Skip to main content
Log in

Corrosion Inhibition Effect of Quinoxaline Derivative on Carbon Steel in Hydrochloric Acid: Experimental and Theoretical Investigations

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The inhibitory effect of ethyl 2-(2-oxo-3-phenylquinoxalin-1(2H)-yl) acetate (PQXA) on the corrosion of carbon steel (CS35) in a 1 M HCl electrolyte was investigated using weight loss, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), surface morphology, and UV–visible spectroscopy techniques. Quantum chemical calculations were also conducted to corroborate the experimental findings. The experimental results indicate that PQXA has excellent effectiveness in inhibiting the corrosion of CS35 in 1 M HCl. The inhibition efficiency demonstrated improvement with increasing concentration, reaching a maximum of 94.7% at a concentration of 10−3M at 303 K. The PDP measurements show that PQXA acts as a mixed-type inhibitor. Adsorption of PQXA on the CS35 surface conforms to the Langmuir isotherm model. UV–visible spectroscopy examinations confirmed chemical interactions between the PQXA and CS35, while the SEM/EDX analyses revealed the formation of the protective film of the inhibitor on the CS35 surface. Moreover, theoretical investigations employing density functional theory (DFT) and molecular dynamics (MD) simulation were conducted to define the nature of adsorption, the possible adsorption orientation of quinoxaline molecules on the CS35 surface, and the correlation between inhibition effectiveness and molecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Anusuya N, Saranya J, Sounthari P et al (2017) Corrosion inhibition and adsorption behaviour of some bis-pyrimidine derivatives on mild steel in acidic medium. J Mol Liq 225:406–417. https://doi.org/10.1016/j.molliq.2016.11.015

    Article  CAS  Google Scholar 

  2. Salhi A, Tighadouini S, El-Massaoudi M et al (2017) Keto-enol heterocycles as new compounds of corrosion inhibitors for carbon steel in 1 M HCl: weight loss, electrochemical and quantum chemical investigation. J Mol Liq 248:340–349. https://doi.org/10.1016/j.molliq.2017.10.040

    Article  CAS  Google Scholar 

  3. Ferigita KSM, Saracoglu M, AlFalah MGK et al (2023) Corrosion inhibition of mild steel in acidic media using new oxo-pyrimidine derivatives: experimental and theoretical insights. J Mol Struct 1284:135–361. https://doi.org/10.1016/J.MOLSTRUC.2023.135361

    Article  Google Scholar 

  4. Osman MM, Shalaby MN (2003) Some ethoxylated fatty acids as corrosion inhibitors for low carbon steel in formation water. Mater Chem Phys 77(1):261–269. https://doi.org/10.1016/S0254-0584(01)00580-6

    Article  CAS  Google Scholar 

  5. Abdelshafeek KA, Abdallah WE et al (2022) Vicia faba peel extracts bearing fatty acids moieties as a cost-effective and green corrosion inhibitor for mild steel in marine water: computational and electrochemical studies. Sci Rep 12:20611. https://doi.org/10.1038/s41598-022-24793-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. El-Tabei AS, El-Azabawy OE, El Basiony NM, Hegazy MA (2022) Newly synthesized quaternary ammonium bis-cationic surfactant utilized for mitigation of carbon steel acidic corrosion; theoretical and experimental investigations. J Mol Struct 1262:133063. https://doi.org/10.1016/j.molstruc.2022.133063

    Article  CAS  Google Scholar 

  7. Salim MM, Azab MM, Abo-Riya MA, Abd-El-Raouf M, Basiony NE (2023) Controlling C-steel dissolution in 1 M HCl solution using newly synthesized ρ-substituted imine derivatives: theoretical (DFT and MCs) and experimental investigations. J Mol Struct 1274:134357. https://doi.org/10.1016/j.molstruc.2022.134357

    Article  CAS  Google Scholar 

  8. Elaraby A, Elgendy A, Abd-El-Raouf M, Migahed MA, El-Tabei AS, Abdullah AM, Al-Qahtani NH, Alharbi SM, Shaban SM, Kim DH, El Basiony NM (2023) Synthesis of Gemini cationic surfactants based on natural nicotinic acid and evaluation of their inhibition performance at C-steel/1 M HCl interface: electrochemical and computational investigations. Colloids Surf A 659:130687. https://doi.org/10.1016/j.colsurfa.2022.130687

    Article  CAS  Google Scholar 

  9. Zarrouk A, Hammouti B, Zarrok H, Warad I et al (2011) N-containing organic compound as an effective corrosion inhibitor for copper in 2M HNO3: weight loss and quantum chemical study. Der Pharma Chem 3(5):263–271

    CAS  Google Scholar 

  10. Zarrouk A, Messali M, Zarrok H et al (2012) Synthesis, characterization and comparative study of new functionalized imidazolium-based ionic liquids derivatives towards corrosion of C38 steel in molar hydrochloric acid. Int J Electrochem Sci 7:6998–7015

    Article  CAS  Google Scholar 

  11. Zarrouk A, Messali M, Aouad MR et al (2012) Some new ionic liquids derivatives: synthesis, characterization and comparative study towards corrosion of C-steel in acidic media. J Chem Pharm Res 4(7):3427–3436

    CAS  Google Scholar 

  12. Ben Hmamou D, Salghi R, Zarrouk A et al (2012) The inhibited effect of phenolphthalein towards the corrosion of C38 steel in hydrochloric acid. Int J Electrochem Sci 7:8988–9003

    Article  CAS  Google Scholar 

  13. Zarrok H, Al Mamari K, Zarrouk A et al (2012) Gravimetric and electrochemical evaluation of 1-allyl-1Hindole-2,3-dione of carbon steel corrosion in hydrochloric acid. Int J Electrochem Sci 7(2012):10338–10357. https://doi.org/10.1016/S1452-3981(23)16281-X

    Article  CAS  Google Scholar 

  14. Zarrok H, Zarrouk A, Salghi R et al (2012) 3,7-Dimethylquinoxalin-2-(1H)-one for inhibition of acid corrosion of carbon steel. J Chem Pharm Res 4(12):5048–5055

    CAS  Google Scholar 

  15. El-Tabei AS, El-Tabey AE, El Basiony NM (2022) Newly imine-azo dicationic amphiphilic for corrosion and sulfate-reducing bacteria inhibition in petroleum processes: laboratory and theoretical studies. Appl Surf Sci 573:151531. https://doi.org/10.1016/j.apsusc.2021.151531

    Article  CAS  Google Scholar 

  16. Zehra S, Mobin M, Aslam J (2022) Chromates as corrosion inhibitors. Inorganic anticorrosive materials. Elsevier, Amsterdam, pp 251–268

    Chapter  Google Scholar 

  17. Salehi E, Naderi R, Ramezanzadeh B (2017) Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica dioica. Appl Surf Sci 396:1499–1514. https://doi.org/10.1016/j.apsusc.2016.11.198

    Article  CAS  Google Scholar 

  18. Fu J, Zang H, Wang Y et al (2012) Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind Eng Chem Res 51:6377–6386. https://doi.org/10.1021/ie202832e

    Article  CAS  Google Scholar 

  19. Zarrok H, Zarrouk A, Salghi R, Ramli Y et al (2012) Adsorption and inhibition effect of 3-methyl-1-propargylquinoxalin-2 (1H)-one on carbon steel corrosion in hydrochloric acid. Int J Electrochem Sci 7(9):8958–8973. https://doi.org/10.1016/S1452-3981(23)18044-8

    Article  CAS  Google Scholar 

  20. Adardour K, Kassou O, Touir R, Ebn Touhami M et al (2010) Study of the influence of new quinoxaline derivatives on corrosion inhibition of mild steel in hydrochloric acidic medium. J Mater Environ Sci 1:129–138

    CAS  Google Scholar 

  21. Benbouya K, Zerga B, Sfaira M et al (2012) WL, IE and EIS studies on the corrosion behaviour of mild steel by 7-substituted 3-methylquinoxalin-2 (1H)-ones and thiones in hydrochloric acid medium. Int J Electrochem Sci 7:6313–6330

    Article  CAS  Google Scholar 

  22. Olasunkanmi LO, Obot IB, Kabanda MM et al (2015) Some quinoxalin-6-yl derivatives as corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical studies. J Phys Chem C 119:16004–16019. https://doi.org/10.1021/acs.jpcc.5b03285

    Article  CAS  Google Scholar 

  23. Rouifi Z, Rbaa M, Abousalem AS et al (2020) Synthesis, characterization and corrosion inhibition potential of newly benzimidazole derivatives: combining theoretical and experimental study. Surf Interfaces 18:100442. https://doi.org/10.1016/j.surfin.2020.100442

    Article  CAS  Google Scholar 

  24. Adardour K, Touir R, Ramli Y et al (2013) Comparative inhibition study of mild steel corrosion in hydrochloric acid by new class synthesised quinoxaline derivatives: part I. Res Chem Intermed 39:1843–1855. https://doi.org/10.1007/s11164-012-0719-2

    Article  CAS  Google Scholar 

  25. El-Hajjaji F, Zerga B, Sfaira M et al (2014) Comparative study of novel N-substituted quinoxaline derivatives towards mild steel corrosion in hydrochloric acid: part 1. J Mater Environ Sci 5:255–262

    CAS  Google Scholar 

  26. Obot IB, Obi-Egbedi NO, Odozi NW (2010) Acenaphtho [1, 2-b] quinoxaline as a novel corrosion inhibitor for mild steel in 0.5 M H2SO4. Corros Sci 52(3):923–926. https://doi.org/10.1016/j.corsci.2009.11.013

    Article  CAS  Google Scholar 

  27. Zarrouk A, Dafali A, Hammouti B et al (2010) Synthesis, characterization and comparative study of functionalized quinoxaline derivatives towards corrosion of copper in nitric acid medium. Int J Electrochem Sci 5:46–55. https://doi.org/10.1016/S1452-3981(23)15266-7

    Article  CAS  Google Scholar 

  28. Zarrok H, Zarrouk A, Salghi R et al (2012) A combined experimental and theoretical study on the corrosion inhibition and adsorption behaviour of quinoxaline derivative during carbon steel corrosion in hydrochloric acid. Port Electrochim Acta 30:405–417. https://doi.org/10.4152/pea.201206405

    Article  CAS  Google Scholar 

  29. Benhiba F, Hsissou R, Benzekri Z et al (2021) DFT/electronic scale, MD simulation and evaluation of 6-methyl-2-(p-tolyl)-1, 4-dihydroquinoxaline as a potential corrosion inhibition. J Mol Liq 335:116539. https://doi.org/10.1016/j.molliq.2021.116539

    Article  CAS  Google Scholar 

  30. Ouakki M, Galai M, Benzekri Z et al (2021) Insights into corrosion inhibition mechanism of mild steel in 1 M HCl solution by quinoxaline derivatives : electrochemical, SEM/EDAX, UV-visible, FT-IR and theoretical approaches. Colloids Surf A 611:125810. https://doi.org/10.1016/j.colsurfa.2020.125810

    Article  CAS  Google Scholar 

  31. Rbaa M, Galai M, El Faydy M et al (2018) Synthesis and characterization of new quinoxaline derivatives of 8-hydroxyquinoline as corrosion inhibitors for mild steel in 1.0 M HCl medium. J Mater Environ Sci 9:172–188. https://doi.org/10.26872/jmes.2018.9.1.21

    Article  CAS  Google Scholar 

  32. Ech-chebab A, Missioui M, Guo L et al (2022) Evaluation of quinoxaline-2(1H)-one, derivatives as corrosion inhibitors for mild steel in 1.0 M acidic media: electrochemistry, quantum calculations, dynamic simulations, and surface analysis. Chem Phys Lett 809:140156. https://doi.org/10.1016/j.cplett.2022.140156

    Article  CAS  Google Scholar 

  33. Laabaissi T, Benhiba F, Rouifi Z et al (2019) New quinoxaline derivative as a green corrosion inhibitor for mild steel in mild acidic medium: electrochemical and theoretical studies. Int J Corros Scale Inhib 8:241–256. https://doi.org/10.17675/2305-6894-2019-8-2-6

    Article  CAS  Google Scholar 

  34. Olasunkanmi LO, Kabanda MM, Ebenso EE (2016) Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: electrochemical and quantum chemical studies. Phys E 76:109–126. https://doi.org/10.1016/j.physe.2015.10.005

    Article  CAS  Google Scholar 

  35. Quadri TW, Olasunkanmi LO, Fayemi OE et al (2022) Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: quantum chemical analysis and QSPR-ANN studies. Arab J Chem 15:103870. https://doi.org/10.1016/j.arabjc.2022.103870

    Article  CAS  Google Scholar 

  36. Missioui M, Lgaz H, Guerrab W et al (2022) Synthesis of novel hybrid quinoxaline containing triazole and acetamide moieties by azide-alkyne click chemistry: experimental and theoretical characterization. J Mol Struct 1253:132132. https://doi.org/10.1016/j.molstruc.2021.132132

    Article  CAS  Google Scholar 

  37. El Faydy M, Lakhrissi B, Guenbour A et al (2019) In situ synthesis, electrochemical, surface morphological, UV–visible, DFT and Monte Carlo simulations of novel 5-substituted-8-hydroxyquinoline for corrosion protection of carbon steel in a hydrochloric acid solution. J Mol Liq 280:341–359. https://doi.org/10.1016/j.molliq.2019.01.105

    Article  CAS  Google Scholar 

  38. Saha SK, Ghosh P, Hens A et al (2015) Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Phys E 66:332–341. https://doi.org/10.1016/j.physe.2014.10.035

    Article  CAS  Google Scholar 

  39. Zarrouk A, Zarrok H, Ramli Y et al (2016) Inhibitive properties, adsorption and theoretical study of corrosion inhibitor for carbon steel in hydrochloric acid solution. J Mol Liq 222:239–252. https://doi.org/10.1016/j.molliq.2016.07.046

    Article  CAS  Google Scholar 

  40. ASTM (2017) Standard practice for preparing, cleaning, and evaluating corrosion test specimens. Designation: G1–03. ASTM, West Conshohocken, pp 505–510

    Google Scholar 

  41. Thoume A, Left DB, Elmakssoudi A et al (2021) Chalcone oxime derivatives as new inhibitors corrosion of carbon steel in 1 M HCl solution. J Mol Liq 337:116398. https://doi.org/10.1016/j.molliq.2021.116398

    Article  CAS  Google Scholar 

  42. Timoudan N, Titi A, El Faydy M et al (2024) Investigation of the mechanisms and adsorption of a new pyrazole derivative against corrosion of carbon steel in hydrochloric acid solution: experimental methods and theoretical calculations. Colloids Surf 682:132771. https://doi.org/10.1016/j.colsurfa.2023.132771

    Article  CAS  Google Scholar 

  43. Fatah A, Timoudan N, Rbaa M et al (2023) Assessment of new imidazol derivatives and investigation of their corrosion-reducing characteristics for carbon steel in HCl acid solution. Coatings 13:1405. https://doi.org/10.3390/coatings13081405

    Article  CAS  Google Scholar 

  44. Saraswat V, Yadav M (2020) Computational and electrochemical analysis on quinoxalines as corrosion inhibitors for mild steel in acidic medium. J Mol Liq 297:111883. https://doi.org/10.1016/j.molliq.2019.111883

    Article  CAS  Google Scholar 

  45. Cherrak K, Benhiba F, Sebbar NK et al (2019) Corrosion inhibition of mild steel by new benzothiazine derivative in a hydrochloric acid solution: experimental evaluation and theoretical calculations. Chem Data Collect 22:100252. https://doi.org/10.1016/j.cdc.2019.100252

    Article  CAS  Google Scholar 

  46. Moumeni O, Mehri M, Kerkour R et al (2023) Experimental and detailed DFT/MD simulation of α-aminophosphonates as promising corrosion inhibitor for XC48 carbon steel in HCl environment. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2023.104918

    Article  Google Scholar 

  47. Alaoui Mrani S, Salim R, Arrousse N et al (2022) Computational, SEM/EDX and experimental insights on the adsorption process of novel Schiff base molecules on mild steel/1 M HCl interface. J Mol Liq. https://doi.org/10.1016/j.molliq.2022.120648

    Article  Google Scholar 

  48. Sulay ZK, Victor AU, Obed B et al (2015) Kinetics and thermodynamic study of inhibition potentials by ethoxyethane extracts of Cochlospermum tinctorium for the oxoacid corrosion of mild steel. Int J Mater Chem. https://doi.org/10.5923/j.ijmc.20150503.03

    Article  Google Scholar 

  49. Hsissou R, Dagdag O, About S et al (2019) Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 carbon steel in 1.0 M HCl solution. Experimental and computational (DFT and MD simulations) methods. J Mol Liq 284:182–192. https://doi.org/10.1016/j.molliq.2019.03.180

    Article  CAS  Google Scholar 

  50. Rashid KH, Al-Azawi KF, Khadom AA et al (2023) New pyrazole derivative as effective corrosion inhibitor for carbon steel in 1 M HCl: experimental and theoretical analysis. J Mol Struct 1287:135661. https://doi.org/10.1016/J.MOLSTRUC.2023.135661

    Article  CAS  Google Scholar 

  51. Laadam G, El Faydy M, Benhiba F et al (2023) Outstanding anti-corrosion performance of two pyrazole derivatives on carbon steel in acidic medium: experimental and quantum-chemical examinations. J Mol Liq 375:121268. https://doi.org/10.1016/J.MOLLIQ.2023.121268

    Article  CAS  Google Scholar 

  52. El Faydy M, Galai M, El Assyry A et al (2016) Experimental investigation on the corrosion inhibition of carbon steel by 5-(chloromethyl)-8-quinolinol hydrochloride in hydrochloric acid solution. J Mol Liq 219:396–404. https://doi.org/10.1016/j.molliq.2016.03.056

    Article  CAS  Google Scholar 

  53. Tazouti A, Galai M, Touir R et al (2016) Experimental and theoretical studies for mild steel corrosion inhibition in 1.0 M HCl by three new quinoxalinone derivatives. J Mol Liq 221:815–832. https://doi.org/10.1016/j.molliq.2016.03.083

    Article  CAS  Google Scholar 

  54. Benhiba F, Hsissou R, Benzekri Z et al (2020) Nitro substituent effect on the electronic behavior and inhibitory performance of two quinoxaline derivatives in relation to the corrosion of mild steel in 1M HCl. J Mol Liq 312:113367. https://doi.org/10.1016/j.molliq.2020.113367

    Article  CAS  Google Scholar 

  55. Rbaa M, Dohare P, Berisha A et al (2020) New epoxy sugar based glucose derivatives as eco friendly corrosion inhibitors for the carbon steel in 1.0 M HCl: experimental and theoretical investigations. J Alloys Compd 833:154949. https://doi.org/10.1016/j.jallcom.2020.154949

    Article  CAS  Google Scholar 

  56. El Faydy M, Benhiba F, Timoudan N et al (2022) Experimental and theoretical examinations of two quinolin-8-ol-piperazine derivatives as organic corrosion inhibitors for C35E steel in hydrochloric acid. J Mol Liq 354:118900. https://doi.org/10.1016/j.molliq.2022:118900

    Article  Google Scholar 

  57. Yaktini AEL, Lachiri A, El Faydy M et al (2018) Practical and theoretical study on the inhibitory influences of new azomethine derivatives containing 8-hydroxyquinoline moiety for the corrosion of carbon steel in 1 M HCl. Orient J Chem 34:3016–3029. https://doi.org/10.13005/ojc/340643

    Article  CAS  Google Scholar 

  58. Nadi I, Belattmania Z, Sabour B et al (2019) Sargassum muticum extract based on alginate biopolymer as a new efficient biological corrosion inhibitor for carbon steel in hydrochloric acid pickling environment: gravimetric, electrochemical and surface studies. Int J Biol Macromol 141:137–149. https://doi.org/10.1016/j.ijbiomac.2019.08.253

    Article  CAS  PubMed  Google Scholar 

  59. Tayebi H, Bourazmi H, Himmi B et al (2014) Combined electrochemical and quantum chemical study of new quinoxaline derivative as corrosion inhibitor for carbon steel in acidic media. Der Pharma Chem 6(5):220–234

    Google Scholar 

  60. Biswas A, Mourya P, Mondal D et al (2018) Grafting effect of gum acacia on mild steel corrosion in acidic medium: gravimetric and electrochemical study. J Mol Liq 251:470–479. https://doi.org/10.1016/J.MOLLIQ.2017.12.087

    Article  CAS  Google Scholar 

  61. El Arrouji S, Karrouchi K, Berisha A et al (2020) New pyrazole derivatives as effective corrosion inhibitors on steelelectrolyte interface in 1 M HCl: electrochemical, surface morphological (SEM) and computational analysis. Colloids Surf A 604:125325. https://doi.org/10.1016/j.colsurfa.2020.125325

    Article  CAS  Google Scholar 

  62. Mourya P, Singh P, Tewari AK et al (2015) Relationship between structure and inhibition behaviour of quinolinium salts for mild steel corrosion: experimental and theoretical approach. Corros Sci 95:71–87. https://doi.org/10.1016/J.CORSCI.2015.02.034

    Article  CAS  Google Scholar 

  63. Wen J, Zhang X, Liu Y et al (2023) Exploration of imidazol-4-methylimine thiourea as effective corrosion inhibitor for mild steel in hydrochloric medium: experimental and theoretical studies. Colloids Surf A 674:131895. https://doi.org/10.1016/j.colsurfa.2023.131895

    Article  CAS  Google Scholar 

  64. Machado Fernandes C, Costa ARP, Leite MC et al (2023) A detailed experimental performance of 4-quinolone derivatives as corrosion inhibitors for mild steel in acid media combined with first-principles DFT simulations of bond breaking upon adsorption. J Mol Liq 375:121299. https://doi.org/10.1016/j.molliq.2023.121299

    Article  CAS  Google Scholar 

  65. Gupta SK, Mehta RK, Yadav M et al (2023) Diazenyl derivatives as efficient corrosion inhibitors for mild steel in HCl medium: gravimetric, electrochemical and computational approach. J Mol Liq 382:121976. https://doi.org/10.1016/j.molliq.2023.121976

    Article  CAS  Google Scholar 

  66. Mrani SA, Ech-Chihbi E, Salim R et al (2023) Experimental, theoretical and MC simulation investigations of the inhibitory efficiency of novel non-toxic pyridazine derivatives inhibition on carbon steel in 1 M HCl solution. J Mol Liq 382:122043. https://doi.org/10.1016/J.MOLLIQ.2023.122043

    Article  CAS  Google Scholar 

  67. Assad H, Kumar S, Saha SK et al (2023) Evaluating the adsorption and corrosion inhibition capabilities of Pyridinium–P–Toluene Sulphonate on MS in 1 M HCl medium: an experimental and theoretical study. Inorg Chem Commun 153:110817. https://doi.org/10.1016/j.inoche.2023.110817

    Article  CAS  Google Scholar 

  68. Yadav M, Sinha RR, Sarkar TK et al (2015) Corrosion inhibition effect of pyrazole derivatives on mild steel in hydrochloric acid solution. J Adhes Sci Technol 29:1690–1713. https://doi.org/10.1080/01694243.2015.1040979

    Article  CAS  Google Scholar 

  69. Benhiba F, Sebbar NK, Bourazmi H et al (2021) Corrosion inhibition performance of 4-(prop-2-ynyl)-[1,4]-benzothiazin-3-one against mild steel in 1 M HCl solution: experimental and theoretical studies. Int J Hydrog Energy 46:25800–25818. https://doi.org/10.1016/J.IJHYDENE.2021.05.091

    Article  CAS  Google Scholar 

  70. Saranya J, Benhiba F, Anusuya N et al (2020) Experimental and computational approaches on the pyran derivatives for acid corrosion. Colloids Surf 603:125231. https://doi.org/10.1016/J.COLSURFA.2020.125231

    Article  CAS  Google Scholar 

  71. Benhiba F, Zarrok H, Elmidaoui A et al (2015) Theoretical prediction and experimental study of 2-phenyl-1, 4-dihydroquinoxaline as a novel corrosion inhibitor for carbon steel in 1.0 HCl. J Mater Environ Sci 6:2301–2314

    CAS  Google Scholar 

  72. Laabaissi T, Benhiba F, Missioui M et al (2020) Coupling of chemical, electrochemical and theoretical approach to study the corrosion inhibition of mild steel by new quinoxaline compounds in 1 M HCl. Heliyon 6:03939. https://doi.org/10.1016/j.heliyon.2020.e03939

    Article  Google Scholar 

  73. Nathiya RS, Raj V (2017) Evaluation of Dryopteris cochleata leaf extracts as green inhibitor for corrosion of aluminium in 1 M H2SO4. Egypt J Pet 26:313–323. https://doi.org/10.1016/j.ejpe.2016.05.002

    Article  Google Scholar 

  74. Fouda AEAS, Etaiw SEH, Ismail MA et al (2023) Experimental and computational approaches of methoxy naphthylbithiophene derivatives and their use as corrosion protection for carbon steel in acidic medium. Sci Rep 13:1–22. https://doi.org/10.1038/s41598-023-35498-6

    Article  CAS  Google Scholar 

  75. Lazrak J, Ech-chihbi E, El Ibrahimi B et al (2022) Detailed DFT/MD simulation, surface analysis and electrochemical computer explorations of aldehyde derivatives for mild steel in 1.0 M HCl. Colloids Surf 632:127822. https://doi.org/10.1016/j.colsurfa.2021.127822

    Article  CAS  Google Scholar 

  76. Mrani SA, Ech-Chihbi E, Salim R et al (2023) Experimental, theoretical and MC simulation investigations of the inhibitory efficiency of novel non-toxic pyridazine derivatives inhibition on carbon steel in 1 M HCl solution. J Mol Liq. https://doi.org/10.1016/J.MOLLIQ.2023.122043

    Article  Google Scholar 

  77. El Yaktini A, Lachiri A, El Faydy M et al (2018) Practical and theoretical study on the inhibitory inflences of new azomethine derivatives containing 8-hydroxyquinoline moiety for the corrosion of carbon steel in 1 M HCl. Orient J Chem 34:3016–3029. https://doi.org/10.13005/ojc/340643

    Article  CAS  Google Scholar 

  78. Benhiba F, Sebbar NK, Bourazmi H et al (2022) Corrosion inhibition performance of 4-(prop-2-ynyl)-[1,4]-benzothiazin-3-one against CS in 1M HCl solution: experimental and theoretical studies. Int J Hydrog Energy 465:25800–25818. https://doi.org/10.1016/j.ijhydene.2021.05.091

    Article  CAS  Google Scholar 

  79. Hamed R, Jodeh S, Hanbali G et al (2022) Eco-friendly synthesis and characterization of double-crossed link 3D graphene oxide functionalized with chitosan for adsorption of sulfamethazine from aqueous solution: experimental and DFT calculation. Front Environ Sci 977:930693. https://doi.org/10.3389/fenvs.2022.930693

    Article  Google Scholar 

  80. Benhiba F, Hsissou R, Abderrahim K et al (2022) Development of new pyrimidine derivative inhibitor for CS corrosion in acid medium. J Bio-Tribo-Corros 8:2–36. https://doi.org/10.1007/s40735-022-00637-5

    Article  Google Scholar 

  81. El Faydy M, Benhiba F, Warad I et al (2022) Bisquinoline analogs as corrosion inhibitors for carbon steel in acidic electrolyte: experimental, DFT, and molecular dynamics simulation approaches. J Mol Struct 1265:133389. https://doi.org/10.1016/j.molstruc.2022.133389

    Article  CAS  Google Scholar 

  82. Abouchane M, Dkhireche N, Rbaa M et al (2022) Insight into the corrosion inhibition performance of two quinoline-3-carboxylate derivatives as highly efficient inhibitors for CS in acidic medium: experimental and theoretical evaluations. J Mol Liq 360:119470. https://doi.org/10.1016/j.molliq.2022.119470

    Article  CAS  Google Scholar 

  83. Berrissoul A, Ouarhach A, Benhiba F et al (2022) Exploitation of a new green inhibitor against CS corrosion in HCl: experimental, DFT and MD simulation approach. J Mol Liq 349:118102. https://doi.org/10.1016/j.molliq.2021.118102

    Article  CAS  Google Scholar 

  84. Saranya J, Benhiba F, Anusuya N et al (2020) Experimental and computational approaches on the pyran derivatives for acid corrosion. Colloids Surf A 603:125231. https://doi.org/10.1016/j.colsurfa.2020.125231

    Article  CAS  Google Scholar 

Download references

Funding

There were no research grants for this work from any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

LC and NA: Conceptualization; Data curation; Formal analysis; Software; Investigation; Methodology; Writing—original draft; Writing—review & editing. ME, FB, IW, DBL, MZ, MA, GK, BD, AB, YR, and AZ: Conceptualization; Data curation; Formal analysis; Methodology; Writing—original draft; Writing—review & editing.

Corresponding author

Correspondence to A. Zarrouk.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Applicable for both human and/or animal studies. Ethical committees, internal review boards, and guidelines followed must be named. When applicable, additional headings with statements on consent to participate and consent to publish are also required. Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahir, L., Faydy, M.E., Abad, N. et al. Corrosion Inhibition Effect of Quinoxaline Derivative on Carbon Steel in Hydrochloric Acid: Experimental and Theoretical Investigations. J Bio Tribo Corros 10, 36 (2024). https://doi.org/10.1007/s40735-024-00840-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-024-00840-6

Keywords

Navigation