Skip to main content
Log in

Performance Study of Aluminium–Zinc Anode using Noise Resistance, Pitting Index and Recurrence Plots from Electrochemical Noise Data

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Electrochemical noise technique allows the simultaneous measurement of voltage and current on a material in a process stream. Useful information regarding the state of the sample, initiation, type and growth of corrosion can be obtained. To this end, time domain and recurrence plots have been used to study the electrochemical noise data obtained for an Al–Zn sacrificial anode immersed in NaCl solution over 7 days to understand various corrosion mechanisms occurring on the anode surface. The noise resistance, pitting index and recurrence plots were correlated with scanning electron microscopy (SEM). The results revealed that PI and Rn for the non-heat-treated and heat-treated aluminium–zinc anodes decreased progressively with immersion time. This can be attributed to increasing dissolution activity on the anode surfaces. The obtained Rn for non-heat-treated anodes were greater than 105 Ω cm2 and the Rn for heat-treated anodes were less than 105 Ω cm2. Heat treating the Al–Zn anodes helped to reduce the noise resistance values to a maximum of 12,000 Ω cm2. The recurrence plots showed distinct butterfly-like structures that indicated progressive dissolution activity on the anode surfaces. Lower noise resistance and pitting index as immersion time progressed signified improved electrochemical performance of the anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khajuria A, Akhtar M, Pandey Manish K, Singh Mayur P, Raina A, Bedi R, Singh B (2019) Influence of ceramic Al2O3 particulates on performance measures and surface characteristics during sinker EDM of stir cast AMMCs. World J Eng 16:526–538. https://doi.org/10.1108/WJE-01-2019-0015

    Article  CAS  Google Scholar 

  2. Shibli SMA, Gireesh VS (2005) Activation of aluminium alloy sacrificial anodes by selenium. Corros Sci 47:2091–2097

    Article  CAS  Google Scholar 

  3. Khajuria A, Bedi R, Singh B, Akhtar M (2018) EDM machinability and parametric optimisation of 2014Al/Al2O3 composite by RSM. Int J Mach Mach Mater 20:536. https://doi.org/10.1504/IJMMM.2018.096380

    Article  Google Scholar 

  4. Oluwole OO, Idusuyi N (2012) Aluminium anode activation research—a review. Int J Sci Technol 2:561–566

    Google Scholar 

  5. Juárez-Islas J, i Llongueras JG (2000) Development and testing of galvanic anodes for cathodic protection. Contrib Sci 331–343

  6. Talavera M, Valdez S, Juarez-Islas J, Mena B (2002) EIS testing of new aluminium sacrificial anodes. J Appl. http://link.springer.com/article. Accessed 7 Feb 2017

  7. Idusuyi N, Ajide OO, Oluwole OO, Arotiba OA (2017) Electrochemical impedance study of an Al6063–12% SiC–Cr composite immersed in 3 wt% sodium chloride. Procedia Manuf 7:413–419. https://doi.org/10.1016/j.promfg.2016.12.019

    Article  Google Scholar 

  8. Cottis RA (2001) Interpretation of electrochemical noise data. Corrosion 57:265–285

    Article  CAS  Google Scholar 

  9. Hai D, Behnamian Y (2015) Electrochemical noise: a review of experimental setup, instrumentation and DC removal. Russ J Electrochem 51:593–601. https://doi.org/10.1134/S1023193515070071

    Article  CAS  Google Scholar 

  10. Mansfeld F, Sun Z, Hsu CH (2001) Electrochemical noise analysis (ENA) for active and passive systems in chloride media. Electrochim Acta 46:3651–3664

    Article  CAS  Google Scholar 

  11. Caines S, Khan F, Shirokoff J, Qiu W (2017) Demonstration of increased corrosion activity for insulated pipe systems using a simplified electrochemical potential noise method. J Loss Prev Process Ind 47:189–202. https://doi.org/10.1016/j.jlp.2017.03.012

    Article  CAS  Google Scholar 

  12. Ashassi-Sorkhabi H, Seifzadeh D, Raghibi-Boroujeni M (2016) Analysis of electrochemical noise data in both time and frequency domains to evaluate the effect of ZnO nanopowder addition on the corrosion protection performance of epoxy coatings. Arab J Chem 9:S1320–S1327. https://doi.org/10.1016/j.arabjc.2012.02.018

    Article  CAS  Google Scholar 

  13. Casajús P, Winzer N (2015) Electrochemical noise analysis of the corrosion of high-purity Mg–Al alloys. Corros Sci 94:316–326

    Article  Google Scholar 

  14. Chen A, Cao F, Liao X, Liu W, Zheng L, Zhang J, Cao C (2013) Study of pitting corrosion on mild steel during wet–dry cycles by electrochemical noise analysis based on chaos theory. Corros Sci 66:183–195. https://doi.org/10.1016/j.corsci.2012.09.017

    Article  CAS  Google Scholar 

  15. Jamali SS, Mills DJ, Cottis RA, Lan TY (2016) Analysis of electrochemical noise measurement on an organically coated metal. Prog Org Coat 96:52–57. https://doi.org/10.1016/j.porgcoat.2016.01.017

    Article  CAS  Google Scholar 

  16. Jamali SS, Zhao Y, Gao Z, Li H, Hee AC (2016) In situ evaluation of corrosion damage using non-destructive electrochemical measurements—a case study. J Ind Eng Chem 43:36–43. https://doi.org/10.1016/j.jiec.2016.07.045

    Article  CAS  Google Scholar 

  17. Liu XF, Zhan J, Liu QJ (2009) The influence of tensile stress on electrochemical noise from aluminum alloy in chloride media. Corros Sci 51:1460–1466. https://doi.org/10.1016/j.corsci.2009.03.035

    Article  CAS  Google Scholar 

  18. Xia D-H, Ma C, Song S, Ma L, Wang J, Gao Z, Zhong C, Hu W (2017) Assessing atmospheric corrosion of metals by a novel electrochemical sensor combining with a thin insulating net using electrochemical noise technique. Sens Actuators B 252:353–358. https://doi.org/10.1016/j.snb.2017.05.179

    Article  CAS  Google Scholar 

  19. Homborg AM, Cottis RA, Mol JMC (2016) An integrated approach in the time, frequency and time-frequency domain for the identification of corrosion using electrochemical noise. Electrochim Acta 222:627–640. https://doi.org/10.1016/j.electacta.2016.11.018

    Article  CAS  Google Scholar 

  20. Mahjani MG, Moshrefi R, Sharifi-Viand A, Taherzad A, Jafarian M, Hasanlou F, Hosseini M (2016) Surface investigation by electrochemical methods and application of chaos theory and fractal geometry. Chaos Solitons Fractals 91:598–603. https://doi.org/10.1016/j.chaos.2016.08.011

    Article  Google Scholar 

  21. Stringer J, Markworth AJ (1993) Applications of deterministic chaos theory to corrosion. Corros Sci 35:751–760. https://doi.org/10.1016/0010-938X(93)90212-Y

    Article  CAS  Google Scholar 

  22. Homborg AM, Van Westing EPM, Tinga T, Zhang X, Oonincx PJ, Ferrari GM, De Wit JHW, Mol JMC (2013) Novel time–frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra Reference electrode. Corros Sci 66:97–110. https://doi.org/10.1016/j.corsci.2012.09.007

    Article  CAS  Google Scholar 

  23. Huang JY, Guo XP, Qiu YB, Chen ZY (2007) Cluster and discriminant analysis of electrochemical noise data. Electrochim Acta 53:680–687. https://doi.org/10.1016/j.electacta.2007.07.058

    Article  CAS  Google Scholar 

  24. Liu W, Wang D, Chen X, Wang C, Liu H (2017) Recurrence plot-based dynamic analysis on electrochemical noise of the evolutive corrosion process. Corros Sci 124:93–102. https://doi.org/10.1016/j.corsci.2017.05.012

    Article  CAS  Google Scholar 

  25. Moshrefi R, Mahjani MG, Jafarian M (2014) Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification. Electrochem Commun 48:49–51. https://doi.org/10.1016/j.elecom.2014.08.005

    Article  CAS  Google Scholar 

  26. Hou Y, Aldrich C, Lepkova K, Machuca LL, Kinsella B (2017) Analysis of electrochemical noise data by use of recurrence quantification analysis and machine learning methods. Int J Eng Sci Technol 256:337–347

    CAS  Google Scholar 

  27. Eckmann J-P, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 4:973–977. https://doi.org/10.1209/0295-5075/4/9/004

    Article  Google Scholar 

  28. Yang H (2011) Multiscale recurrence quantification analysis of spatial vector cardiogram (VCG) signals. IEEE Trans Biomed Eng 58:339–347

    Article  Google Scholar 

  29. Ma J, Wen J, Li Q (2013) Electrochemical noise analysis of the corrosion behaviors of Al–Zn–In based alloy in NaCl solution. Phys Procedia 50:421–426. https://doi.org/10.1016/j.phpro.2013.11.065

    Article  CAS  Google Scholar 

  30. Al-Mazeedi HAA, Cottis RA (2004) A practical evaluation of electrochemical noise parameters as indicators of corrosion type. Electrochim Acta 49:2787–2793. https://doi.org/10.1016/j.electacta.2004.01.040

    Article  CAS  Google Scholar 

  31. Eden DA, Rothwell AN (1992) Electrochemical noise data: analysis, interpretation and presentation. Corrosion/92, Paper No. 292

  32. Marwan N (2003) Encounters with neighbours: current development of concepts based on recurrence plots and their applications. University at Potsdam, Potsdam

    Google Scholar 

  33. Okeoma KB, Owate IO, Oguzie EE, Mejeha IM (2012) Impacts of heat treatment on the electrochemical properties of AA3003 expose to 0.1 M hydrochloric acid media. Am J Mater Sci 2:51–58. https://doi.org/10.5923/j.materials.20120201.10

    Article  Google Scholar 

  34. Khireche S, Boughrara D, Kadri A, Hamadou L, Benbrahim N (2014) Corrosion mechanism of Al, Al–Zn and Al–Zn–Sn alloys in 3 wt% NaCl solution. Corros Sci 87:504–516

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the TETFUND Nigeria Academic Staff Training Grant that funded part of the research work in South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosa Idusuyi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idusuyi, N., Fayomi, O.S. Performance Study of Aluminium–Zinc Anode using Noise Resistance, Pitting Index and Recurrence Plots from Electrochemical Noise Data. J Bio Tribo Corros 7, 56 (2021). https://doi.org/10.1007/s40735-021-00493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00493-9

Keywords

Navigation