Skip to main content
Log in

Exponentiated Power Lindley Logarithmic: Model, Properties and Applications

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

A new class of lifetime distributions is proposed. Closed form expressions are provided for the density, cumulative distribution, survival and hazard rate functions. Maximum likelihood estimation is discussed and formulas for the elements of the observed information matrix are provided. Simulation studies are conducted. Finally, two real data applications are given showing the flexibility and potentiality of the new distribution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lindley DV (1958) Fiducial distributions and Bayes theorem. J R Stat Soc Ser B 20:10–107

    Google Scholar 

  2. Ghitany ME, Atieh B, Nadarajah S (2008) Lindley distribution and its application. Math Comput Simul 78:493–506

    Article  Google Scholar 

  3. Bakouch HS, Al-Zahrani BM, Al-Shomrani AA, Marchi VAA, Louzada F (2012) An extended Lindley distribution. J Korean Stat Soc 41:75–85

    Article  Google Scholar 

  4. Ghitany ME, Al-Qallaf F, Al-Mutairi DK, Hussain HA (2011) A two-parameter weighted Lindley distribution and its applications to survival data. Math Comput Simul 81:1190–1201

    Article  Google Scholar 

  5. Nadarajah S, Bakouch HS, Tahmasbi RA (2011) Generalized Lindley distribution. Sankhya B 73:331–359

    Article  Google Scholar 

  6. Merovci F, Elbatal I (2014) Transmuted Lindley-geometric and its application. J Stat Appl Probab 3:77–91

    Article  Google Scholar 

  7. Asgharzadeh A, Bakouch SH, Nadarajah S, Esmaeili L (2014) A new family of compound lifetime distributions. Kybernetika 50:142–169

    Google Scholar 

  8. Oluyede B, Yang T (2015) A new class of generalized Lindley distributions with applications. J Stat Comput Simul. https://doi.org/10.1080/00949655.2014.917308

    Article  Google Scholar 

  9. Ghitany ME, Al-Mutairi DK, Balakrishnan N, Al-Enezi LJ (2013) Power Lindley distribution and associated inference. Comput Stat Data Anal 64:20–33

    Article  Google Scholar 

  10. Ashour SK, Eltehiwy MA (2014) Exponentiated power Lindley distribution. J Adv Res. https://doi.org/10.1016/j.jare.2014.08.005

    Article  Google Scholar 

  11. Alizadeh M, Bagheri SF, Alizadeh M, Nadarajah S (2017) A new four-parameter lifetime distribution. J Appl Stat. https://doi.org/10.1080/02664763.2016.1182137

    Article  Google Scholar 

  12. El-Din MMM, Abu-Youssef SE, Ali NSA, Abd El-Raheem AM (2017) Optimal plans of constant-stress accelerated life tests for the Lindley distribution. J Test Eval 45:1463–1475

    Google Scholar 

  13. Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DJ (1996) On the Lambert W function. Adv Comput Math 5:329–359

    Article  Google Scholar 

  14. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  15. Moors JJA (1988) A quantile alternative for kurtosis. Statistician 37:25–32

    Article  Google Scholar 

  16. Zakerzadeh H, Dolati A (2009) Generalized Lindley distribution. J Math Ext 3:13–25

    Google Scholar 

  17. Pararai M, Warahena-Liyanage G, Oluyede BO (2015) A new class of generalized power Lindley distribution with applications to lifetime data. Theor Math Appl 5:53–96

    Google Scholar 

  18. Nadarajah S, Shahsanaei F, Rezaei S (2014) A new four-parameter lifetime distribution. J Stat Comput Simul 84:248–263

    Article  Google Scholar 

  19. Lemonte AJ, Cordeiro GM (2013) An extended Lomax distribution. Statistics 47:800–816

    Article  Google Scholar 

  20. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech Trans ASME 18(1951):293–297

    Google Scholar 

  21. Aarset MV (1987) How to identify bathtub hazard rate. IEEE Trans Reliab 36:106–108

    Article  Google Scholar 

  22. Smith RL, Naylor JC (1987) A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Appl Stat 36:358–369

    Article  Google Scholar 

  23. Chen G, Balakrishnan N (1995) A general purpose approximate goodness-of-fit test. J Qual Technol 27:154–161

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and the referees for careful reading and comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shabani.

Appendices

Appendix 1: Elements of the Observed Information Matrix

The observed information matrix is

$$\begin{aligned} \mathbf {I} = - \left( \begin{array}{cccc} \frac{\partial ^2 L}{\partial \alpha ^2} &{} \frac{\partial ^2 L}{\partial \alpha \partial \beta } &{} \frac{\partial ^2 L}{\partial \alpha \partial \lambda } &{} \frac{\partial ^2 L}{\partial \alpha \partial \theta }\\ \frac{\partial ^2 L}{\partial \beta \partial \alpha } &{}\quad \frac{\partial ^2 L}{\partial \beta ^2} &{}\quad \frac{\partial ^2 L}{\partial \beta \partial \lambda } &{}\quad \frac{\partial ^2 L}{\partial \beta \partial \theta }\\ \frac{\partial ^2 L}{\partial \lambda \partial \alpha } &{}\quad \frac{\partial ^2 L}{\partial \lambda \partial \beta } &{}\quad \frac{\partial ^2 L}{\partial \lambda ^2} &{}\quad \frac{\partial ^2 L}{\partial \lambda \partial \theta }\\ \frac{\partial ^2 L}{\partial \theta \partial \alpha } &{}\quad \frac{\partial ^2 L}{\partial \theta \partial \beta } &{}\quad \frac{\partial ^2 L}{\partial \theta \partial \lambda } &{}\quad \frac{\partial ^2 L}{\partial \theta ^2} \end{array} \right) . \end{aligned}$$

Let \(I_{\vartheta _{1}\vartheta _{2}}=I_{\vartheta _{2}\vartheta _{1}}={\frac{\partial ^{2}}{\partial \vartheta _{1}\partial \vartheta _{2}}I}\). Then, the elements of \(\mathbf {I}\) are

$$\begin{aligned} I_{\alpha \alpha }= & {} -{\frac{n}{{\alpha }^{2}}}+\sum _{i=1}^{n}\left\{ {\theta }^{2} \left( \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{2} \right. \nonumber \\&\times \left( \ln \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta } }{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) \right) ^{2} \\&\cdot { \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-2} }\\&+\, {\theta \left( 1 - \left( 1+{\frac{ \lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i} }}^{\beta }} \right) ^{\alpha } \left( \ln \left( 1 - \left( 1+{\frac{ \lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i} }}^{\beta }} \right) \right) ^{2} }\\&\cdot \left. \left( 1-\theta \ \left( 1 - \left( 1 + {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1}\right\} , \end{aligned}$$
$$\begin{aligned} I_{\alpha \beta }= & {} \sum _{i=1}^{n} \left( - {\frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \right) \\&\times \left( 1 - \left( 1+{ \frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&+\, \sum _{i=1}^{n} \left\{ {\theta }^{2}\alpha \left( \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{2} \ln \left( 1 - \left( 1+ {\frac{\lambda \ {x_{{i}}}^{ \beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) \right. \\&\cdot \left( - {\frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta } \ln \left( x_{{i}} \right) \right) \\&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^ {-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&+\,\theta \ \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \\&\times \left( - {\frac{ \lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ { x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{ \beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \right) \\&\cdot \ln \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1}\\&\times \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}}\right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&+\,\theta \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha }\\&\times \left( - {\frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta } \ln \left( x_{{i}} \right) \right) \\&\cdot \left. \left( 1-\theta \ \left( 1 - \left( 1 + {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1} \left( 1 - \left( 1+ {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1} \right\} , \end{aligned}$$
$$\begin{aligned} I_{\alpha \lambda }= & {} \sum _{i=1}^{n} \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}} } \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{ \beta }}{x_{{i}}}^{\beta } \right) \\&\times \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&+\sum _{i=1}^{n} \left\{ \alpha \ { \theta }^{2} \left( \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{ \beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{2} \right. \\&\times \ln \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) \\&\cdot \left( -\left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}}-{ \frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } \right) \\&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1} } \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&+\,\alpha \ \theta \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda + 1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) { e}^{-\lambda \ {x_{{i}}}^{\beta }} \right. \\&\left. + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}} }^{\beta } \right) \\&\cdot \ln \left( 1 - \left( 1+{ \frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) \left( 1-\theta \ \left( 1 - \left( 1+{ \frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1}\\&\times \left( 1 - \left( 1 + {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&+\,\theta \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i }}}^{\beta }} \right) ^{\alpha } \left( - \left( {\frac{{x_{{i}}}^{ \beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right. \\&\left. +\, \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } \right) \\&\cdot \left. \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta } } \right) ^{-1} \right\} , \end{aligned}$$
$$\begin{aligned} I_{\alpha \theta }= & {} \sum _{i=1}^{n}\theta \left( \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{2} \ln \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{ \beta }} \right) \\&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{ \beta }} \right) ^{\alpha } \right) ^{-2}\\&+\, \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i }}}^{\beta }} \right) ^{\alpha }\ln \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{ \beta }} \right) \\&\times \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{ \beta }} \right) ^{\alpha } \right) ^{-1}, \end{aligned}$$
$$\begin{aligned} I_{\beta \beta }= & {} -{\frac{n}{{\beta }^{2}}}+\sum _{i=1}^{n}{\frac{{x_{{i}}}^{\beta } \left( \ln \left( x_{{i}} \right) \right) ^{2}}{1+{x_{{i}}}^{\beta }}}- {\frac{ \left( {x_{{i}}}^{\beta } \right) ^{2} \left( \ln \left( x_{{i}} \right) \right) ^{2}}{ \left( 1+{x_{{i}}}^{\beta } \right) ^{2} }}-\lambda \ \sum _{i=1}^{n} {x_{{i}}}^{\beta } \left( \ln \left( x_{{i} } \right) \right) ^{2}\\&+ \,\left( \alpha -1 \right) \sum _{i=1}^{n}\left\{ - {\frac{\lambda \ {x_{{i}}}^{\beta } \left( \ln \left( x_{{i}} \right) \right) ^{2}{e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}}+2 \ {\frac{{\lambda }^{2} \left( {x_{{i}}}^{\beta } \right) ^{2} \left( \ln \left( x_{{i}} \right) \right) ^{2}{e}^{-\lambda \ {x_{{i}}}^{ \beta }} }{\lambda +1}} \right. \\&- \, \left. \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) \left( \ln \left( x_{{i}} \right) \right) ^{2} \left( {x_{{i}}}^{\beta } \right) ^{2}{e}^{- \lambda \ {x_{{i}}}^{\beta }} {\lambda }^{2} \right. \\&+\, \left. \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta } \left( \ln \left( x_{{i}} \right) \right) ^{2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1} \right. \\&-\, \left. \left( - {\frac{\lambda \ {x_{{i}}}^{\beta } \ln \left( x_{{i} } \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{ \frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \right) ^{2} \right. \\&\times \left. \left( 1 - \left( 1+{ \frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2} \right\} \\ \end{aligned}$$
$$\begin{aligned}&+\,\sum _{i=1}^{n} \left\{ {\theta }^{2}{\alpha }^{2} \left( \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{2} \right. \\&\cdot \left( - {\frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{- \lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_i \right) \right) ^{2}\\&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^ {-2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1} } \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2}\\&+ \, \theta \ { \alpha }^{2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \\&\times \left( -{\frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \right) ^{2}\\&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e }^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2}\\&+\,\theta \ \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda + 1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha }\\&-\, {\frac{\lambda \ {x_{{i}}}^{\beta } \left( \ln \left( x_{{i}} \right) \right) ^{2}{e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} +2 \ {\frac{{\lambda }^{2} \left( {x_{{i}}}^{\beta } \right) ^{2} \left( \ln \left( x_{{i}} \right) \right) ^{2}{e}^{-\lambda \ {x_{{i}}}^{ \beta }} }{\lambda +1}}\\&-\,\left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) \left( \ln \left( x_{{i}} \right) \right) ^{2} \left( {x_{{i}}}^{\beta } \right) ^{2}{e}^{- \lambda \ {x_{{i}}}^{\beta }} {\lambda }^{2}\\&+\, \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1} } \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta } \left( \ln \left( x_{{i}} \right) \right) ^{2} \left( 1-\theta \ \left( 1 - \left( 1+{\frac{ \lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i} }}^{\beta }} \right) ^{\alpha } \right) ^{-1}\\&\cdot \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i }}}^{\beta }} \right) ^{-1}-\theta \ \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i }}}^{\beta }} \right) ^{\alpha }\\&\cdot \left( - {\frac{\lambda \ {x_{{i}}}^{ \beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{ \lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta } \ln \left( x_{{i}} \right) \right) ^{2}\\&\cdot \left. \left( 1-\theta \ \left( 1 - \left( 1+ {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1} \left( 1 - \left( 1+ {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2} \right\} , \end{aligned}$$
$$\begin{aligned} I_{\beta \lambda }= & {} -\sum _{i=1}^{n}{x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) + \left( \alpha -1 \right) \\&\times \sum _{i=1}^{n} \left\{ \left( -{\frac{{x_{{i}}}^{\beta } \ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda + 1}}+{\frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{ \left( \lambda +1 \right) ^{2}}}+{ \frac{{e}^{-\lambda \ {x_{{i}}}^{\beta }}\ln \left( x_{{i}} \right) \left( {x_{{i}}}^{\beta } \right) ^{2}\lambda }{\lambda +1}} \right. \right. \\&+\, \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}}-{\frac{ \lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \\&-\, \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \left( {x_{{i}}}^{\beta } \right) ^{2} \lambda \ \ln \left( x_{{i}} \right) \\&+\,\left. \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i} }}^{\beta }}{x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \right) \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{ \beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&-\, \left( - {\frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i} } \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \right) \\&\cdot \left. \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } \right) \right. \\&\times \left. \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2} \right\} \end{aligned}$$
$$\begin{aligned} \quad \quad&+\sum _{i=1}^{n} \left\{ {\theta }^{2}{\alpha }^{2} \left( \left( 1 - \left( 1+{ \frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{2}\right. \\&\times \left( - {\frac{ \lambda \ {x_{{i}}}^{\beta } \ln \left( x_{{i}} \right) {e}^{-\lambda \ { x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{ \beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \right) \\&\cdot \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}}-{ \frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } \right) \\&\times \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-2}\\&\cdot \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1} } \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2}+\theta \ {\alpha }^{2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha }\\&\cdot \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}}- {\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) { e}^{-\lambda \ {x_{{i}}}^{\beta }} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}} }^{\beta } \right) \\&\cdot \left( - {\frac{\lambda \ {x_{ {i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{ \beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}} }^{\beta } \ln \left( x_{{i}} \right) \right) \\&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{ \beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2} \end{aligned}$$
$$\begin{aligned} \quad \quad&+ \theta \ \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha }\\&\cdot \left( - {\frac{{x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} +{\frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{-\lambda \ { x_{{i}}}^{\beta }}}{ \left( \lambda +1 \right) ^{2}}} +{\frac{{e}^{- \lambda \ {x_{{i}}}^{\beta }}\ln \left( x_{{i}} \right) \left( {x_{{i} }}^{\beta } \right) ^{2}\lambda }{\lambda +1}} \right. \\&+\,\left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ { x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta } \ln \left( x_{{i}} \right) \\&-\, \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \left( { x_{{i}}}^{\beta } \right) ^{2} \lambda \ \ln \left( x_{{i}} \right) \\&+\,\left. \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{ x_{{i}}}^{\beta } \ln \left( x_{{i}} \right) \right) \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1} \nonumber \\&\times \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta } } \right) ^{-1}\\&-\theta \ \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta } } \right) ^{\alpha } \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda + 1}}-{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2 }}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right. \\&\left. +\, \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i} }}^{\beta }}{x_{{i}}}^{\beta } \right) \\&\cdot \left( - { \frac{\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) {e}^{- \lambda \ {x_{{i}}}^{\beta }}}{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \lambda \ {x_{{i}}}^{\beta } \ln \left( x_{{i}} \right) \right) \\&\times \left( 1-\theta \ \left( 1 - \left( 1+{\frac{ \lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i} }}^{\beta }} \right) ^{\alpha } \right) ^{-1}\\&\cdot \left. \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i }}}^{\beta }} \right) ^{-2} \right\} , \end{aligned}$$
$$\begin{aligned} I_{\beta \theta }= & {} \sum _{i=1}^{n} \left\{ \theta \ \alpha \left( 1 - \left( 1+{\frac{ \lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i} }}^{\beta }} \right) ^{2 \alpha } \right. \\&\times \left. \left( - {\frac{\ln \left( x_{{i}} \right) {x_{{i}}}^{\beta }{e}^{-\lambda \ {x_{{i}}}^{ \beta }}\lambda }{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{ \beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta }\ln \left( x_{{i}} \right) \right) \right. \\&\cdot \left( 1-\theta \ \left( 1 - \left( 1 +{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta } } \right) ^{-1}\\&+\, \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha }\\&\times \left( - {\frac{\ln \left( x_{{i}} \right) {x_{{i}}}^{\beta } {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda }{\lambda +1}} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\lambda \ {x_{{i}}}^{\beta } \ln \left( x_{ {i}} \right) \right) \\&\cdot \left. \left( 1-\theta \ \left( 1 - \left( 1 + {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1} \right\} , \end{aligned}$$
$$\begin{aligned} I_{\lambda \lambda }= & {} -2\ {\frac{n}{{\lambda }^{2}}}+{\frac{n}{ \left( \lambda +1 \right) ^{2}}} + \left( \alpha -1 \right) \sum _{i=1}^{n} \left( - \left( - 2\ { \frac{{x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} + 2\ {\frac{ \lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{3}}} \right) { e}^{-\lambda \ {x_{{i}}}^{\beta }} \right. \\&\left. + 2\ \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } - \left( 1+{\frac{\lambda \ {x_{{i}}}^{ \beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \left( {x_{{i}}}^{\beta } \right) ^{2} \right) \\&\times \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&-\, \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) { e}^{-\lambda \ {x_{{i}}}^{\beta }} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}} }^{\beta }\ \right) ^{2}\\&\times \left( 1 - \left( 1+{ \frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2}\\&+\,\sum _{i=1}^{n} \left\{ {\theta }^{2}{\alpha }^{2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{2 \alpha } \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}} - {\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\right. \right. \\&\left. + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta }\ \right) ^{2} \\ \end{aligned}$$
$$\begin{aligned}&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1} } \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2}\\&+\theta \ {\alpha }^{2} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha }\\&\cdot \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}}-{\frac{ \lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) { e}^{-\lambda \ {x_{{i}}}^{\beta }} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}} }^{\beta } \right) ^{2} \\&\times \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1}\\&\cdot \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2}+\theta \ \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda + 1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \\&\times \left( - \left( - 2\ {\frac{{x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} + 2\ {\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda + 1 \right) ^{3}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right. \\ \end{aligned}$$
$$\begin{aligned}&+\,2\ \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}}-{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ { x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \left( {x_{{i}}}^{\beta } \right) ^{2}\\&\times \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1}\\&\cdot \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1} - \theta \ \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha }\\&\cdot \left( - \left( { \frac{{x_{{i}}}^{\beta }}{\lambda +1}}-{\frac{\lambda \ {x_{{i}}}^{ \beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i }}}^{\beta }} + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } \right) ^{2} \\&\times \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1}\\&\cdot \left. \left. \left( 1 - \left( 1 + {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-2} \right) \right\} , \end{aligned}$$
$$\begin{aligned} I_{\theta \theta }= & {} -{\frac{n}{{\theta }^{2}}}+{\frac{n}{ \left( 1-\theta \right) ^{2} \ln \left( 1-\theta \right) }}+{\frac{n}{ \left( 1-\theta \right) ^{ 2} \left( \ln \left( 1-\theta \right) \right) ^{2}}}\\&+\sum _{i=1}^{n} 1 \left( \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{2} \\&\times \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ { x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta } } \right) ^{\alpha } \right) ^{-2} \end{aligned}$$

and

$$\begin{aligned} I_{\lambda \theta }= & {} \sum _{i=1}^{n}\alpha \ \theta \left( 1 - \left( 1+{\frac{ \lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i} }}^{\beta }} \right) ^{ 2 \alpha } \left( - \left( {\frac{{x_{{i}}}^{\beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}\right. \\&\left. + \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } \right) \\&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{ \frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-2} \left( 1 - \left( 1 + {\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{-1}\\&+ \alpha \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i }}}^{\beta }} \right) ^{\alpha } \left( -\left( {\frac{{x_{{i}}}^{ \beta }}{\lambda +1}} -{\frac{\lambda \ {x_{{i}}}^{\beta }}{ \left( \lambda +1 \right) ^{2}}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right. \\&\left. +\, \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }}{x_{{i}}}^{\beta } \right) \\&\cdot \left( 1-\theta \ \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta }} \right) ^{\alpha } \right) ^{-1} \left( 1 - \left( 1+{\frac{\lambda \ {x_{{i}}}^{\beta }}{\lambda +1}} \right) {e}^{-\lambda \ {x_{{i}}}^{\beta } } \right) ^{-1}. \end{aligned}$$

Appendix 2: Code of MLE

ML.epll\(<-\)function(start, x){

# start  :  Initial values for the parameters to be optimized over

n \(=\) length(x)

loglik.epll \(<-\) function(mu){

alpha \(=\) mu[1];beta \(=\) mu[2];lambda \(=\) mu[3];theta \(=\) mu[4];

-(n*log(alpha)+n*log(beta)+n*log(theta)+2*n*log(lambda)

-n*log(lambda+1)-n*log(theta/(1-theta))+(beta-1)

*(sum(log(x)))+sum \(({\texttt {log}}({\texttt {1}}+{\texttt {x}}^{\texttt {beta}}))-\)

\(lambda*(sum(x^{beta}))+ (alpha-1)*(sum(log(1-(1+lambda*x^{beta}/(lambda+1))*exp(-lambda*x^{beta}))))\) \(+sum(log(1/(1-theta*(1-(1+lambda*x^{beta}/(lambda+1))*exp(-lambda*x^beta))^{alpha})\) \(+theta*(1-(1+lambda*x^{beta}/(lambda+1))*exp(-lambda*x^{beta}))^alpha/(1-theta*(1-(1+lambda*x^{beta}/(lambda+1))*exp(-lambda*x^beta))^alpha)^2)))\}\)

\(Mle = nlminb(start,loglik.epll,lower =rep(0,4), upper =\)

\(c(Inf,Inf,Inf,1) )\$ par\)

\(names(Mle)= paste(c(``alpha{\hbox {''}},``beta{\hbox {''}},``lambda{\hbox {''}},``theta{\hbox {''}}))\)

Mle

}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, A., Moghadam, M.K., Gholami, A. et al. Exponentiated Power Lindley Logarithmic: Model, Properties and Applications. Ann. Data. Sci. 5, 583–613 (2018). https://doi.org/10.1007/s40745-018-0154-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-018-0154-3

Keywords

Navigation