Skip to main content
Log in

Influence of Zn Doping on the Structural, Optical, and Magnetic Properties of CuO Nanoparticles and Evaluation of Its Anti-corrosive Behavior of Mild Steel in Acidic Medium

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Herein, the co-precipitation method is used to synthesize pure and Zn-doped copper oxide (CuO) nanoparticles with low concentrations, 0.5, 0.75, 1, and 1.25 at.% capped by ethylenediaminetetraacetic acid. The influence of Zn doping on the structural, morphological, optical, and magnetic properties is characterized. X-ray powder diffraction patterns confirm the formation of the monoclinic CuO phase without any impurities. In addition, the Zn dopant revealed the formation of mixed morphology welded with some elongated and small agglomerated nanoparticles. Fourier transform infrared spectra affirm the successful formation of the CuO monoclinic structure. The optical properties were examined in ethanol and propanol solvents, which demonstrated a dependence on the excitation, emission, and solvent. Consequently, the crystallite size and energy band gap are both found to decrease for 0.5 at.% Zn dopant and then increase for the highest concentrations. Furthermore, M–H loops reveal the presence of paramagnetic behavior with weak ferromagnetic nature at the low field with Zn doping. Accordingly, the anti-corrosion behavior of the prepared nanoparticles has been studied. They have 83% corrosion inhibition on mild steel in 0.5 M HCl which is confirmed by impedance and polarization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chandrappa KG, Venkatesha TV (2013) Generation of nanostructured CuO by electrochemical method and its Zn-Ni-CuO composite thin films for corrosion protection: Generation of CuO: Zn-Ni-Co composites. Mater Corros 64:831–839. https://doi.org/10.1002/maco.201206767

    Article  CAS  Google Scholar 

  2. Chandrappa KG, Venkatesha TV (2014) Electrochemical bulk synthesis of Fe3O4 and α-Fe2O3 nanoparticles and its ZnCo.α-Fe2O3 composite thin films for corrosion protection: Synthesis of Fe3O4 and α-Fe2O3:ZnCo.α-Fe2O3 composites for corrosion protection. Mater Corros 65:509–521. https://doi.org/10.1002/maco.201206630

    Article  CAS  Google Scholar 

  3. Ayesh AI, Alyafei AA, Anjum RS et al (2019) Production of sensitive gas sensors using CuO/SnO2 nanoparticles. Appl Phys A 125:550. https://doi.org/10.1007/s00339-019-2856-6

    Article  CAS  Google Scholar 

  4. Wang SQ, Zhang JY, Chen CH (2007) Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scr Mater 57:337–340. https://doi.org/10.1016/j.scriptamat.2007.04.034

    Article  CAS  Google Scholar 

  5. Ananthoju B, Mohapatra J, Bahadur D et al (2019) Influence of the Cu2ZnSnS4 nanoparticles size on solar cell performance. Sol Energy Mater Sol Cells 189:125–132. https://doi.org/10.1016/j.solmat.2018.09.028

    Article  CAS  Google Scholar 

  6. Morales J, Sánchez L, Martín F et al (2005) Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474:133–140. https://doi.org/10.1016/j.tsf.2004.08.071

    Article  CAS  Google Scholar 

  7. Papadimitropoulos G, Vourdas N, Vamvakas VE, Davazoglou D (2005) Deposition and characterization of copper oxide thin films. J Phys Conf Ser 10:182–185. https://doi.org/10.1088/1742-6596/10/1/045

    Article  CAS  Google Scholar 

  8. Shahid T, Arfan M, Ahmad W et al (2016) Synthesis and doping feasibility of composite-hydroxide-mediated approach for the Cu1-xZnxO nanomaterials. Adv Mater Lett 7:561–566. https://doi.org/10.5185/amlett.2016.6384

    Article  CAS  Google Scholar 

  9. Jan T, Iqbal J, Farooq U et al (2015) Structural, Raman and optical characteristics of Sn doped CuO nanostructures: a novel anticancer agent. Ceram Int 41:13074–13079. https://doi.org/10.1016/j.ceramint.2015.06.080

    Article  CAS  Google Scholar 

  10. Mohamed Basith N, Judith Vijaya J, John Kennedy L, Bououdina M (2013) Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E 53:193–199. https://doi.org/10.1016/j.physe.2013.05.009

    Article  CAS  Google Scholar 

  11. Deepa K, Venkatesha TV (2017) Synthesis and generation of CuO and Mn doped CuO composites and its corrosion behaviour. Mater Today Proc 4:12045–12053. https://doi.org/10.1016/j.matpr.2017.09.129

    Article  Google Scholar 

  12. Sivayogam D, Kartharinal Punithavathy I, Johnson Jayakumar S, Mahendran N (2021) Study on structural, electro-optical and optoelectronics properties of CuO nanoparticles synthesis via sol gel method. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.04.494

    Article  Google Scholar 

  13. Jiang T, Wang Y, Meng D, Wang D (2016) One-step hydrothermal synthesis and enhanced photocatalytic performance of pine-needle-like Zn-doped CuO nanostructures. J Mater Sci Mater Electron 27:12884–12890. https://doi.org/10.1007/s10854-016-5424-2

    Article  CAS  Google Scholar 

  14. Goyal CP, Goyal D, Rajan SK et al (2020) Effect of Zn doping in CuO octahedral crystals towards structural, optical, and gas sensing properties. Curr Comput-Aided Drug Des 10:188. https://doi.org/10.3390/cryst10030188

    Article  CAS  Google Scholar 

  15. Ahmadi F, Haghighi M, Ajamein H (2016) Sonochemically coprecipitation synthesis of CuO/ZnO/ZrO2/Al2O3 nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming. J Mol Catal Chem 421:196–208. https://doi.org/10.1016/j.molcata.2016.05.027

    Article  CAS  Google Scholar 

  16. Bagherzadeh SB, Haghighi M (2017) Plasma-enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming. Energy Convers Manage 142:452–465. https://doi.org/10.1016/j.enconman.2017.03.069

    Article  CAS  Google Scholar 

  17. Iqbal J, Jan T, Ul-Hassan S et al (2015) Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties. AIP Adv 5:127112. https://doi.org/10.1063/1.4937907

    Article  CAS  Google Scholar 

  18. Ramya S, Viruthagiri G, Gobi R et al (2016) Synthesis and characterization of Ni2+ ions incorporated CuO nanoparticles and its application in antibacterial activity. J Mater Sci Mater Electron 27:2701–2711. https://doi.org/10.1007/s10854-015-4080-2

    Article  CAS  Google Scholar 

  19. Rehman S, Mumtaz A, Hasanain SK (2011) Size effects on the magnetic and optical properties of CuO nanoparticles. J Nanopart Res 13:2497–2507. https://doi.org/10.1007/s11051-010-0143-8

    Article  CAS  Google Scholar 

  20. Dagher S, Haik Y, Ayesh AI, Tit N (2014) Synthesis and optical properties of colloidal CuO nanoparticles. J Lumin 151:149–154. https://doi.org/10.1016/j.jlumin.2014.02.015

    Article  CAS  Google Scholar 

  21. Abdel-Gaber AM, Awad R, Rahal HT, Moussa D (2019) Electrochemical behavior of composite nanoparticles on the corrosion of mild steel in different media. J Bio- Tribo-Corros 5:49. https://doi.org/10.1007/s40735-019-0241-9

    Article  Google Scholar 

  22. Zubillaga O, Cano FJ, Azkarate I et al (2009) Anodic films containing polyaniline and nanoparticles for corrosion protection of AA2024T3 aluminium alloy. Surf Coat Technol 203:1494–1501. https://doi.org/10.1016/j.surfcoat.2008.11.023

    Article  CAS  Google Scholar 

  23. Gao G, Wu H, He R, Cui D (2010) Corrosion inhibition during synthesis of Cu2O nanoparticles by 1,3-diaminopropylene in solution. Corros Sci 52:2804–2812. https://doi.org/10.1016/j.corsci.2010.04.028

    Article  CAS  Google Scholar 

  24. Jain P, Patidar B, Bhawsar J (2020) Potential of nanoparticles as a corrosion inhibitor: a review. J Bio- Tribo-Corros 6:43. https://doi.org/10.1007/s40735-020-00335-0

    Article  Google Scholar 

  25. Samarasekara P, Karunarathna PGDCK, Weeramuni HP, Fernando CAN (2018) Electrical properties of spin coated Zn doped CuO films. Mater Res Express 5:066418. https://doi.org/10.1088/2053-1591/aacc7e

    Article  CAS  Google Scholar 

  26. Vomáčka P, Štengl V, Henych J, Kormunda M (2016) Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B. J Colloid Interface Sci 481:28–38. https://doi.org/10.1016/j.jcis.2016.07.026

    Article  CAS  Google Scholar 

  27. Fujimura N, Nishihara T, Goto S et al (1993) Control of preferred orientation for ZnOx films: control of self-texture. J Cryst Growth 130:269–279. https://doi.org/10.1016/0022-0248(93)90861-P

    Article  CAS  Google Scholar 

  28. Yathisha RO, Arthoba Nayaka Y (2018) Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn. J Mater Sci 53:678–691. https://doi.org/10.1007/s10853-017-1496-5

    Article  CAS  Google Scholar 

  29. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  30. Altıntaş Yıldırım Ö, Durucan C (2016) Room temperature synthesis of Cu incorporated ZnO nanoparticles with room temperature ferromagnetic activity: Structural, optical and magnetic characterization. Ceram Int 42:3229–3238. https://doi.org/10.1016/j.ceramint.2015.10.113

    Article  CAS  Google Scholar 

  31. Godavarti U, Mote VD, Dasari M (2017) Role of cobalt doping on the electrical conductivity of ZnO nanoparticles. J Asian Ceram Soc 5:391–396. https://doi.org/10.1016/j.jascer.2017.08.002

    Article  Google Scholar 

  32. Sirirak R, Chaopanich P, Prasatkhetragarn A et al (2022) Doping effect of Zn on structural and optical properties of CuO nanostructures prepared by wet chemical precipitation process. Radiat Phys Chem 190:109788. https://doi.org/10.1016/j.radphyschem.2021.109788

    Article  CAS  Google Scholar 

  33. Jayanthi K, Chawla S, Sood KN et al (2009) Dopant induced morphology changes in ZnO nanocrystals. Appl Surf Sci 255:5869–5875. https://doi.org/10.1016/j.apsusc.2009.01.032

    Article  CAS  Google Scholar 

  34. Jasrotia R, Suman, Pratap Singh V et al (2019) Effect of Y3+, Sm3+ and Dy3+ ions on the microstructure, morphology, optical and magnetic properties NiCoZn magnetic nanoparticles. Results Phys 15:102544. https://doi.org/10.1016/j.rinp.2019.102544

    Article  Google Scholar 

  35. Jayaprakash J, Srinivasan N, Chandrasekaran P, Girija EK (2015) Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol–gel method. Spectrochim Acta A 136:1803–1806. https://doi.org/10.1016/j.saa.2014.10.087

    Article  CAS  Google Scholar 

  36. Singh H, Yadav KL (2015) Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram Int 41:9285–9295. https://doi.org/10.1016/j.ceramint.2015.03.212

    Article  CAS  Google Scholar 

  37. Muthukumaran S, Gopalakrishnan R (2012) Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater 34:1946–1953. https://doi.org/10.1016/j.optmat.2012.06.004

    Article  CAS  Google Scholar 

  38. Sajjad M, Ullah I, Khan MI et al (2018) Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys 9:1301–1309. https://doi.org/10.1016/j.rinp.2018.04.010

    Article  Google Scholar 

  39. Kumar P, Nene AG, Punia S et al (2019) Synthesis, characterization and antibacterial activity of CuO nanoparticles. Int J Appl Pharm. https://doi.org/10.22159/ijap.2020v12i1.36271

    Article  Google Scholar 

  40. Rahal HT, Awad R, Abdel-Gaber AM, Bakeer DE-S (2017) Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles. J Nanomater 2017:1–9. https://doi.org/10.1155/2017/7460323

    Article  CAS  Google Scholar 

  41. Özgür Ü, YaI A, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301. https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  42. Giannakis S, Liu S, Carratalà A et al (2017) Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size. J Hazard Mater 339:223–231. https://doi.org/10.1016/j.jhazmat.2017.06.037

    Article  CAS  Google Scholar 

  43. Horti NC, Kamatagi MD, Patil NR et al (2018) Photoluminescence properties of SnO2 nanoparticles: effect of solvents. Optik 169:314–320. https://doi.org/10.1016/j.ijleo.2018.05.085

    Article  CAS  Google Scholar 

  44. Podrezova LV, Porro S, Cauda V et al (2013) Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Appl Phys A 113:623–632. https://doi.org/10.1007/s00339-013-7838-5

    Article  CAS  Google Scholar 

  45. Al Boukhari J, Zeidan L, Khalaf A, Awad R (2019) Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem Phys 516:116–124. https://doi.org/10.1016/j.chemphys.2018.07.046

    Article  CAS  Google Scholar 

  46. Zargouni S, El Whibi S, Tessarolo E et al (2020) Structural properties and defect related luminescence of Yb-doped NiO sol-gel thin films. Superlattices Microstruct 138:106361. https://doi.org/10.1016/j.spmi.2019.106361

    Article  CAS  Google Scholar 

  47. Abdallah AM, Awad R (2021) Sm and Er partial alternatives of Co in Co3O4 nanoparticles: probing the physical properties. Physica B 608:412898. https://doi.org/10.1016/j.physb.2021.412898

    Article  CAS  Google Scholar 

  48. Sone BT, Diallo A, Fuku XG et al (2020) Biosynthesized CuO nano-platelets: Physical properties & enhanced thermal conductivity nanofluidics. Arab J Chem 13:160–170. https://doi.org/10.1016/j.arabjc.2017.03.004

    Article  CAS  Google Scholar 

  49. Elilarassi R, Chandrasekaran G (2013) Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method. J Mater Sci Mater Electron 24:96–105. https://doi.org/10.1007/s10854-012-0893-4

    Article  CAS  Google Scholar 

  50. Cao Y-T, Cai Y, Yao C-B et al (2019) The photoluminescence, field emission and femtosecond nonlinear absorption properties of Al-doped ZnO nanowires, nanobelts, and nanoplane-cone morphologies. RSC Adv 9:34547–34558. https://doi.org/10.1039/C9RA06480J

    Article  CAS  Google Scholar 

  51. Mondal O, Pal M (2011) Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals. J Mater Chem 21:18354. https://doi.org/10.1039/c1jm13083h

    Article  CAS  Google Scholar 

  52. Das K, De SK (2009) Optical and photoconductivity studies of Cu2O nanowires synthesized by solvothermal method. J Lumin 129:1015–1022. https://doi.org/10.1016/j.jlumin.2009.04.019

    Article  CAS  Google Scholar 

  53. Irimpan L, Krishnan B, Deepthy A et al (2007) Excitation wavelength dependent fluorescence behaviour of nano colloids of ZnO. J Phys Appl Phys 40:5670–5674. https://doi.org/10.1088/0022-3727/40/18/023

    Article  CAS  Google Scholar 

  54. Subhan MA, Ahmed T, Awal MR, Fahim AMM (2014) Synthesis, structure and excitation wavelength dependent PL properties of novel nanocomposite La2O2CO3·CuO·ZnO. Spectrochim Acta A 132:550–554. https://doi.org/10.1016/j.saa.2014.05.015

    Article  CAS  Google Scholar 

  55. Horti NC, Kamatagi MD, Nataraj SK (2019) Photoluminescence properties of copper oxide nanoparticles: effect of solvents. AIP Conf Proc 2100:020048. https://doi.org/10.1063/1.5098602

    Article  CAS  Google Scholar 

  56. Fu Y, Xiong P, Liu X et al (2021) A promising blue-emitting phosphor CaYGaO4:Bi3+ for near-ultraviolet (NUV) pumped white LED application and the emission improvement by Li + ions. J Mater Chem C 9:303–312. https://doi.org/10.1039/D0TC03941A

    Article  CAS  Google Scholar 

  57. Mørup S, Madsen DE, Frandsen C et al (2007) Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J Phys Condens Matter 19:213202. https://doi.org/10.1088/0953-8984/19/21/213202

    Article  CAS  Google Scholar 

  58. Awadallah A, Mahmood SH, Maswadeh Y et al (2016) Structural, magnetic, and Mössbauer spectroscopy of Cu substituted M-type hexaferrites. Mater Res Bull 74:192–201. https://doi.org/10.1016/j.materresbull.2015.10.034

    Article  CAS  Google Scholar 

  59. Tholkappiyan R, Vishista K (2015) Tuning the composition and magnetostructure of dysprosium iron garnets by co-substitution: An XRD, FT-IR, XPS and VSM study. Appl Surf Sci 351:1016–1024. https://doi.org/10.1016/j.apsusc.2015.05.193

    Article  CAS  Google Scholar 

  60. Ammar S, Helfen A, Jouini N et al (2001) Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J Mater Chem 11:186–192. https://doi.org/10.1039/b003193n

    Article  CAS  Google Scholar 

  61. Kumar NS, Kumar KV (2016) Effect of Bi3+ ion substitution on magnetic properties of cobalt nano ferrites prepared by sol-gel combustion method. Soft Nanosci Lett 06:37–44. https://doi.org/10.4236/snl.2016.63004

    Article  CAS  Google Scholar 

  62. Al-Moghrabi RS, Abdel-Gaber AM, Rahal HT (2018) A comparative study on the inhibitive effect of Crataegus oxyacantha and Prunus avium plant leaf extracts on the corrosion of mild steel in hydrochloric acid solution. Int J Ind Chem 9:255–263. https://doi.org/10.1007/s40090-018-0154-3

    Article  CAS  Google Scholar 

  63. El Sayed MY, Abdel-Gaber AM, Rahal HT (2019) Safranin—a potential corrosion inhibitor for mild steel in acidic media: a combined experimental and theoretical approach. J Fail Anal Prev 19:1174–1180. https://doi.org/10.1007/s11668-019-00719-6

    Article  Google Scholar 

  64. El Khatib LW, Rahal HT, Abdel-Gaber AM (2020) Synergistic effect between Fragaria ananassa and Cucurbita pepo L leaf extracts on mild steel corrosion in hydrochloric acid solutions. Prot Met Phys Chem Surf 56:1096–1106. https://doi.org/10.1134/S2070205120050111

    Article  Google Scholar 

  65. Kashar TI, Abdel-Motaal M, Emran K, Sukar NA (2017) Preparation and characterization of Thiosemicarbazones corrosion inhibition effect and the antimicrobial and anticancer effect on their metal complexes. Eur Sci J. https://doi.org/10.19044/esj.2016.v13n3p249

    Article  Google Scholar 

  66. Goulart CM, Esteves-Souza A, Martinez-Huitle CA et al (2013) Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corros Sci 67:281–291. https://doi.org/10.1016/j.corsci.2012.10.029

    Article  CAS  Google Scholar 

  67. Rahal HT, Abdel-Gaber AM, Younes GO (2016) Inhibition of steel corrosion in nitric acid by sulfur containing compounds. Chem Eng Commun 203:435–445. https://doi.org/10.1080/00986445.2015.1017636

    Article  CAS  Google Scholar 

  68. Abd-El-Khalek DE, Abd-El-Nabey BA, Abdel-Gaber AM (2012) Evaluation of Nicotiana leaves extract as corrosion inhibitor for steel in acidic and neutral chloride solutions: Port. Electrochim Acta 30:247–259. https://doi.org/10.4152/pea.201204247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Beirut Arab University for their research support and encouragement. In addition, the authors are thankful to the Department of Physics in the Faculty of Science at Alexandria University.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. El Sayed.

Ethics declarations

Conflict of interest

Authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, M.Y.E., Ghouch, N.E., Younes, G.O. et al. Influence of Zn Doping on the Structural, Optical, and Magnetic Properties of CuO Nanoparticles and Evaluation of Its Anti-corrosive Behavior of Mild Steel in Acidic Medium. J Bio Tribo Corros 8, 95 (2022). https://doi.org/10.1007/s40735-022-00696-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00696-8

Keywords

Navigation