Skip to main content

Advertisement

Log in

A Review on the Significance of Hybrid Particulate Reinforcements on the Mechanical and Tribological Properties of Stir-Casted Aluminum Metal Matrix Composites

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Since several years, monolithic aluminum alloys were replaced by aluminum metal matrix composites, which could be used in structural, aerospace and automotive sectors because of its superior strength and stiffness, better performance during low cycle fatigue and wear resistant. Now a days, materials got diversified from pure to composite forms as per the global needs; because of its reduced weight, cheaper, stronger, better quality which are more efficient for various applications. Recent developed metal matrix composites exhibit some important mechanical properties like low density, high strength, stiffness, better wear resistance, better toughness and stiffness. explore several applications in automotive sector. The objective of this review article is to give an insight into the latest understandings of effect of adding hybrid particulate reinforcements like aluminum oxide, silicon carbide, graphite, fly ash, zirconium, titanium silicon carbide and graphite into the aluminum metal matrix and to highlight the main concerned areas which need to be overcome if these composites could be scaled up its full commercial potential. Hence authors have concluded that when aluminum metal matrix is incorporated with graphite as a soft lubricant and Silicon carbide as a hard reinforcement can improve desirable properties like wear and strength of the composites as compared to the properties of composites which contains single reinforcement, either silicon carbide or graphite alone. These composites are substantially maintaining green or ecofriendly tribological properties, features like sustainability and energy efficient since oil and grease-based lubricants releases hazardous pollutants into atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Courtesy: P. Venkateshwar Reddy et al. [5]

Fig. 2

Courtesy: Alaneme KK et al.

Fig. 3

Courtesy: Alaneme, K. K et al

Fig. 4

Courtesy: Alenene KK et al. [40]

Fig. 5

Courtesy: Elango G. et al.

Similar content being viewed by others

References

  1. Kelly A (1985) Composites in context. Compos Sci Technol 23(3):171–219

    Article  Google Scholar 

  2. Ahlatci H, Kocer T, Candan E, Cimenoglu H (2006) Wear behavior of Al/(Al2O3/SiCp) hybrid composites”. Tribol Int 39:213–220

    Article  CAS  Google Scholar 

  3. Ozdemir N, Yakuphanoglu F (2006) The effects of particle size and volume fraction of Al2O3 on electronic thermal conductivity of α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC). Int J Adv Manuf Technol 29:226–229

    Article  Google Scholar 

  4. Veeresh Kumar GB, Rao CSP, Selvaraj N (2011) Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites—a review. J Miner Mater Charact Eng 10(1):59–91

    Google Scholar 

  5. Venkateshwar Reddy P, Suresh Kumar G, Mohana Krishnudu D, Raghavendra Rao H (2020) Mechanical and wear performances of aluminium-based metal matrix composites: a review. Journal of Bio- and Tribo-Corros 6:83. https://doi.org/10.1007/s40735-020-00379-

    Article  Google Scholar 

  6. Kumar S, Panwar RS, Pandey OP (2013) Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites. Ceram Int 39:6333–6342

    Article  CAS  Google Scholar 

  7. Sharma V, Kumar S, Panwar RS, Pandey OP (2012) Microstructural and wear behavior of dual reinforced particle (DRP) aluminum alloy composite. J Mater Sci 47:6633–6646

    Article  CAS  Google Scholar 

  8. Rittner MN (2000) Metal matrix composites in 21st century: markets and opportunities, report GR-108R. Business opportunity (BCC), Inc, Norwalk, CT

  9. Das S, Das K, Das S (2009) Abrasive wear behavior of Al–4.5 wt.% Cu/(zircon s and þ silicon carbide) hybrid composite. J Compos Mater 43:2665–2672

    Article  CAS  Google Scholar 

  10. Kaur K, Pandey OP (2010) Dry sliding wear behavior of zircon sand reinforced Al–Si alloy. Tribol Lett 38:377–387

    Article  CAS  Google Scholar 

  11. Song SG, Shi N, Gray GT III, Roberts JA (1996) Reinforcement shape effects on the fracture behavior and ductility of particle-reinforced 6061-Al matrix composites. Metall Mater Trans A 27:3739–3746

    Article  Google Scholar 

  12. Kouzeli M, Weber L, San Marchi C, Mortensen A (2001) Influence of damage on the tensile behaviour of pure aluminum reinforced with ≥ 40% vol. alumina particles. Acta Mater 49:3699–3709

    Article  CAS  Google Scholar 

  13. Spowart JE, Miracle DB (2003) The influence of reinforcement morphology on the tensile response of 6061/SiC/25p discontinuously-reinforced aluminum. Mater Sci Eng A 357:111–123

    Article  CAS  Google Scholar 

  14. Lewandowski JJ, Liu C (1989) Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater Sci Eng A 107:241–255

    Article  Google Scholar 

  15. Bhanu Prasad VV, Bhat BVR, Mahajan YR, Ramakrishnan P (2002) Structure-property correlation in discontinuously-reinforced aluminum matrix composites as a function of relative particle size ratio. Mater Sci Eng A 337:179–186

    Article  Google Scholar 

  16. Kouzeli M, Dunand DC (2003) Effect of reinforcement connectivity on the elasto-plastic behavior of aluminum composites containing sub-micron alumina particles. Acta Mater 51:6105–6121

    Article  CAS  Google Scholar 

  17. Tewari A, Spowart JE, Arun G, Rajiv M (2006) The effects of friction stir processing (FSP) on the spatial heterogeneity of discontinuously reinforced aluminum (DRA) microstructures. Frictions stir welding and processing II. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2006.04.106

    Article  Google Scholar 

  18. Soboyejo W (2002) Mechanical properties of engineered materials, 1st edn. CRC press. https://doi.org/10.1201/9780203910399

  19. Miracle DB (2005) Metal matrix composites-from science to technological significance. Compos Sci Technol 65(15–16):2526–2540

    Article  CAS  Google Scholar 

  20. Hima Gireesh Ch, Durga Prasad KG, Ramji K (2018) Experimental Investigation on mechanical properties of an Al6061 hybrid metal matrix composite. J Compos Sci 2:49. https://doi.org/10.3390/jcs2030049

    Article  CAS  Google Scholar 

  21. Uyyuru RK, MirleBrusethaug SS (2005) Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribo-couple. Wear 260(11–12):1248–1255. https://doi.org/10.1016/j.wear.08.01

    Article  Google Scholar 

  22. Suresha S, Sridhara BK (2010) Effect of addition of graphite particulates on the wear behavior in aluminum–silicon carbide–graphite composites. Mater Des 31:1804–1812

    Article  CAS  Google Scholar 

  23. Chawla N, Andres C, Jones JW, Allison JE (1998) “Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite. Metall Mater Trans 29:2843–2854

    Article  Google Scholar 

  24. Kouzeli M, Mortensen A (2002) Size dependent strengthening in particle reinforced aluminum. Acta Mater 50:39–51

    Article  CAS  Google Scholar 

  25. Suresha S, Sridhara BK (2012) Friction characteristics of aluminum silicon carbide graphite hybrid composites. Mater Des 34:576–583. https://doi.org/10.1016/j.matdes.2011.05.010

    Article  CAS  Google Scholar 

  26. Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4(1):65–83

    Article  CAS  Google Scholar 

  27. Uvaraja VC, Natarajan N (2012) Optimization of friction and wear behaviour in hybrid metal matrix composites using Taguchi tech-nique. J Miner Mater Charact Eng 11(08):757

    Google Scholar 

  28. Alaneme KK, Bodunrin MO (2013) Mechanical behaviour of alumina reinforced AA 6063 metal matrix composites developed by two step—stir casting process. Acta Tech Corvininesis—Bull Eng 6(3):3–18

    Google Scholar 

  29. Alaneme KK, Aluko AO (2012) Production and age-hardening behavior of borax premixed SiC reinforced Al–Mg–Si alloy composites developed by double stir-casting technique. West Indian J Eng 34(1–2):80–85

    Google Scholar 

  30. Alaneme KK (2011) Corrosion behavior of heat-treated Al-6063/SiCp composites immersed in 5 wt. % NaCl solution. Leonardo J Sci 18(18):55–64

    Google Scholar 

  31. Behera MP et al (2019) Conventional and additive manufacturing with metal matrix composites: a perspective. Procedia Manuf 30:159–166. https://doi.org/10.1016/j.promfg.02.023

    Article  Google Scholar 

  32. Rajmohan T, Palani Kumar K, Ranganathan S (2013) Evaluation of mechanical and wear properties of hybrid aluminum matrix composites. Trans Nonferrous Metals Soc China 23(9):2509–2517

    Article  CAS  Google Scholar 

  33. Suresha S, Sridhara BK (2010) Effect of addition of graphite particulates on the wear behaviour in aluminum–silicon carbide–graphite composites. Mater Des 31:1804–1812

    Article  CAS  Google Scholar 

  34. Yalcin Y, Akbulut H (2006) Dry wear properties of A356-SiC particle reinforced MMCs produced by two melting routes. Mater Des 27(10):872–881

    Article  CAS  Google Scholar 

  35. Ahmad KR, Jamaludin SB, Hussain LB, Ahmad ZA (2005) The influence of alumina particle size on sintered density and hardness of discontinuous reinforced aluminum metal matrix composite”. J Teknologi 42:49–57

    Google Scholar 

  36. Rangrej S, Pandya S, Menghani J (2020) Effects of reinforcement additions on properties of aluminium matrix composites—a review. Mater Today. https://doi.org/10.1016/j.matpr.2020.10.604

    Article  Google Scholar 

  37. Iacob G, Ghica VG, Buzatu M et al (2015) Studies on wear rate and hardness of the Al/Al2O3/Gr hybrid composites produced via powder metallurgy. Compos Part B Eng 69:603–611

    Article  CAS  Google Scholar 

  38. Velmurugan C, Subramanian R, ThirugnanamAnandavel SAB (2012) Investigation of friction and wear behavior of hybrid aluminum composites. Ind Lubr Tribol 64:152–163

    Article  Google Scholar 

  39. Alaneme KK, Aluko AO (2012) Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminum (6063)–silicon carbide particulate composites. Sci Iran 19(4):992–996

    Article  CAS  Google Scholar 

  40. Singla M, Dwivedi DD, Singh L, Chawla V (2009) Development of aluminum-based silicon carbide particulate metal matrix composite. J Min Mater Charact Eng 8(6):455–467

    Google Scholar 

  41. Alaneme KK, Bodunrin MO, Awe AA (2016) Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminum matrix composites. J King Saud Univ-Eng Scie 30(1):96–103

    Google Scholar 

  42. Alaneme KK (2012) Influence of thermo-mechanical treatment on the tensile behavior and CNT evaluated fracture toughness of borax premixed SiCp reinforced aluminum (6063) composites. Int J Mech Mater Eng 7(1):96–100

    Google Scholar 

  43. Ravesh SK, Garg TK (2012) Preparation & analysis for some mechanical property of aluminum-based metal matrix composite reinforced with SiC & fly ash. Int J Eng Res Appl 2(6):727–731

    Google Scholar 

  44. Boopathi MM, Arulshri KP, Iyandurai N (2013) (2013) Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. Am J Appl Sci 10(3):219–229

    Article  CAS  Google Scholar 

  45. Mistry JM, Gohil PP (2016) An overview of diversified reinforcement on aluminum metal matrix composites: tribological aspects. Proc Inst Mech Eng J. https://doi.org/10.1177/1350650116658572

    Article  Google Scholar 

  46. Rao TB (2017) An experimental investigation on mechanical and wear properties of Al7075/SiCp composites: effect of SiC content and particle size”. J Tribol. https://doi.org/10.1115/14037845

    Article  Google Scholar 

  47. Bodunrina MO, Alaneme K, Chown LH (2015) Aluminum matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics”. J Mater Res Technol 4(4):434–445

    Article  CAS  Google Scholar 

  48. Hosking FM, Portillo FF, Wunderlin R, Mehrabian R (1982) Composites of aluminum alloys: fabrication and wear behavior. J Mater Sci 17(2):477–498

    Article  CAS  Google Scholar 

  49. Wilson S, Alpas AT (1997) Wear mechanism maps for metal matrix composites. Wear 212(1):41–49

    Article  CAS  Google Scholar 

  50. Deuis RL, Subramanian C, Yellup JM (1997) Dry sliding wear of aluminum composites—a review. Compos Sci Technol 57(4):415–435

    Article  CAS  Google Scholar 

  51. Elango G, Raghunath BK (2013) Tribological behavior of hybrid (LM25Al+ SiC+ TiO2) metal matrix composites. Procedia Eng 64:671–680

    Article  CAS  Google Scholar 

  52. Miyajima T, Iwai Y (2003) Effects of reinforcements on sliding wear behavior of aluminum matrix composites. Wear 255:606–616

    Article  CAS  Google Scholar 

  53. Khatkar SK, Suri NM, Kant S, Pankaj (2018) A Review on mechanical and tribological properties of graphite reinforced self-lubricating hybrid metal matrix composites. Rev Adv Mater Sci 56(1):1–20

    Article  CAS  Google Scholar 

  54. Rajesh AM, Kaleemulla M, Doddamani S (2019) Effect of addition of Sic and Al2O3 on wear behavior of hybrid aluminum metal matrix composites. Acta Technica Corviniensis – Bulletin of Engineering. 12(1): 43–52

  55. Wang Y, Wang HY, Xiu K, Hong-Ying Wang QC, Jiang, (2006) Fabrication of TiB2 particulate reinforced magnesium matrix composites by two step processing method. Mater Lett 60:1533–1537

    Article  CAS  Google Scholar 

  56. Zhou W, Xu ZM (1997) Casting of SiC reinforced metal matrix composites. J Mater Process Technol 63:358–363

    Article  Google Scholar 

  57. Moustafa SF, Soliman FA (1997) Wear resistance of δ-type alumina fiber reinforced Al-4 percentage Cu matrix composite. Tribol Lett 3(4):311–315

    Article  CAS  Google Scholar 

  58. Rohatgi PK, Liu Y, Ray S (1992) Friction and wear of metal-matrix composites. In: Blau PJ (ed) ASM handbook. Friction, lubrication, and wear technology, vol 18. ASM International, Metals Park, pp 801–811

    Google Scholar 

  59. Rohatgi PK, Ray S, Liu Y (1992) Tribological properties of metal matrix-graphite particle composites. Int Mater Rev 37(1):129–152. https://doi.org/10.1179/imr.1992.37.1.129

    Article  CAS  Google Scholar 

  60. Mares M (2001) Some issues on tailoring possibilities for mechanical properties of particulate reinforced metal matrix composites. J Optoelectron Adv Mater 3(1):119–124

    CAS  Google Scholar 

  61. Hassan AM, Hayajneh TM (2002) The effect of the increase in graphitic volumetric percentage on the strength and hardness of Al-4 weight percentage Mg-graphite composites. Mater Eng Perform 11:250–255

    Article  CAS  Google Scholar 

  62. Radhika N, Subramanian R, Venkat Prasat S (2011) Tribological behavior of aluminum/alumina/graphite hybrid metal matrix composite using Taguchi’s techniques. J Min Mater Charact Eng 10(5):427-443 69

    Google Scholar 

  63. Radhika N, Subramanian R, Venkat Prasat S, Anandavel B (2012) Dry sliding wear behavior of aluminium/alumina/graphite hybrid metal matrix composites. J Ind Lubr Tribol 64(6):359–366

    Article  Google Scholar 

  64. Zeren A (2015) Effect of the graphite content on the tribological properties of hybrid Al/SiC/Gr composites processed by powder metallurgy. Ind Lubr Tribol 67(3):262–268

    Article  Google Scholar 

  65. Srinivas PD, Charoo MS (2018) Aluminum metal matrix composites a review of reinforcement; mechanical and tribological behavior. Int J Eng Technol 7(24):117–122. https://doi.org/10.1419/ijet.v7i2.4.13020

    Article  Google Scholar 

  66. Gurler R (1999) Sliding wear behavior of a silicon carbide particle-reinforced aluminum–magnesium alloy. J Mater Sci Lett 18(7):553–554

    Article  CAS  Google Scholar 

  67. Reihani SS (2006) Processing of squeeze cast Al6061–30% vol percentage SiC composites and their characterization. Mater Des 27(3):216–222

    Article  CAS  Google Scholar 

  68. Lim SC, Gupta M, Ren L, Kwok JKM (1999) The tribological properties of Al–Cu/Sic metal–matrix composites fabricated using the rheocasting technique. J Mater Process Technol 89:591–596

    Article  Google Scholar 

  69. Kumar GV, Rao CSP, Selvaraj N, Bhagya Shekar MS (2010) Studies on Al6061-SiC and Al7075-Al2O3 metal matrix composites. J Min Mater Charact Eng 9(1):43–55

    Google Scholar 

  70. Mahdavi S, Akhlaghi F (2011) Effect of the SiC particle size on the dry sliding wear behavior of SiC and SiC–Gr-reinforced Al6061 composites. J Mater Sci 46(24):7883. https://doi.org/10.1007/s10853-011-5776-1

    Article  CAS  Google Scholar 

  71. Ravindran P, Manisekar K, Narayanasamy P, Selvakumar N, Narayanasamy R (2012) Application of factorial techniques to study the wear of Al hybrid composites with graphite addition. Mater Des 39:42–54

    Article  CAS  Google Scholar 

  72. Devaraju A, Kumar A, Kotiveerachari B (2013) Influence of addition of Grp/Al2O3p with Sic on wear properties of aluminum alloy 6061–T6 hybrid composites via friction stir processing. Trans Nonferrous Metals Soc China 23(5):1275–1280

    Article  CAS  Google Scholar 

  73. Das S (2004) Development of aluminium alloy composites for engineering applications. Trans Indian Inst Metals 57(4):325–334

    CAS  Google Scholar 

  74. Hutchings IM (1987) Wear by particulates. Chem Eng Sci 42:869–878

    Article  CAS  Google Scholar 

  75. Kulik T, Kosel TH (1989) Effects of second-phase particle size and edge micro fracture on abrasion of model alloy. In: Ludema KC (ed) Wear of Materials. ASME, Colorado, pp 71–78

    Google Scholar 

  76. Xian G, Zhang Z (1986) Sliding wear of polyetheramide matrix composites influence of short fiber composites. Tribo Int 19(3): 145–156

  77. Zum Gahr KH (1987) Microstructure and wear of materials. Elsevier, Newyork

  78. Wang AG, Hutchings IM (1989) Wear of alumina fibre–aluminium metal matrix composites by two-body abrasion. Mater Sci Technol 5:71–76. https://doi.org/10.1179/mst.1989.5.1.71

    Article  CAS  Google Scholar 

  79. Vučetić AVF, Bobić B, Pitel J, Bobić I (2019) Tribological characterization in dry sliding conditions of compo casted hybrid A356/Sic/Grp composites with graphite macro particles. Int J Adv Manuf Technol 100:2135–2146

    Article  Google Scholar 

  80. Guo MLT, Tsao C-YA (2000) Tribological behavior of self-lubricating aluminum/Sic/graphite hybrid composites synthesized by the semi-solid powder-densification method. Compos Sci Technol 60(1):65–74

    Article  CAS  Google Scholar 

  81. Korkut MH (2004) Effect of particulate reinforcement on wear behavior of aluminum matrix composites. Mater Sci Technol 20(1):73–81

    Article  CAS  Google Scholar 

  82. Biswas SK, Bai BNP (1981) Dry wear of Al-graphite particle composites. Wear 68(3):347–358

    Article  CAS  Google Scholar 

  83. Gibson PR, Clegg AJ, Das AA (1984) Wear of cast Al-Si alloys containing graphite. Wear 95(2):193–198

    Article  CAS  Google Scholar 

  84. Yang JB, Lin CB, Wang TC, Chu HY (2004) The tribological characteristics of A356.2Al alloy/Gr (p) composites. Wear 257(9–10):941–952

    Article  CAS  Google Scholar 

  85. Vencl A, Bobic I, Stojanovic B (2014) Tribological properties of A356 Al-Si alloy composites under dry sliding conditions. Ind Lubr Tribol 66(1):66–74

    Article  Google Scholar 

  86. Basavarajappa S, Chandramohan G (2005) Dry sliding wear behavior of hybrid metal matrix composites. Mater Sci 11(3):253–257

    Google Scholar 

  87. Leng J, Longtao J, Wu G, Tian S, Chen G (2009) Effect of graphite particle reinforcement on dry sliding wear of Sic/Gr/Al composites. Rare Metal Mater Eng 38(11):1894–1898

    Article  CAS  Google Scholar 

  88. Asthana R (1998) Processing effects on the engineering properties of cast metal matrix composites. Adv Perform Mater 5:213–255. https://doi.org/10.1023/A:1008634531980

  89. Madeva Nagaral BK, Shivananda J, Auradi V, Kori SA (2016) Effect of SiC and graphite particulates addition on wear behavior of Al 2219 alloy hybrid composites. Mater Sci Eng 149:012108. https://doi.org/10.1088/1757-899X/149/1/012108

    Article  CAS  Google Scholar 

  90. Faleh H, Noori M, Florin Ș (2015) Properties and applications of aluminum-graphite composites. Adv Mater Res 1128:134–143

    Article  Google Scholar 

  91. Jha AK, Prasad SV, Upadhyaya GS (1989) Sintered 6061 aluminum alloy-solid lubricant particle composites : sliding wear and mechanisms of lubrication. Wear 133:163–172

    Article  CAS  Google Scholar 

  92. Hosking FM, Folgar PortilloWunderlin FR, Mehrabian TR (1982) Composites of aluminum alloys: fabrication and wear behavior. J Mater Sci 17:477–498

    Article  CAS  Google Scholar 

  93. Bajwa S, Rainforth WM, Lee WE (2005) Sliding wear behavior of SiC/Al2O3 nano composites. Wear 259:553–561

    Article  CAS  Google Scholar 

  94. Wang YQ, Afsar AM, Jang JH, Han KS, Song JI (2010) Room temperature dry and lubricant wear behaviors of Al2O3/SiCp/Al hybrid metal matrix composites. Wear 268:863–870

    Article  CAS  Google Scholar 

  95. Rohatgi PK, Ray S, Liu Y (1992) Tribological properties of metal matrix-graphite particle composites. International materials. Reviews 37(1):129–152. https://doi.org/10.1179/imr.1992.37.1.129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the co-authors for the cooperation during the review of articles. Thanks to all publishers who permit me to take some relevant diagrams, graphs, tables, etc. from the published articles. Special thanks to editor in chief and reviewers for the support given during the process of publication.

Funding

It is declared that there is no funding is received from anywhere to publish the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Manjunath.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, R., Kumar, D. & Kumar, A. A Review on the Significance of Hybrid Particulate Reinforcements on the Mechanical and Tribological Properties of Stir-Casted Aluminum Metal Matrix Composites. J Bio Tribo Corros 7, 122 (2021). https://doi.org/10.1007/s40735-021-00558-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00558-9

Keywords

Navigation