Skip to main content

The Structural Properties of a New As-cast (Ti55Zr25Nb10Ta10)99.3Ag0.7 Alloy for Biomedical Applications

Abstract

To achieve an implant with significant plasticity, acceptable strength, high corrosion resistance, and excellent biocompatibility, the as-cast [(Ti55Zr25Nb10Ta10)99.3Ag0.7, at.%, named TZNT-Ag0.7] alloy is designed and fabricated. In this study, the strategy of composition's choice is considered by the alloy design method of the d-electron along with (e/a)ratio and [Mo]eq criteria. After fabrication of the alloy using the vacuum arc melting method, scanning electron microscopy, X-ray diffraction, mechanical compression, nanoindentation, and electrochemical impedance spectroscopy (EIS) were used to characterize the microstructure, mechanical properties, and corrosion behavior of the TZNT-Ag0.7 alloy. Moreover, to evaluate the cytocompatibility, MG-63 osteoblastic cell was cultured on the surface as-cast specimens of TZNT-Ag0.7. The results show that the as-cast TZNT-Ag0.7 alloy reveals not only dendritic morphology but also the beta phase with a lattice parameter of 0.33741 nm in the microstructure of the alloy after casting. TZNT-Ag0.7 alloy mechanically shows the true maximum strength of 832 MPa, significant true plasticity of 140%, and the compressive yield stress to elastic modulus (Ycys/E) ratio of 1.05%. Electrochemical impedance spectroscopy (EIS) results demonstrate TZNT-Ag0.7 alloy has a higher corrosion resistance than commercially pure Ti (CP-Ti). On the other hand, after 5 days of in vitro culture, MG-63 cells proliferate on specimens and demonstrate substantial differences in cell differentiation as compared to CP-Ti. These results display that the TZNT-Ag0.7 alloy could be considered as prospective orthopedic applications.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1

(adapted from Ref. [24], with permission from Elsevier)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    CAS  Article  Google Scholar 

  2. Abdel-HadyGepreel M (2015) Improved elasticity of new Ti-alloys for biomedical applications. Mater Today 2S:S979–S982

    Google Scholar 

  3. Gao J, Huang Y, Guan D, Knowles AJ, Ma L, Dye D, Rainforth WM (2018) Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate. Acta Mater 152:301–314

    CAS  Article  Google Scholar 

  4. Hynowska A, Pellicer E, Fornell J, González S, Steenberge NV, Suriñach S, Gebert A, Calin M, Eckert J, Baró MD, Sort J (2012) Nanostructured β-phase Ti–31.0Fe–9.0Sn and sub-μm structured Ti–39.3Nb–13.3Zr–10.7Ta alloys for biomedical applications: microstructure benefits on the mechanical and corrosion performances. Mat Sci Eng C 32:2418–2425

    CAS  Article  Google Scholar 

  5. Guo S, Meng Q, Zhao X, Wei Q, Xu H (2015) Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength. Sci Rep 5:14688. https://doi.org/10.1038/srep14688

    CAS  Article  Google Scholar 

  6. Wang L, Lu W, Qin J, Zhang F, Zhang D (2009) Influence of cold deformation on martensite transformation and mechanical properties of Ti–Nb–Ta–Zr alloy. J Alloy Compd 469:512–518

    CAS  Article  Google Scholar 

  7. Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639

    CAS  Article  Google Scholar 

  8. Miura K, Yamada N, Hanada S, Jung TK, Itoi E (2011) The bone tissue compatibility of a new Ti–Nb–Sn alloy with a low Young’s modulus. Acta Biomater 7:2320–2326

    CAS  Article  Google Scholar 

  9. Jawed SF, Rabadia CD, Liu YJ, Wang LQ, Qin P, Li YH, Zhang XH, Zhang LC (2020) The strengthening mechanism and corrosion resistance of beta-type Ti–Nb–Zr–Mn alloys. Mater Sci Eng C 110:110728

    CAS  Article  Google Scholar 

  10. Zareidoost A, Yousefpour M (2020) A study on the mechanical properties and corrosion behavior of the new as-cast TZNT alloys for biomedical applications. Mater Sci Eng C 110:110725

    CAS  Article  Google Scholar 

  11. Bahl S, Das S, Suwas S, Chatterjee K (2018) Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications. J Mech Behav Biomed Mater 78:124–133

    CAS  Article  Google Scholar 

  12. Nunes ARV, Borborema S, Araújo LS, Dille J, Malet L, Almeida LHD (2018) Production, microstructure and mechanical properties of cold-rolled Ti–Nb–Mo–Zr alloys for orthopedic applications. J Alloys Compd 743:141–145

    CAS  Article  Google Scholar 

  13. Ozan S, Lin J, Weng W, Zhang Y, Li Y, Wen C (2019) Effect of thermomechanical treatment on the mechanical and microstructural evolution of a β-type Ti-40.7Zr–24.8Nb alloy. Bioactive Mater. 4:303–311

    Article  Google Scholar 

  14. Jawed SF, Rabadia CD, Liu YJ, Wang LQ, Li YH, Zhang XH, Zhang LC (2019) Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Mater Des 181:108064

    CAS  Article  Google Scholar 

  15. Liu H, Yang J, Zhao X, Sheng Y, Li W, Chang CL, Zhang Q, Yu Z, Wang X (2019) Microstructure, mechanical properties and corrosion behaviors of biomedical Ti–Zr–Mo–xMn alloys for dental application. Corros Sci 161:108195

    CAS  Article  Google Scholar 

  16. Lin J, Ozan S, Li Y, Ping D, Tong X, Li G, Wen C (2016) Novel Ti–Ta–Hf–Zr alloys with promising mechanical properties for prospective stent applications. Sci Rep 6:37901

    CAS  Article  Google Scholar 

  17. Stráský J, Harcuba P, Václavová K, Horváth K, Landa M, Srba O, Janeček M (2017) Increasing strength of a biomedical Ti–Nb–Ta–Zr alloy by alloying with Fe, Si and O. J Mech Behav Biomed Mater 71:329–336

    Article  CAS  Google Scholar 

  18. Kopova I, Stráský J, Harcuba P, Landa M, Janeček M, Bačákova L (2016) Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Mater Sci Eng C 60:230–238

    CAS  Article  Google Scholar 

  19. Cui WF, Liu N, Qin GW (2016) Microstructures, mechanical properties and corrosion resistance of the Zr–xTi (Ag) alloys for dental implant application. Mater Chem Phys 176:161–166

    CAS  Article  Google Scholar 

  20. Vasilescu C, Osiceanu P, CalderonMoreno JM, Drob SI, Preda S, Popa M, Dan I, Marcu M, Prodana M, Popovici IA, Ionita D, Vasilescu E (2017) Microstructure, surface characterization and long-term stability of new quaternary Ti–Zr–Ta–Ag alloy for implant use. Mater Sci Eng C 71:322–334

    CAS  Article  Google Scholar 

  21. Vasilescu C, Drob SI, Osiceanu P, Moreno JMC, Prodana M, Ionita D, Demetrescu I, Marcu M, Popovici IA, Vasilescu E (2017) Microstructure surface characterization, and electrochemical behavior of new Ti–Zr–Ta–Ag alloy in simulated human electrolyte. Metall Mater Trans A 48:513–523

    CAS  Article  Google Scholar 

  22. Ou KL, Weng CC, Lin YH, Huang MS (2017) A promising of alloying modified beta-type titanium–niobium implant for biomedical applications: microstructural characteristics, in vitro biocompatibility and antibacterial performance. J Alloy Compd 697:231–238

    CAS  Article  Google Scholar 

  23. Zheng YF, Zhang BB, Wang BL, Wang YB, Li L, Yang QB, Cui LS (2011) Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomater 7:2758–2767

    CAS  Article  Google Scholar 

  24. Abdel-Hady M, Hinoshita K, Morinaga M (2006) General approach to phase stability and elastic properties of b-type Ti-alloys using electronic parameters. Scripta Mater 55:477–480

    CAS  Article  Google Scholar 

  25. Song XP, You L, Zhang B, Song A (2012) Design of low elastic modulus Ti–Nb–Zr alloys for implant materials. Mater Tech 27:55–57

    CAS  Article  Google Scholar 

  26. Morinaga M, Yukawa H (1997) Alloy design with the aid of molecular orbital method. Bull Mater Sci 20:805–815

    CAS  Article  Google Scholar 

  27. Bania PJ (1994) Beta titanium alloys and their role in the titanium industry. JOM J Miner Met Mater Soc 46:16–19

    CAS  Article  Google Scholar 

  28. Boyer R, Welsch G, Collings EW, Wen C (eds) (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park

    Google Scholar 

  29. Weiss I, Semiatin SL (1998) Thermomechanical processing of beta titanium alloys-an overview. Mater Sci Eng A 243:46–65

    Article  Google Scholar 

  30. Laheurte P, Prima F, Eberhardt A, Gloriant T, Wary M, Patoor E (2010) Mechanical properties of low modulus β titanium alloys designed from the electronic approach. J Mech Behav Biomed Mater 3:565–573

    CAS  Article  Google Scholar 

  31. Ozan S, Lin J, Li Y, Wen C (2017) New Ti–Ta–Zr–Nb alloys with ultrahigh strength and elastic strain for potential orthopedic implant applications. J Mech Behav Biomed Mater 75:119–127

    CAS  Article  Google Scholar 

  32. Akhtar M, Khajuria A, Sahu JK, Swaminathan J, Kumar R, Bedi R, Albert SK (2018) Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl Nanosci 8(7):1669–1685

    CAS  Article  Google Scholar 

  33. Khajuria A, Akhtar M, Bedi R, Kumar R, Ghosh M, Das CR, Albert SK (2020) Influence of boron on microstructure and mechanical properties of Gleeble simulated heat-affected zone in P91 steel. Int J Press Vessel 188:104246

    CAS  Article  Google Scholar 

  34. Ozan S, Lin J, Li Y, Ipek R, Wen C (2015) Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices. Acta Biomater 20:176–187

    CAS  Article  Google Scholar 

  35. Yang Y, Wu SQ, Li GP, Li YL, Lu YF, Yang K, Ge P (2010) Evolution of deformation mechanisms of alloy during straining. Acta Mater 58:2778–2787

    CAS  Article  Google Scholar 

  36. Collings E, Boyer R, Welsch G (1994) Titanium alloys. ASM International, Materials Park

    Google Scholar 

  37. Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A 243:231–236

    Article  Google Scholar 

  38. Wang BL, Zheng YF, Zhao LC (2009) Electrochemical corrosion behavior of biomedical Ti–22Nb and Ti–22Nb–6Zr alloys in saline medium. Mater Corros 60:788–794

    CAS  Article  Google Scholar 

  39. Zhang BB, Zheng YF, Liu Y (2009) Effect of Ag on the corrosion behavior of Ti–Ag alloys in artificial saliva solutions. Dent Mater J 25:672–677

    Article  CAS  Google Scholar 

  40. Kang DK, Moon SK, Oh KT, Choi GS, Kim KN (2009) Properties of experimental titanium–silver–copper alloys for dental applications. J Biomed Mater Res B 90B(90B):446–451

    CAS  Article  Google Scholar 

  41. Xu YF, Xiao YF, Yi D, Liu HQ, Wu L, Wen J (2015) Corrosion behavior of Ti−Nb−Ta−Zr−Fe alloy for biomedical applications in Ringer’s solution. Trans Nonferrous Met Soc China 25:2556–2563

    CAS  Article  Google Scholar 

  42. Lu M, Zhuang X, Tang K, Wu P, Guo X, Yin L, Cao H, Zou D (2018) Intrinsic surface effects of tantalum and titanium on integrin α5β1/ERK1/2 pathway-mediated osteogenic differentiation in rat bone mesenchymal stromal cells. Cell Physiol Biochem 51:589–609

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the effective and financial supports provided by Semnan University for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardali Yousefpour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zareidoost, A., Yousefpour, M. The Structural Properties of a New As-cast (Ti55Zr25Nb10Ta10)99.3Ag0.7 Alloy for Biomedical Applications. J Bio Tribo Corros 7, 160 (2021). https://doi.org/10.1007/s40735-021-00601-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00601-9

Keywords

  • Beta Ti alloys
  • Biocompatibility
  • Mechanical properties
  • Cell response
  • Corrosion behavior