification based on computer vision and fuzzy integrals. Appl Soft Comput J 46:596–612. https://doi.org/10.1016/j.asoc.2015.11.006

    Article  Google Scholar 

  100. Singh RD, Aggarwal N (2017) Detection and localization of copy-paste forgeries in digital videos. Forensic Sci Int 281:75–91. https://doi.org/10.1016/j.forsciint.2017.10.028

    Article  Google Scholar 

  101. Amato G, Falchi F, Gennaro C, Massoli FV, Passalis N, Tefas A, Trivilini A, Vairo C (2019) Face verification and recognition for digital forensics and information security. In: 7th International Symposium on Digital Forensics and Security, ISDFS 2019, 1–6. https://doi.org/10.1109/ISDFS.2019.8757511

  102. Liu Y, Hu D, Fan J, Wang F, Zhang D (2017) Multi-feature fusion for crime scene investigation image retrieval. In: DICTA 2017 - 2017 international conference on digital image computing: techniques and applications, 2017-Decem, 1–7.https://doi.org/10.1109/DICTA.2017.8227466

  103. Kortylewski A, Albrecht T, Vetter T (2015) Unsupervised footwear impression analysis and retrieval from crime scene data. In: Jawahar CV, Shan S (Eds.), Asian conference on computer vision (Vol. 9008, pp 644–658). Springer International Publishing. https://doi.org/10.1007/978-3-319-16628-5_46

  104. Baluja S, Covell M (2007) Audio fingerprinting: combining computer vision & data stream Processing. In: 2007 IEEE international conference on acoustics, speech and signal processing - ICASSP ’07, II-213-II–216.https://doi.org/10.1109/ICASSP.2007.366210

  105. Shui W, Zhou M, Deng Q, Wu Z, Ji Y, Li K, He T, Jiang H (2016) Densely calculated facial soft tissue thickness for craniofacial reconstruction in Chinese adults. Forensic Sci Int 266:573.e1-573.e12. https://doi.org/10.1016/j.forsciint.2016.07.017

    Article  Google Scholar 

  106. Nomir O, Abdel-Mottaleb M (2005) A system for human identification from X-ray dental radiographs. Pattern Recogn 38(8):1295–1305. https://doi.org/10.1016/j.patcog.2004.12.010

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Indus University, and Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University for the permission to publish this research.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors make substantial contribution in this manuscript. PT, DP, IH, JJ, SP MS, and AK participated in drafting the manuscript. PT, DP, IH, JJ, and SP wrote the main manuscript, all the authors discussed the results and implication on the manuscript at all stages.

Corresponding author

Correspondence to Manan Shah.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical Statement

Authors hereby declare that this manuscript is the result of our team’s independent creation under the reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research achievements that have been published by other individuals and groups.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakkar, P., Patel, D., Hirpara, I. et al. A Comprehensive Review on Computer Vision and Fuzzy Logic in Forensic Science Application. Ann. Data. Sci. 10, 761–785 (2023). https://doi.org/10.1007/s40745-022-00408-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-022-00408-6

Keywords

Navigation