Skip to main content

Enhancement of Corrosive-Resistant Behavior of Zn and Mg Metal Plates Using Biosynthesized Nickel Oxide Nanoparticles

Abstract

In this work, nickel oxide nanoparticles (NiO NPs) were synthesized using ultrasonic wave-assisted green synthesis route with Delonix elata leaf extract as a reducing and capping agent. The phase structure, crystallinity, thermal and physical stability, surface morphology, and surface area of the produced NiO NPs were investigated using X-ray diffraction, field-emission scanning electron microscopy high-resolution transmission electron microscopy, thermogravimetric/differential thermal analysis, and Brunauer–Emmett–Teller analysis. The surface properties such as roughness and hardness of NiO NP-coated plates were determined using atomic force microscopy and nanoindentation techniques. The electrochemical corrosion behavior of NiO NPs was studied in the presence of an aqueous electrolyte medium, that is, 3.5% NaCl, 6 M KOH, 1 M HCl, and 1 M H2SO4. The Tafel plot showed that the corrosive nature of Zn and Mg plates significantly decreases when the plates were coated with the prepared high surface area and mesoporous NiO NPs under all electrolytes, especially in acidic medium, that is, 1 M H2SO4.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Kandasamy K, Surendhiran S, Syed Khadar YA, Paramasivan R (2020) Ultrasound-assisted microwave synthesis of CdS/MWCNTs QDs: a material for photocatalytic and corrosion inhibition activity. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.07.080

    Article  Google Scholar 

  2. Baena LM, Gómez M, Calderón JA (2012) Aggressiveness of a 20% bioethanol–80% gasoline mixture on autoparts: I behavior of metallic materials and evaluation of their electrochemical properties. Fuel 95:320–328. https://doi.org/10.1016/j.fuel.2011.12.002

    CAS  Article  Google Scholar 

  3. Trabanelli G (1991) Inhibitors—an old remedy for a new challenge. Corrosion 47:410–419. https://doi.org/10.5006/1.3585271

    CAS  Article  Google Scholar 

  4. Nassar AM, Hassan AM, Shoeib MA, El Kmash AN (2015) Synthesis, characterization and anticorrosion studies of new homobimetallic Co(II), Ni(II), Cu(II), and Zn(II) Schiff base complexes. J Bio Tribo Corros 1:19. https://doi.org/10.1007/s40735-015-0019-7

    Article  Google Scholar 

  5. Emregu KC, Atakol O (2003) Corrosion inhibition of mild steel with Schiff base compounds in 1 M HCl. Mater Chem Phys 82:188–193. https://doi.org/10.1007/s11771-013-1488-9

    CAS  Article  Google Scholar 

  6. Agrawal YK, Talati JD, Shah MD, Desai MN (2004) Shah NK Schiff bases of ethylenediamine as corrosion inhibitors of zinc in sulphuric acid. Corros Sci 46:633–651

    CAS  Article  Google Scholar 

  7. Mahdavian M, Attar MM (2009) Electrochemical behaviour of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel. Corros Sci 51:409–414. https://doi.org/10.1016/j.corsci.2008.11.010

    CAS  Article  Google Scholar 

  8. Kavitha V, Jeyanthinath M, Mahalingam P, Sethupathi N (2019) Structural, optical and electrical studies on zinc doped barium strontium titanate as photo-anode for DSSC device. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.05.437

    Article  Google Scholar 

  9. Kavitha V, Mahalingam P, Jeyanthinath M, Sethupathi N (2020) Optical and structural properties of tungsten-doped barium strontium titanate. Mater Today Proc 23(1):12

    CAS  Article  Google Scholar 

  10. Agarwala RC, Agarwala V (2003) Electroless alloy/composite coatings: a review. Sadhana 28:475–493. https://doi.org/10.1007/BF02706445

    CAS  Article  Google Scholar 

  11. Sudagar J, Lian J, Sha W (2013) Electroless nickel, alloy, composite and nano coatings—a critical review. J Alloys Compd 571:183–204. https://doi.org/10.1016/j.jallcom.2013.03.107

    CAS  Article  Google Scholar 

  12. Chandrappa KG, Venkatesha T, Nayana KO, Punithkumar MK (2012) Generation of nanocrystalline NiO particles by solution combustion method and its Zn–NiO composite coating for corrosion protection. Corros Mater 63:5. https://doi.org/10.1002/maco.201005966

    CAS  Article  Google Scholar 

  13. Noël S, Alamarguy D, Brezard-Oudot A, Gendre D (2013) An investigation of fretting wear behaviour of nickel coatings for electrical contacts application in dry and lubricated conditions. Wear 301:551–561

    Article  Google Scholar 

  14. Peng-Nan W, Shih-Hsien C (2018) Effect of the mechanical properties and corrosion behaviors of nickel-cadmium duplex electroplated AISI 4340 steel by using various solid solution treatments. Mater Trans 59:406–411

    Article  Google Scholar 

  15. Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23:1307–1315. https://doi.org/10.1016/j.cjche.2015.05.012

    CAS  Article  Google Scholar 

  16. Imran Din M, Aneela R (2016) Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness. Int J Anal Chem 2016:1–14. https://doi.org/10.1155/2016/3512145

    CAS  Article  Google Scholar 

  17. Bahari Molla MY, Sadrnezhaad SK, Hosseini D (2008) NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. J Nanomater 2008:1–4

    Article  Google Scholar 

  18. Garcia AB, Guesta A, Montes-Moran MA, Martinez-Alonso A, Tascon JMD (1997) Zeta potential as a tool to characterize plasma oxidation of carbon fibers. J Colloid Interface Sci 192(2):363–367

    CAS  Article  Google Scholar 

  19. Suresh KC, Balamurugan A (2020) Evaluation of structural, optical, and morphological properties of nickel oxide nanoparticles for multi-functional applications. Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2020.1770793

    Article  Google Scholar 

  20. Siva P, Surendhiran S (2019) Electrochemical reduction of CO2 on Ni(OH)2 doped water dispersible graphene under different electrolyte conditions. SN Appl Sci 1:837. https://doi.org/10.1007/s42452-019-0846-0

    CAS  Article  Google Scholar 

  21. Siva P, Naveenkumar R, Surendhiran S, Arunkumar PS, Vinoth M, Bhoopathy P, Soorathep K (2020) A novel nano-YSZ-Al alloy anode for Al–air battery. J Appl Electrochem. https://doi.org/10.1007/s10800-020-01493-2

    Article  Google Scholar 

  22. Hongxia Q, Zhiqiang W, Hua Y, Lin Z, Xiaoyan Y (2009) Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J Nanomater 2009:1–5

    Google Scholar 

  23. Helan V,  Joseph Prince J, Al-Dhabi NA, Mariadhas VA, Ayeshamariam A, Madhumitha G, Mohana Roopan S, Jayachandran M (2016) Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys 6:712–718

    Article  Google Scholar 

  24. Liu D, Zhou W, Wu J (2016) CuO-CeO2/ZSM-5 composites for reactive adsorption of hydrogen sulphide at high temperature. Can J Chem Eng 94(2016):2276–2281

    CAS  Article  Google Scholar 

  25. Ibrahim K, Khalid S, Idrees K (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  Google Scholar 

  26. Neda M, Yolanda H, Inger OW (2013) Nickel release and surface characteristics of fine powders of nickel metal and nickel oxide in media of relevance for inhalation and dermal contact. Regul Toxicol Pharmacol 65:135–146

    Article  Google Scholar 

  27. Suresh KC, Surendhiran S, Manoj Kumar P, Ranjth Kumar E, Syed Khadar YA, Balamurugan A (2020) Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: evaluation of its structural, optical, morphological and photocatalytic properties. SN Appl Sci 2:1–13. https://doi.org/10.1007/s42452-020-03534-z

    CAS  Article  Google Scholar 

  28. Balamurugan A, Sudha M, Surendhiran S, Anandarasu R, Ravikumar S, Syed Khadar YA (2019) Hydrothermal synthesis of samarium (Sm) doped cerium oxide (CeO2) nanoparticles: characterization and antibacterial activity. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.08.217

    Article  Google Scholar 

  29. El-Kemary Nagy MN, El-Mehasse I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747–1752. https://doi.org/10.1016/j.mssp.2013.05.018

    CAS  Article  Google Scholar 

  30. Fouda AS, Rashwan S, Emam A, El-Morsy FE (2018) Corrosion inhibition of zinc in acid medium using some novel organic compounds. Int J Electrochem Sci 13:3719–3744. https://doi.org/10.20964/2018.04.23

    CAS  Article  Google Scholar 

  31. Popoola API, Sanni O, Lotoa CA, Popoola OM (2015) Corrosion inhibition: synergistic influence of gluconates on mild steel in different corrosive environments. Synergetic interactions of corrosion inhibition tendency of two different gluconates on mild steel in different corrosive environment. Port Electrochim Acta 33(6):353–370. https://doi.org/10.4152/pea.201506353

    CAS  Article  Google Scholar 

  32. Acero-Gutiérrez AK, Pérez-Flores AN, Godínez-Salcedo JG, Moreno-Palmerin J, Morales-Ramírez A (2020) Corrosion protection of A36 steel with SnO2 nanoparticles integrated into SiO2 coatings. Coatings 10:385. https://doi.org/10.3390/coatings10040385

    CAS  Article  Google Scholar 

  33. Lan-Yue C, Guang-Bin W, Rong-Chang Z, Shuo-Qi L, Yu-Hong Z, En-Hou H (2018) Corrosion resistance of a novel SnO2-doped dicalcium phosphate coating on AZ31 magnesium alloy. Bioact Mater 3:245–249. https://doi.org/10.1016/j.bioactmat.2017.11.001

    Article  Google Scholar 

  34. Liu-Ho C, Chun-Chin C, Chih-Fu Y (2005) Improvement of corrosion properties in an aluminum-sprayed AZ31 magnesium alloy by a post-hot pressing and anodizing treatment. Surf Coat Technol 191:181–187. https://doi.org/10.1016/j.surfcoat.2004.02.035

    CAS  Article  Google Scholar 

  35. Fengyi W, Zhiguang G (2018) Insitu growth of durable superhydrophobic Mg–Al layered double hydroxides nanoplatelets on aluminum alloys for corrosion resistance. J Alloys Compd 767:382–391. https://doi.org/10.1016/j.jallcom.2018.07.086

    CAS  Article  Google Scholar 

  36. Deepa K, Venkatesha TV (2019) Comparative anticorrosion performance of electrochemically produced Zn–NiO and Zn–NiO–ZrO2 composite coatings on mild steel. Surf Eng Appl Electrochem 55:317–323. https://doi.org/10.3103/S1068375519030050

    Article  Google Scholar 

  37. Ibrahim M, Kannan K, Hemalatha P, Shady E, Omar S, Mohammad I, Ranin Z, Kishor Kumar S (2020) Enhanced corrosion protection of epoxy/ZnO-NiO nanocomposite coatings on steel. Coatings 10:783. https://doi.org/10.3390/coatings10080783

    CAS  Article  Google Scholar 

  38. Esmaiel N, Mohammad S, Hamid Reza R, Fatemeh T (2011) Investigation of structural evolution and electrochemical behaviour of zirconia thin films on the 316L stainless steel substrate formed via sol–gel process. Surf Coat Technol 205:5109–5115. https://doi.org/10.1016/j.surfcoat.2011.05.024

    CAS  Article  Google Scholar 

  39. Vasudevan D, Senthilkumar D, Surendhiran S (2020) Performance and characterization studies of reduced graphene oxides aqua nanofluids for a pool boiling surface. Int J Thermophys 41:74. https://doi.org/10.1007/s10765-020-02651-6

    CAS  Article  Google Scholar 

  40. Narthana K, Durai G, Kuppusami P, Theerthagiri J, Sujatha S, Jun Lee S, Yong Choi M (2020) One-step synthesis of hierarchical structured nickel-copper sulfide nanorods with improved electrochemical supercapacitor properties. Int J Energy Res 2021:1–16

    Google Scholar 

  41. Kandasamy K, Venkatesh M, Syed Khadar YA, Rajasingh P (2020) One-pot green synthesis of CdS quantum dots using Opuntia ficus-indica fruit sap. Mater Today: Proceedings 26:3503–3506

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Balamurugan or Y. A. Syed Khadar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sudha, M., Surendhiran, S., Gowthambabu, V. et al. Enhancement of Corrosive-Resistant Behavior of Zn and Mg Metal Plates Using Biosynthesized Nickel Oxide Nanoparticles. J Bio Tribo Corros 7, 60 (2021). https://doi.org/10.1007/s40735-021-00492-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00492-w

Keywords

  • Green synthesis
  • NiO NPs
  • Nanoindentation
  • Linear sweep voltammetry
  • Tafel plot
  • Anticorrosive behavior