Skip to main content

Advertisement

Log in

In an Acidic Environment, Perimidin-10-one Derivatives were Evaluated as Potential Copper Corrosion Inhibitors (Experimental and Theoretical Examinations)

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Some perimidin-10-one derivatives (1–3) were investigated for corrosion protection of copper in nitric acid solution 2.0 M using mass loss (ML), electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS), and Tafel polarization techniques. At an optimum dose of 1.1 × 10–5 M, perimidin-10-one derivatives (1–3) provide 88.8% hindrance. These compounds were predominantly working as mixed inhibitors, according to Tafel. A corrosion hindrance mechanism was also devised using the EIS test. The Florry–Huggins isotherm governs the adsorption of perimidin-10-one derivatives (1–3) on the surface of Cu. The parameters of thermodynamic activation were estimated to build a corrosion hindrance mechanism. EDX and SEM were used to evaluate the morphology of protected copper. The results of experimental study were confirmed by theoretical analyses. The results of experimental study were confirmed by theoretical analyses. Quantum chemical calculations and molecular dynamic simulations have been used to apply theoretical studies. The low energy gap, mulliken, and fukui indices are all visible in quantum chemical computations. Compound 1 has a higher adsorption energy than the other compounds, according to the results of the molecular dynamics simulation. The following is the order in which the inhibition efficiency is regulated: (1) > (2) > (3).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Toumiat K, Guibadj A, Taouti MB (2017) Copper corrosion inhibition using btah inhibitor in sodium chloride medium: experimental and theoretical studies. Eurasian J Anal Chem 12(3):275–294. https://doi.org/10.12973/ejac.2017.00170a

    Article  CAS  Google Scholar 

  2. Satpati AK, Reddy AVR (2011) Electrochemical study on corrosion inhibition of copper in hydrochloric acid medium and the rotating ring-disc voltammetry for studying the dissolution. Int J Electrochem 2011:173462–1734609. https://doi.org/10.4061/2011/173462

    Article  CAS  Google Scholar 

  3. Rahal HT, Abdel-Gaber AM, Younes GO (2016) Inhibition of steel corrosion in nitric acid by sulfur containing compounds. Chem Eng Commun 203:435–445. https://doi.org/10.1080/00986445.2015.1017636

    Article  CAS  Google Scholar 

  4. Karthik G, Sundaravadivelu M, Rajkumar P, Manikandan M (2015) Diaza-adamantane derivatives as corrosion inhibitor for copper in nitric acid medium. Res Chem Intermed 41:7593–7615. https://doi.org/10.1007/s11164-014-1846-8

    Article  CAS  Google Scholar 

  5. Tansuğ G, Tüken T, Giray ES, Fındıkkıran G, Sığırcık G, Demirkol O, Erbil M (2014) A new corrosion inhibitor for copper protection. Corr Sci 84:21. https://doi.org/10.1016/j.corsci.2014.03.004

    Article  CAS  Google Scholar 

  6. Feroz-Khan P, Shanthi V, Babu RK, Muralidharan S, ChandraBanik R (2015) Effect of benzotriazole on corrosion inhibition of copper under flow conditions. J Environ Chem Eng 3(1):10–19. https://doi.org/10.1016/j.jece.2014.11.005

    Article  CAS  Google Scholar 

  7. Vrsalović L, Gudić S, Gracić D, Smoljko I, Ivanić I, Kliškić M, Oguzie EE (2018) Corrosion protection of copper in sodium chloride solution using Propolis. Int J Electrochem Sci 13:2102–2117. https://doi.org/10.20964/2018.02.71

    Article  CAS  Google Scholar 

  8. Udochukwu Ofoegbu S, Galvão TLP, Gomes JRB, Tedim J, Nogueira HIS, Ferreira MGS, Zheludkevichac ML (2017) Corrosion inhibition of copper in aqueous chloride solution by 1H–1,2,3-triazole and 1,2,4-triazole and their combinations: electrochemical, Raman and theoretical studies. Phys Chem Chem Phys 19:6113–6129. https://doi.org/10.1039/c7cp00241f

    Article  Google Scholar 

  9. Feng L, Zhang S, Qiang Y, Xu Y, Guo L, Madkour LH, Chen S (2018) Experimental and theoretical investigation of thiazolyl blue as a corrosion inhibitor for copper in neutral sodium chloride solution. Materials 11:1042–1059. https://doi.org/10.3390/ma11061042

    Article  CAS  Google Scholar 

  10. Arshad N, Rehman Akram A, Akram M, Rasheed I (2017) Triazolothiadiazine derivatives as corrosion inhibitors for copper, mild steel and aluminum surfaces: electrochemical and quantum investigations. Prot Met Phys Chem Surf 53(2):343–358. https://doi.org/10.1134/S2070205117020046

    Article  CAS  Google Scholar 

  11. Fouda AEAS, Etaiw SH, El-Azziz DMA, Elbaz OA (2017) Synergistic effect of barium chloride on corrosion inhibition of copper by aqueous extract of lupine seeds in nitric acid. Int J Electrochem Sci 12:5934–5950. https://doi.org/10.0964/2017.07.08

    Article  CAS  Google Scholar 

  12. Fouda AS, Fouad RR (2016) New azonitrile derivatives as corrosion inhibitors for copper in nitric acid solution, Cogent. Chemistry 2:1221174–1221188. https://doi.org/10.1080/23312009.2016.1221174

    Article  CAS  Google Scholar 

  13. Zarrouk, Hammouti B, Zarrok H, Bouachrine M, Khaled KF, Al-Deyab SS (2012) Corrosion inhibition of copper in nitric acid solutions using a new triazole derivative. Int J Electrochem Sci 7:89–105

  14. Khaled KF, Amin MA (2009) Dry and wet lab studies for some benzotriazole derivatives as possible corrosion inhibitors for copper in 1.0 M HNO3. Corros Sci 51:2098–2106

    Article  CAS  Google Scholar 

  15. Fouda AS, El-Dossoki FI, Shady IA (2018) Adsorption and corrosion inhibition behavior of polyethylene glycol on α-brass alloy in nitric acid solution. Green Chem Lett Rev 11:67–77. https://doi.org/10.1080/17518253.2018.1438525

    Article  CAS  Google Scholar 

  16. Fiala A, Chibani A, Darchen A, Boulkamh A, Djebbar K (2007) Investigations of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives. Appl Surf Sci 253:9347–9356. https://doi.org/10.1016/j.apsusc.2007.05.066

    Article  CAS  Google Scholar 

  17. Howida A, Fetouh M (2014) Tarek and Abdel-Fattah, Novel plant extracts as green corrosion inhibitors for 7075–T6 aluminium alloy in an aqueous medium. Int J Electrochem Sci 9:1565–1582

    Google Scholar 

  18. Abiola OK, James AO (2010) The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution. Corros Sci 52:661–664. https://doi.org/10.1016/j.corsci.2009.10.026

    Article  CAS  Google Scholar 

  19. Eldesoky AM, Hassan HM, Fouda AS (2013) Studies on the corrosion inhibition of copper in nitric acid solution using some pharmaceutical compounds. Int J Electrochem Sci 8:10376–10395

    CAS  Google Scholar 

  20. Fouda AS, Wahid HA (2016) Corrosion inhibition of copper in HNO3 solution using thiophene and its derivatives. Arab J Chem 9:S91–S99. https://doi.org/10.1016/j.arabjc.2011.02.014

    Article  CAS  Google Scholar 

  21. Arrousse N, Salima R, Kaddouri Y, Zarrouk A, Zahri D, El Hajjaji F, Touzani R, Taleb M, Jodehd S (2020) The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: experimental, surface analysis and in silico approach studies. Arab J Chem 13(7):5949–5965

    Article  CAS  Google Scholar 

  22. Echihi S, Benzbiria N, Belghiti ME, El Fal M, Boudalia M, Essassi EM, Guenbour A, Bellaouchou A, Tabyaoui M, Azzi M (2021) Corrosion inhibition of copper by pyrazole pyrimidine derivative in synthetic seawater: experimental and theoretical studies. Mater Today Proc 37(3):3958–3966

    Article  CAS  Google Scholar 

  23. Xu Y, Zhang S, Guo L, Tan B, Liao C, Zhou Y, Madkour LH (2018) Halogen-substituted pyrazolo-pyrimidine derivatives as corrosion inhibitors for copper in sulfuric acid solution. Int J Corros Scale Inhib 7(2):236–249

    CAS  Google Scholar 

  24. Xu S, Zhang S, Guo L, Feng L, Tan B (2019) Experimental and theoretical studies on the corrosion inhibition of carbon steel by two indazole derivatives in HCl medium. Materials 12:1339–1349. https://doi.org/10.3390/ma12081339

    Article  CAS  Google Scholar 

  25. Khaled KF (2010) Corrosion control of copper in nitric acid solutions using some amino acids—a combined experimental and theoretical study. Corros Sci 52:3225–3234. https://doi.org/10.1016/j.corsci.2010.05.039

    Article  CAS  Google Scholar 

  26. Scendo M, Uznanska J (2011) The effect of ionic liquids on the corrosion inhibition of copper in acidic chloride solutions. Int J Corros 2011:718626–718638. https://doi.org/10.1155/2011/718626

    Article  CAS  Google Scholar 

  27. Sherif EM, Park S-M (2006) Effects of 2-amino-5-ethylthio-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions. Electrochim Acta 51:6556–6562. https://doi.org/10.1016/j.electacta.2006.04.047

    Article  CAS  Google Scholar 

  28. Ignat I, Varvara S, Muresan L (2015) Studia Universitatis Babes-Bolyai, Chemia, 60(LX):127

  29. Wei N, Jiang Y, Liu Z, Ying Y, Guo X, Wu Y, Wen Y, Yang H (2018) 4-Phenylpyrimidine monolayer protection of a copper surface from salt corrosion. RSC Adv 8:7340–7349. https://doi.org/10.1039/C7RA12256J

    Article  CAS  Google Scholar 

  30. Farahatia R, Ghaffarinejad A, Morteza Mousavi-Khoshdel S, Rezania J, Behzadi H, Shockravid A (2019) Synthesis and potential applications of some thiazoles as corrosion inhibitor of copper in 1 M HCl: experimental and theoretical studies. Prog Org Coat 132:417–428. https://doi.org/10.1016/j.porgcoat.2019.04.005

    Article  CAS  Google Scholar 

  31. Rhattas K, Benmessaoud M, Doubi M, Hajjaji N, Srhiri A (2011) Corrosion inhibition of copper in 3% NaCl solution by derivative of aminotriazole. Mater Sci Appl 2(4):220–225. https://doi.org/10.4236/msa.2011.24028

    Article  CAS  Google Scholar 

  32. Fouda AS, Eldesoky AM, Diab MA, Nabih A (2016) Inhibitive, adsorption studies on carbon steel corrosion in acidic solutions by new synthesized benzene sulfonamide derivatives. Int J Electrochem Sci 11:9998–10019. https://doi.org/10.20964/2016.12.47

    Article  CAS  Google Scholar 

  33. Sherif EM, Shamy AM, Ramla MM, ElNazhawy AOH (2007) 5-(Phenyl)-4H-1,2,4-triazole-3-thiol as a corrosion inhibitor for copper in 3.5% NaCl solutions. J Mater Chem Phys 102:231–239. https://doi.org/10.1016/j.matchemphys.2006.12.009

    Article  CAS  Google Scholar 

  34. Valek L, Martinez S (2007) Copper corrosion inhibition by Azadirachta indica leaves extract in 0.5 M sulphuric acid. Mater Lett 61:148–151. https://doi.org/10.1016/j.matlet.2006.04.024

    Article  CAS  Google Scholar 

  35. Farghaly TA, Mahmoud HK (2013) Synthesis, tautomeric structures, and antitumor activity of new perimidines. J Arch Pharm Chem Life Sci 346:392–402. https://doi.org/10.1002/ardp.201200486

    Article  CAS  Google Scholar 

  36. ASTM (2004) AST G 31–72, Standard recommended practice for the laboratory immersion corrosion testing of metals. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  37. Zhou L, Lv Y-L, Hu Y-X, Zhao J-H, Xia X, Li X (2018) Experimental and theoretical investigations of 1,3,5-tris(4-aminophenoxy)benzene as an effective corrosion inhibitor for mild steel in 1 M HCl. J Mol Liq 249:179–187. https://doi.org/10.1016/j.molliq.2017.10.129

    Article  CAS  Google Scholar 

  38. Abd El-Lateef HM, Abo-Riya MA, Tantawy AH (2016) Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic Gemini surfactants on carbon steel pipelines in acid pickling processes. Corros Sci 108:94–110. https://doi.org/10.1016/j.corsci.2016.03.004

    Article  CAS  Google Scholar 

  39. Pearson RG (1988) Absolute electronegativity and hardness application to inorganic chemistry. Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  40. Zhang Z, Huang X, Tian N, Ni F, Ruan L, Lv Y, Wu L (2016) Corrosion inhibition effect of histidine and its derivatives self-assembled films formed of 304 stainless steel. Int J Electrochem Sci 11:9175–9191. https://doi.org/10.20964/2016.11.73

    Article  CAS  Google Scholar 

  41. Fouda AS, Elewady GY, Shalabi K, Abdel-Aziz HK (2015) Alcamines as corrosion inhibitors for reinforced steel and their effect on cement based materials and mortar performance. RSC Adv 5:36957–36968. https://doi.org/10.1039/c5ra00717h

    Article  CAS  Google Scholar 

  42. Gong Z, Peng Sh, Huang X, Gao L (2018) Investigation the corrosion inhibition effect of itraconazole on copper in H2SO4 at different temperatures: combining experimental and theoretical studies. Materials 11:2107–2123. https://doi.org/10.3390/ma11112107

    Article  CAS  Google Scholar 

  43. Kumar A, Trivedi M, Sharma RK, Singh G (2017) Synthetic, spectral and structural studies of a Schiff base and its anticorrosive activity on mild steel in H2SO4. New J Chem 41:8459–8468. https://doi.org/10.1039/c7nj00896a

    Article  CAS  Google Scholar 

  44. Fragoza-Mar L, Olivares-Xometl O, Domínguez-Aguilar MA, Flores EA, Arellanes-Lozada P, Jiménez-Cruz F (2012) Corrosion inhibitor activity of 1,3-diketone malonates for mild steel in aqueous hydrochloric acid solution. Corros Sci 61:171–184. https://doi.org/10.1016/j.corsci.2012.04.031

    Article  CAS  Google Scholar 

  45. Harckerman N, Hurd RM (1962) 1st International congress on metallic corrosion, vol 166. Butterworths, London

    Google Scholar 

  46. Lgaz H, Salghi R, Jodeh S, Hammouti B (2017) Effect of clozapine on inhibition of mild steel corrosion in 1.0 M HCl medium. J Mol Liq 225:271–280. https://doi.org/10.1016/j.molliq.2016.11.039

    Article  CAS  Google Scholar 

  47. Aoun SB (2017) On the corrosion inhibition of carbon steel in 1 M HCl with a pyridinium ionic liquid: chemical, thermodynamic, kinetic and electrochemical studies. RSC Adv 7:36688–36696. https://doi.org/10.1039/c7ra04084a

    Article  CAS  Google Scholar 

  48. Amin A, Khaled KF, Mohsen Q, Arida A (2010) A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros Sci 52:1684–1695. https://doi.org/10.1016/j.corsci.2010.01.019

    Article  CAS  Google Scholar 

  49. Umoren SA, Ogbobe O, Igwe IO, Ebenso EE (2008) Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives. Corros Sci 50:1998–2006. https://doi.org/10.1016/j.corsci.2008.04.015

    Article  CAS  Google Scholar 

  50. Keera S, Deyab M (2005) Effect of some organic surfactants on the electrochemical behaviour of carbon steel in formation water. Colloids Surf A 266:129–140. https://doi.org/10.1016/j.colsurfa.2005.05.069

    Article  CAS  Google Scholar 

  51. Hassan AM, Abdel-Fatah TMH (2016) Aqueous extract of Salvadora persica as a novel green corrosion inhibitor for low-alloy steel in acidic media—Part I. Int J Electrochem Sci 11:6959–6975. https://doi.org/10.20964/2016.08.48

    Article  CAS  Google Scholar 

  52. Abd El Rehim S, Hassan H, Amin M (2003) The corrosion inhibition study of sodium dodecyl benzene sulphonate to aluminium and its alloys in 1.0 M HCl solution. Mater Chem Phys 78:337–348. https://doi.org/10.1016/S0254-0584(01)00602-2

    Article  CAS  Google Scholar 

  53. Hammouti B, Dafali A, Touzani R, Bouachrine M (2012) Inhibition of copper corrosion by bipyrazole compound in aerated 3% NaCl. Saudi Chem Soc 16:413–418. https://doi.org/10.1016/j.jscs.2011.02.009

    Article  CAS  Google Scholar 

  54. Mu G, Li X, Liu G (2005) Synergistic inhibition between tween 60 and NaCl on the corrosion of cold rolled steel in 0.5 M sulfuric acid. Corros Sci 47:1932–1952. https://doi.org/10.1016/j.corsci.2004.09.020

    Article  CAS  Google Scholar 

  55. Putilova J, Balezin S, Bacannik IN, Bishop VP (1960) Metal corrosion inhibitors. Pergamon, Oxford, p 1196

    Google Scholar 

  56. Bourazmi H, Tabyaoui M, El Hattabi L, El Aoufir Y, Ebenso EE, Ansari A (2018) Camphor as an effective corrosion inhibitor for carbon steel in 1 M HCl solution: electrochemical and quantum chemical investigation. J Mater Environ Sci 9(3):1058–1074. https://doi.org/10.26872/jmes.2017.9.3.118

    Article  CAS  Google Scholar 

  57. El Faydy M, Touir R, Ebn Touhami M, Zarrouk A, Jama C, Lakhrissi B, Olasunkanmi LO, Ebenso EE, Bentiss F (2018) Corrosion inhibition performance of newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives for carbon steel in 1 M HCl solution: experimental, DFT and Monte Carlo simulation studies. Phys Chem Chem Phys 20:20167–20187. https://doi.org/10.1039/c8cp03226b

    Article  CAS  Google Scholar 

  58. Motawea MS, Abdelaziz MA (2015) Some pyrazole derivatives as corrosion inhibitors for carbon steel in hydrochloric acid solutions. Eur J Chem 6(3):342–349. https://doi.org/10.5155/eurjchem.6.3.342-349.1279

    Article  CAS  Google Scholar 

  59. Savita, Mourya P, Chaubey N, Kumar S, Singh VK, Singh MM (2016) Strychnos nuxvomica, Piper longum and Mucuna pruriens seed extracts as eco-friendly corrosion inhibitors for copper in nitric acid. RSC Adv 6:95644–95655. https://doi.org/10.1039/c6ra16481a

  60. Zarrouk A, Hammouti B, Dafali A, Bentiss F (2013) Inhibitive properties and adsorption of purpald as a corrosion inhibitor for copper in nitric acid medium. Ind Eng Chem Res 52:2560–2568. https://doi.org/10.1021/ie301465k

    Article  CAS  Google Scholar 

  61. Zheng X, Gong M, Li Q, Guo L (2018) Corrosion inhibition of mild steel in sulfuric acid solution by loquat (Eriobotrya japonica Lindl.) leaves extract. Sci Rep 8:9140. https://doi.org/10.1038/s41598-018-27257-9

    Article  CAS  Google Scholar 

  62. Gadow HS, Motawea MM (2017) Investigation of the corrosion inhibition of carbon steel in hydrochloric acid solution by using ginger roots extract. RSC Adv 7:24576–24588. https://doi.org/10.1039/c6ra28636d

    Article  CAS  Google Scholar 

  63. Oukhrib R, El Issamia, El Ibrahimi B, El Mouadena K, Bazzi L, Bammou L, Chaouay A, Salghi R, Jodeh S, Hammouti B, Amin-Alami A (2017) Ziziphus lotus as green inhibitor of copper corrosion in natural sea water. Portugaliae Electrochim Acta 35(4):187–200. https://doi.org/10.4152/pea.201704187

  64. Talati JD, Modi RM (1986) Inhibition of corrosion of aluminium–copper alloy in NaOH. Trans SAEST 11:295

    Google Scholar 

  65. Thomas JM, Thomas WJ (1981) Introduction to the principles of heterogeneous catalysis, 5th edn. Academic Press, London, p 14

    Google Scholar 

  66. Putilova IN, Balezin SA, Barannik VP (1960) Metallic corrosion inhibitors. Pergamon Press, New York, p 31

    Google Scholar 

  67. Riggs OL Jr, Hurd RM (1967) Temperature coefficient of corrosion inhibition. Corrosion 23:252–260

    Article  CAS  Google Scholar 

  68. Martinez S, Stern I (2001) Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solution. J Appl Electrochem 31:973–978

    Article  CAS  Google Scholar 

  69. Abd El-Rehim SS, Ibrahim MAM, Khalid KF (2001) The inhibition of 4-(2′-amino-5′-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution. Mater Chem Phys 70:268–273

    Article  CAS  Google Scholar 

  70. Li X, Mu G (2005) Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid: weight loss study, electrochemical characterization, and AFM. Appl Surf Sci 252:1254–1265

    Article  CAS  Google Scholar 

  71. Tang L, Mu G, Liu G (2003) The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid. Corros Sci 45:2251–2262

    Article  CAS  Google Scholar 

  72. Li X, Tang L (2005) Synergistic inhibition between OP and NaCl on the corrosion of cold-rolled steel in phosphoric acid. Mater Chem Phys 90:286–297

    Article  CAS  Google Scholar 

  73. Laidler KJ (1963) Reaction kinetics, vol 1, 1st edn. Pergamon Press, New York

  74. Zhang QB, Hua YX (2009) Corrosion inhibition of mild steel by alkyl imidazolium ionic liquids in hydrochloric acid. Electrochim Acta 54:1881–1887. https://doi.org/10.1016/j.electacta.2008.10.025

    Article  CAS  Google Scholar 

  75. Krid F, Zouaoui E, Salah M (2018) Aqueous extracts of Opuntia ficus-indica as a green corrosion inhibitor of A283C carbon steel in sulfuric acid solution. Chem. Chem. Technol. 12(3):405–409. https://doi.org/10.23939/chcht12.03.405

    Article  CAS  Google Scholar 

  76. Kamal C, Sethuraman MG (2012) Caulerpin—a bis-Indole alkaloid as a green inhibitor for the corrosion of mild steel in 1 M HCl solution from the marine alga Caulerpa racemose. Ind Eng Chem Res 51:10399–10407. https://doi.org/10.1021/ie3010379

    Article  CAS  Google Scholar 

  77. Amin MA, Ahmed MA, Arida HA, Kandemirli F, Saracoglu M, Arslan T, Basaran MA (2011) Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series—Part III. Immersion time effects and theoretical studies. Corros Sci 53:1895–1909. https://doi.org/10.1016/j.corsci.2011.02.007

    Article  CAS  Google Scholar 

  78. Moretti G, Guidi F, Fabris F (2013) Corrosion inhibition of the mild steel in 0.5 M HCl by 2-butyl-hexahydropyrrolo[1,2-b][1,2]oxazole. Corros Sci 76:206–218. https://doi.org/10.1016/j.corsci.2013.06.044H

    Article  CAS  Google Scholar 

  79. Hamani H, Douadi T, Daoud D, Al-Noaimi M, Rikkouh RA, Chafaa S (2017) 1-(4-Nitrophenyl-imino)-1-(phenylhydrazone)-propane-2-one as a corrosion inhibitor for mild steel in 1 M HCl solution: Weight loss, electrochemical, thermodynamic and quantum chemical studies. J Electroanal Chem 801:425–438. https://doi.org/10.1016/j.jelechem.2017.08.031

    Article  CAS  Google Scholar 

  80. Laamari MR, Benzakour J, Berrekhis F, Abouelfida A, Derja A, Villemin D (2016) Adsorption and corrosion inhibition of carbon steel in hydrochloric acid medium by hexamethylenediamine tetra (methylene phosphonic acid). Arab J Chem 9:S245–S251. https://doi.org/10.1016/j.arabjc.2011.03.018

    Article  CAS  Google Scholar 

  81. Eldesoky AM, Diab MA, El-Sonbati AZ, Salam SF (2017) Anti-corrosive properties of new eco-friendly dimethylamino compounds on C-steel corrosion in 2 M HCl. Int J Electrochem Sci 12:4215–4237. https://doi.org/10.20964/2017.05.73

    Article  CAS  Google Scholar 

  82. Sing HA, Ebenso EE, Quraishi MA (2012) Stem extract of brahmi (Bacopa monnieri) as green corrosion inhibitor for aluminum in NaOH solution. Int J Electrochem Sci 7:3409–3419

    Google Scholar 

  83. Bothi Raja P, Sethuraman MG (2008) Atropine sulphate as corrosion inhibitor for mild steel in sulphuric acid medium. Mater Lett 62:1602–1604. https://doi.org/10.1016/j.matlet.2007.09.032

    Article  CAS  Google Scholar 

  84. Pourbaix M (1975) Atlas of electrochemical equilibria in aqueous solutions. NACE, Houston

    Google Scholar 

  85. Johnson HE, Leja J (1965) On the potential/pH diagrams of the Cu–NH–H2O and Zn–NH–H2O systems. J Electrochem Soc 112:638–641. https://doi.org/10.1149/1.2423629

    Article  CAS  Google Scholar 

  86. Fouda AS, Badawya AA (2019) Adsorption and corrosion inhibition of Cu in nitric acid by expired simvastatin drug. Prot Met Phys Chem Surf 55:572–582. https://doi.org/10.1134/S2070205119030146

    Article  CAS  Google Scholar 

  87. Yan Y, Li W, Cai L, Hou B (2008) Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 M HCl solution. Electrochim Acta 53:5953–5960. https://doi.org/10.1016/j.electacta.2008.03.065

    Article  CAS  Google Scholar 

  88. Chen J, Qiang Y, Peng S, Gong Z, Zhang S, Gao L, Tan B, Chen S, Guo L (2018) Experimental and computational investigations of 2-amino-6-bromobenzothiazole as a corrosion inhibitor for copper in sulfuric acid. J Adhes Sci Technol 32(19):2083–2098. https://doi.org/10.1080/01694243.2018.1460948

    Article  CAS  Google Scholar 

  89. Macdonald DD, Mckubre MCH (1982) Impedance measurements in electrochemical systems. In: Bockris JOM, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 14. Plenum Press, New York, p 61

    Chapter  Google Scholar 

  90. Ali SM, Al Lehaibi HA (2016) Control of zinc corrosion in acidic media: green fenugreek inhibitor. Trans Nonferrous Met Soc China 26:3034–3045. https://doi.org/10.1016/S10036326(16)64434-5

    Article  CAS  Google Scholar 

  91. Galai M, Benqlilou H, Ebn Touhami M, Belhaj T, Berrami K, ElKafssaoui H (2018) Comparative analysis for the corrosion susceptibility of copper alloys in sandy soil. Environ. Eng. Res. 23(2):164–174. https://doi.org/10.4491/eer.2017.077

    Article  Google Scholar 

  92. Outirite M, Lagrenee M, Lebrini M, Traisnel M, Jama C, Vezin H, Bentiss F (2010) Ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution. Electrochim Acta 55:1670–1681. https://doi.org/10.1016/j.electacta.2009.10.048

    Article  CAS  Google Scholar 

  93. Muthukrishnan P, Prakash P, Jeyaprabha B, Shankar K (2015) Stigmasterol extracted from Ficus hispida leaves as a green inhibitor for the mild steel corrosion in 1 M HCl solution. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.09.005

    Article  Google Scholar 

  94. Mo S, Qin TT, Luo HQ, Li NB (2015) Insights into the corrosion inhibition of copper in hydrochloric acid solution by self-assembled films of 4-octylphenol. RSC Adv 5:90542–90549. https://doi.org/10.1039/C5RA13074C

    Article  CAS  Google Scholar 

  95. Chen W, Hong S, Xiang B, Luo H, Li M, Li N (2013) Corrosion inhibition of copper in hydrochloric acid by coverage with trithiocyanuric acid self-assembled, monolayers. Corros Eng Sci Technol 48(2):98–107. https://doi.org/10.1179/1743278212Y.0000000053

    Article  CAS  Google Scholar 

  96. Jwad Habeeb H, Mohammed Luaibi H, Mohammed Dakhil R, Abdul Amir Kadhum H, Ahmed Al-Amiery A, Sumer Gaaz T (2018) Development of new corrosion inhibitor tested on mild steel supported by the electrochemical study. Results Phys 8:1260–1267. https://doi.org/10.1016/j.rinp.2018.02.015

    Article  Google Scholar 

  97. Preethi Kumari P, Shetty P, Rao SA (2017) Electrochemical measurements for the corrosion inhibition of mild steel in 1 M hydrochloric acid by using an aromatic hydrazide derivative. Arab J Chem 10:653–663. https://doi.org/10.1016/j.arabjc.2014.09.005

    Article  CAS  Google Scholar 

  98. Kong P, Feng H, Chen N, Lu Y, Li S, Wang P (2019) Polyaniline/chitosan as a corrosion inhibitor for mild steel in acidic medium. RSC Adv 9:9211–9217. https://doi.org/10.1039/c9ra00029a

    Article  CAS  Google Scholar 

  99. Volpi E, Foiadelli C, Trasatti S, Koleva D (2017) Development of smart corrosion inhibitors for reinforced concrete structures exposed to a microbial environment. Ind Eng Chem Res 56(20):5778–5794. https://doi.org/10.1021/acs.iecr.7b00127

    Article  CAS  Google Scholar 

  100. Ali IH, Suleiman MHA (2018) Effect of acid extract of leaves of Juniperus procera on corrosion inhibition of carbon steel in HCl solutions. Int J Electrochem Sci 13:3910–3922. https://doi.org/10.20964/2018.04.01

    Article  CAS  Google Scholar 

  101. Idusuyi N, Ajide OO, Oluwole OO, Arotiba OA (2017) Electrochemical impedance study of an Al6063–12%SiC–Cr composite immersed in 3 wt.% sodium chloride. Procedia Manuf 7:413–419

    Article  Google Scholar 

  102. Mohan R, Joseph A (2018) Corrosion protection of mild steel in hydrochloric acid up to 313 K using propyl benzimidazole electroanalytical, adsorption and quantum chemical studies. Egypt J Pet 27(1):11–20. https://doi.org/10.1016/j.ejpe.2016.12.003

    Article  Google Scholar 

  103. Benabdellah M, Tounsi A, Khaled KF, Hammouti B (2011) Thermodynamic, chemical and electrochemical investigations of 2-mercapto benzimidazole as a corrosion inhibitor for mild steel in hydrochloric acid solutions. Arab J Chem 4:17–24. https://doi.org/10.1016/j.arabjc.2010.06.010

    Article  CAS  Google Scholar 

  104. Guo W, Chen S, Serb HMA (2006) A study of the inhibition of copper corrosion by triethyl phosphate and triphenyl phosphate self-assembled monolayers. Serb Chem Soc 71(2):167–175. https://doi.org/10.2298/JSC0602167G

    Article  CAS  Google Scholar 

  105. Amin MA, Mersal GAM, Mohsen Q (2011) Monitoring corrosion and corrosion control of low alloy ASTM A213 grade T22 boiler steel in HCl solutions. Arab J Chem 4(2):223–229. https://doi.org/10.1016/j.arabjc.2010.06.040

    Article  CAS  Google Scholar 

  106. Shalabi K, Abdallah YM, Fouda AS (2015) Corrosion inhibition of aluminum in 0.5 M HCl solutions containing phenyl sulfonylacetophenoneazo derivatives. Res Chem Intermed 41:4687–4711. https://doi.org/10.1007/s11164-014-1561-5

    Article  CAS  Google Scholar 

  107. Fouda AS, Nazeer AA, Saber A (2014) Electrochemical adsorption properties and inhibition of zinc corrosion by two chromones in sulfuric acid solutions. J Korean Chem Soc 58:160–168. https://doi.org/10.5012/jkcs.2014.58.2

    Article  CAS  Google Scholar 

  108. El-Haddad MN (2016) Inhibitive action and adsorption behavior of cefotaxime drug at copper/hydrochloric acid interface: electrochemical, surface and quantum chemical studies. RSC Adv 6:57844–57853. https://doi.org/10.1039/c6ra03316d

    Article  CAS  Google Scholar 

  109. El-Haddad MN, Fouda AS (2013) Corrosion inhibition and adsorption behavior of some azo dye derivatives on carbon steel in acidic medium : synergistic effect of halide ions. Chem Eng Commun 200:1366–1393. https://doi.org/10.1080/00986445.2012.746675

    Article  CAS  Google Scholar 

  110. Bosch RW, Bogaerts WF, Syrett B (2003) Proceedings of 8th international symposium on electrochemical methods in corrosion research modulation (EFM) technique, Nieuwpoort, Belgium, 4–9 May 2003

  111. Motawea MM, El-Hossiany A, Fouda AS (2019) Corrosion control of copper in nitric acid solution using Chenopodium extract. Int J Electrochem Sci 14:1372–1387. https://doi.org/10.20964/2019.02.29

    Article  CAS  Google Scholar 

  112. Mara Cortez Alves de Oliveira V, Aguiara C, Muci Vazqueza A, Laurent Marie Robin A, Justino Ribeiro Barboza M (2017) Corrosion behavior analysis of plasma-assisted PVD coated Ti–6Al–4V alloy in 2 M NaOH solution. Mater Res 20:436–404

    Article  Google Scholar 

  113. Prabhu R, Venkatesha T, Shanbhag A, Kulkarni G, Kalkhambkar R (2008) Inhibition effects of some Schiff’s bases on the corrosion of mild steel in hydrochloric acid solution. Corros Sci 50:3356–3362. https://doi.org/10.1016/j.corsci.2008.09.009

    Article  CAS  Google Scholar 

  114. Idouhli R, N’Ait Outside A, Koumya Y, Abouelfida A, Benyaich A, Auhmani A, Itto MYA (2018) Electrochemical studies of monoterpenic thiosemicarbazones as corrosion inhibitor for steel in 1 M HCl. Int J Corros 2018:9212705–9212719. https://doi.org/10.1155/2018/9212705

    Article  CAS  Google Scholar 

  115. Lopez DA, Simison SN, de Sanchez SR (2005) Inhibitors performance in CO2 corrosion EIS studies on the interaction between their molecular structure and steel microstructure. Corros Sci 47:735–755. https://doi.org/10.1016/j.corsci.2004.07.010

    Article  CAS  Google Scholar 

  116. Satapathy AK, Gunasekaran G, Sahoo Kumar SC, Rodrigues APV (2009) Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corros Sci 51:2848–2856. https://doi.org/10.1016/j.corsci.2009.08.016

    Article  CAS  Google Scholar 

  117. Ebenso EE, Arslan T, Kandemirli F, Caner N, Love I (2010) Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium. Int J Quant Chem 110:1003–1018. https://doi.org/10.1002/qua.22249

    Article  CAS  Google Scholar 

  118. Ozcan M, Dehri I, Erbil M (2004) Organic sulfur-containing compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure. Appl Surf Sci 236:155–164. https://doi.org/10.1016/j.apsusc.2004.04.017

    Article  CAS  Google Scholar 

  119. Ansari KR, Ramkumar S, Nalini D, Quraishi MA (2016) Studies on adsorption and corrosion inhibitive properties of quinoline derivatives on N80 steel in 15% hydrochloric acid. Cogent Chem 2:1145032–1145045. https://doi.org/10.1080/23312009.2016.1145032

    Article  CAS  Google Scholar 

  120. Mert BD, Mert ME, Kardas ME, Yazici G (2011) Experimental and theoretical investigation of 3-amino-1,2,4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium. Corros Sci 53:4265–4272. https://doi.org/10.1016/j.corsci.2011.08.038

    Article  CAS  Google Scholar 

  121. Roque JM, Pandiyan T, Cruz J, Garcl’a-Ochoa E (2008) DFT and electrochemical studies of tris(benzimidazole-2ylmethyl)amine as an effective corrosion inhibitor for carbon steel surface. Corros Sci 50:614–624. https://doi.org/10.1016/j.corsci.2007.11.012

    Article  CAS  Google Scholar 

  122. Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 50:2981. https://doi.org/10.1016/j.corsci.2008.08.043

    Article  CAS  Google Scholar 

  123. Musa AY, Kadhum AH, Mohamad AB, Takriff MS (2010) Experimental and theoretical study on the inhibition performance of triazole compounds for mild steel corrosion. Corros Sci 52:3331. https://doi.org/10.1016/j.corsci.2010.06.002

    Article  CAS  Google Scholar 

  124. Lukovits I, Lalman E, Zucchi F (2001) Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 57:3–8. https://doi.org/10.5006/1.3290328

    Article  CAS  Google Scholar 

  125. Zhang W, Liu Y, Zhang Y, Wang L-J, Wu Y-C, Li H-J (2020) 9-Substituted acridines as effective corrosion inhibitors for mild steel: electrochemical, surface morphology, and computational studies. New J Chem 44:6464–6474. https://doi.org/10.1039/d0nj00440e

    Article  CAS  Google Scholar 

  126. Boughoues Y, Benamir M, Messaadi L, Bouider N, Abdelaziz S (2020) Experimental and theoretical investigations of four amine derivatives as effective corrosion inhibitors for mild steel in HCl medium. RSC Adv 10:24145–24158. https://doi.org/10.1039/d0ra03560b

    Article  CAS  Google Scholar 

  127. Qiang Y, Zhang S, Tan B, Chen S (2018) Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros Sci 133:6–16. https://doi.org/10.1016/j.corsci.2018.01.008

    Article  CAS  Google Scholar 

  128. Shalabi K, Abdallah YM, Hassan HM, Fouda AS (2014) Adsorption and corrosion inhibition of Atropa belladonna extract on carbon steel in 1 M HCl solution. Int J Electrochem Sci 9:1468–1487

    Google Scholar 

  129. Cerny V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theor Appl 45:41–55

    Article  Google Scholar 

  130. Dagdag O, Safi Z, Erramli H, Cherkaoui O, Wazzan N, Guo L, Verma C, Ebenso E, El Harfia A (2019) Adsorption and anticorrosive behavior of aromatic epoxy monomers on carbon steel corrosion in acidic solution: computational studies and sustained experimental studies. RSC Adv 9:14782–14796. https://doi.org/10.1039/c9ra01672d

    Article  CAS  Google Scholar 

  131. Fouda AS, Shalabi K, Idress AA (2015) Ceratonia siliqua extract as a green corrosion inhibitor for copper and brass in nitric acid solutions. Green Chem Lett Rev 8:17–29. https://doi.org/10.1080/17518253.2015.1073797

    Article  CAS  Google Scholar 

  132. Qiang Y, Zhang S, Xu S, Li W (2016) Experimental and theoretical studies on the corrosion inhibition of copper by two indazole derivatives in 3.0% NaCl solution. J. Colloid Interfaces Sci 472:52–59. https://doi.org/10.1016/j.jcis.2016.03.023

    Article  CAS  Google Scholar 

  133. Qiang Y, Zhang S, Guo L, Xu S, Feng L, Obot IB, Chen S (2017) Sodium dodecyl benzene sulfonate as a sustainable inhibitor for zinc corrosion in 26% NH4Cl solution. J Clean Prod 152:17–25. https://doi.org/10.1016/j.jclepro.2017.03.104

    Article  CAS  Google Scholar 

  134. Wang J, Qiang Y, Jiang L, Xiang B, Chen S, Xing S, Wang Y, Wang Y (2018) Excellent inhibition performance of low-toxicity dibenzyldithiocarbamic acid zinc salt selfassemble nano-film for copper corrosion in sulfuric acid. J Mol Liq 271:959–969. https://doi.org/10.1016/j.molliq.2018.09.061

    Article  CAS  Google Scholar 

  135. Putilova IN, Balezin SA, Barannik VP (1960) Corrosion inhibitors. Pergamum Press, Oxford, p 85

    Google Scholar 

  136. Evans UR (1990) The corrosion and oxidation of metals. Edward Arnold, London, pp 324, 326

  137. Shams El Din AM, Fakhr MY (1974) A thermometric study of the reaction between fe and HNO3. Corros Sci 14:635–644

    Article  CAS  Google Scholar 

  138. Ellingham HJT (1932) J Chem Soc 15:65

  139. Balezin SA, Parfenov GP (1953) Russ J Appl Chem 26:795

  140. Benahmed M, Djeddi N, Akkal S, Laouer H (2016) Saccocalyx satureioides as corrosion inhibitor for carbon steel in acid solution. Int J Ind Chem 7:109–120. https://doi.org/10.1007/s40090-016-0082-z

    Article  CAS  Google Scholar 

  141. Deng S, Li X (2012) Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H2SO4 solutions. Corros Sci 55:407. https://doi.org/10.1186/1752-153X-7-83

    Article  CAS  Google Scholar 

  142. Baeza H, Guzman M, Ortega P, Vera L (2003) Corrosion inhibition of copper in 0.5 M hydrochloric acid by 1,2,3-thiadiazole-2,5-dithiol. J Chil Chem Soc 48:717–732. https://doi.org/10.4067/S0717-97072003000300004

    Article  Google Scholar 

  143. Tan B, Zhang S, Liu H, Qiang Y, Li W, Guo L, Chen S (2019) Insights into the inhibition mechanism of three 5-phenyltetrazole derivatives for copper corrosion in sulfuric acid medium via experimental and DFT methods. J Taiwan Inst Chem Eng 102:424–437. https://doi.org/10.1016/j.jtice.2019.06.005

    Article  CAS  Google Scholar 

  144. Karthik G, Sundaravadivelu M (2016) Investigations of the inhibition of copper corrosion in nitric acid solutions by levetiracetam drug. Egypt J Pet 25:481–493. https://doi.org/10.1016/j.ejpe.2015.10.009

    Article  Google Scholar 

  145. Fouda AS, Ismael MA, AboShahba RM, Kamel LA, El-Nagggar AA (2017) Corrosion inhibition of copper and α-brass in 1 M HNO3 solution using new aryl pyrimido [5, 4-c] quinoline-2,4-dione derivative. Int J Electrochem Sci 12:3361–3384. https://doi.org/10.20964/2017.04.57

    Article  CAS  Google Scholar 

Download references

Funding

There were no research Grants for this work from any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Gadow.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadow, H.S., Farghaly, T.A. & Eldesoky, A.M. In an Acidic Environment, Perimidin-10-one Derivatives were Evaluated as Potential Copper Corrosion Inhibitors (Experimental and Theoretical Examinations). J Bio Tribo Corros 8, 51 (2022). https://doi.org/10.1007/s40735-022-00650-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00650-8

Keywords

Navigation