Statistical Inference and Optimum Life Testing Plans Under Type-II Hybrid Censoring Scheme

  • Tanmay Sen
  • Yogesh Mani Tripathi
  • Ritwik Bhattacharya


This article considers estimation of unknown parameters and prediction of future observations of a generalized exponential distribution based on Type-II hybrid censored data. Bayes point and HPD interval estimates of the unknown parameters are obtained under the assumption of independent gamma priors. Different classical and Bayesian point predictors and prediction intervals are obtained in two-sample situation against squared error loss function. The optimum censoring schemes are computed under various optimality criteria. Monte Carlo simulations are performed to compare different methods and two data sets are analyzed for illustrative purposes.


Bayes estimates EM algorithm Generalized exponential distribution MH algorithm Prediction Optimal censoring 



The authors thank one anonymous reviewer and an associate editor for their critical comments and helpful suggestions which have resulted in an improvement over the earlier version of this article. The research of the corresponding author is partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) Grant Number CB 2016-2018 No. 252996.


  1. 1.
    Asgharzadeh A, Valiollahi R, Kundu D (2015) Prediction for future failures in weibull distribution under hybrid censoring. J Stat Comput Simul 85(4):824–838CrossRefGoogle Scholar
  2. 2.
    Balakrishnan N, Kundu D (2013) Hybrid censoring: models, inferential results and applications. Comput Stat Data Anal 57(1):166–209CrossRefGoogle Scholar
  3. 3.
    Balakrishnan N, Shafay A (2012) One-and two-sample bayesian prediction intervals based on Type-II hybrid censored data. Commun Stat Theory Methods 41(9):1511–1531CrossRefGoogle Scholar
  4. 4.
    Banerjee A, Kundu D (2008) Inference based on Type-II hybrid censored data from a weibull distribution. IEEE Trans Reliab 57(2):369–378CrossRefGoogle Scholar
  5. 5.
    Bhattacharya R, Pradhan B, Dewanji A (2014) Optimum life testing plans in presence of hybrid censoring: a cost function approach. Appl Stoch Models Bus Ind 30(5):519–528CrossRefGoogle Scholar
  6. 6.
    Chen M-H, Shao Q-M (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8(1):69–92Google Scholar
  7. 7.
    Chen S-M, Bhattacharyya GK (1988) Exact confidence bounds for an exponential parameter under hybrid censoring. Commun Stat Theory Methods 17(6):1857–1870CrossRefGoogle Scholar
  8. 8.
    Childs A, Chandrasekar B, Balakrishnan N, Kundu D (2003) Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Ann Inst Stat Math 55(2):319–330Google Scholar
  9. 9.
    Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39:1–38Google Scholar
  10. 10.
    Dhillon BS (1981) Life distributions. IEEE Trans Reliab 5:457–460CrossRefGoogle Scholar
  11. 11.
    Dube S, Pradhan B, Kundu D (2011) Parameter estimation of the hybrid censored log-normal distribution. J Stat Comput Simul 81(3):275–287CrossRefGoogle Scholar
  12. 12.
    Epstein B et al (1954) Truncated life tests in the exponential case. Ann Math Stat 25(3):555–564CrossRefGoogle Scholar
  13. 13.
    Kundu D, Pradhan B (2009) Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring. Commun Stat Theory Methods 38(12):2030–2041CrossRefGoogle Scholar
  14. 14.
    Lawless JF (2011) Statistical models and methods for lifetime data, vol 362. Wiley, HobokenGoogle Scholar
  15. 15.
    Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B (Methodol) 44:226–233Google Scholar
  16. 16.
    Morabbi H, Razmkhah M (2009) Entropy of hybrid censoring schemes. J Stat Res Iran 6:161–176Google Scholar
  17. 17.
    Nassar M, Nassr S, Dey S (2017) Analysis of burr Type-XII distribution under step stress partially accelerated life tests with Type-I and adaptive Type-II progressively hybrid censoring schemes. Ann Data Sci 4(2):227–248CrossRefGoogle Scholar
  18. 18.
    Ng H, Chan P, Balakrishnan N (2004) Optimal progressive censoring plans for the Weibull distribution. Technometrics 46(4):470–481CrossRefGoogle Scholar
  19. 19.
    Park S, Balakrishnan N (2009) On simple calculation of the fisher information in hybrid censoring schemes. Stat Probab Lett 79(10):1311–1319CrossRefGoogle Scholar
  20. 20.
    Pradhan B, Kundu D (2009) On progressively censored generalized exponential distribution. Test 18(3):497–515CrossRefGoogle Scholar
  21. 21.
    Raqab MZ, Nagaraja H (1995) On some predictors of future order statistics. Metron 53(12):185–204Google Scholar
  22. 22.
    Rastogi MK, Tripathi YM (2013) Inference on unknown parameters of a burr distribution under hybrid censoring. Stat Pap 54(3):619–643CrossRefGoogle Scholar
  23. 23.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423CrossRefGoogle Scholar
  24. 24.
    Soofi ES (2000) Principal information theoretic approaches. J Am Stat Assoc 95(452):1349–1353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology PatnaPatnaIndia
  2. 2.Centro de Investigación en Matemáticas (CIMAT)MonterreyMexico

Personalised recommendations