Skip to main content

Advertisement

Log in

Parametric Study of Accidental Impacts on an Offshore Wind Turbine Composite Blade

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Wind turbine blades are the key components that allow the extraction of energy from the wind; these blades are often subjected to accidental impacts which usually occurs on moving blades with maintenance tools, hail, or flying birds, resulting in a significant degradation of the structural integrity of the blade. In this paper, a numerical simulation is adopted using finite element method (FEM) with ABAQUS software to investigate the mechanical behavior of a GRP composite wind turbine blade under low-velocity impact in operating conditions. On the other hand, damage modeling was formulated based on Hashin criteria for intra-laminar damage to detect failure modes in large wind turbine blade, the sensitive zones, and the size of damaged areas. To investigate this situation, a comparative evaluation was carried out considering many impact scenarios and the main parameters such as the impactor geometry, velocity, and weight. The results are then examined and analyzed, which show that major damage appeared at the tip of the blade and on trailing edge. Furthermore, the impactor geometry affects the type of damage, the weight affects the size of the damaged area, while the impact velocity influences the mechanical response of the composite wind turbine blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

HSNFCCRT:

Hashin criterion for fiber in compression

HSNFTCRT:

Hashin criterion for fiber in tensión

HSNMCCRT:

Hashin criterion for matrix in compression

HSNMTCRT:

Hashin criterion for matrix in tensión

E1 :

Longitudinal Young modulus

E2 :

Transversal Young modulus

E3 :

Young modulus along the thickness

ν12, ν13, ν23 :

Poisson’s ratio

G12 :

Shear modulus in 1–2 plane

G13 :

Shear modulus in 1–3 plane

G23 :

Shear modulus in 2–3 plane

X T :

Longitudinal tensile strength

X C :

Longitudinal compressive strength

Y T :

Transverse tensile strength

Y C :

Transverse compressive strength

S LT :

Longitudinal shear strength

S TT , :

Transverse shear strength

G ft ; G fc ; G mt ; G mc :

Damage evolution coefficients

ALLAE:

Artificial strain energy ALLIE: Total strain energy

ALLSE:

Recoverable strain energy

ALLMD:

Energy dissipated by damage

ALLKE:

Kinetic energy

ETOTAL:

Energy balance

References

  1. Boudounit H, Tarfaoui M, Saifaoui D, Nachtane M (2020) Structural analysis of offshore wind turbine blades using finite element method. Wind Eng 44(2):168–180

    Article  Google Scholar 

  2. Renewable energy benefits leveraging local capacity for offshore wind, https://www.irena.org/publications/2017/May/Leveraging-Local-Capacity-for-OffshoreWind (Consulted le 19 September 2018).

  3. Renewable energy benefits leveraging local capacity for offshore wind, https://www.irena.org/publications/2018/May/Leveraging-Local-Capacity-for-OffshoreWind (Consulted le 19 September 2018).

  4. Schubel PJ, Crossley RJ, Boateng EKG, Hutchinson JR (2013) Review of structural health and cure monitoring techniques for large wind turbine blades. Renew Energy 51:113–123

    Article  Google Scholar 

  5. Schubel PJ, Crossley RJ (2012) Wind turbine blade design. Energies 5(9):3425–3449

    Article  Google Scholar 

  6. Dehouck V, Lateb M, Sacheau J, Fellouah H (2018) Application of the blade element momentum theory to design horizontal axis wind turbine blades. J Sol Energy Eng 140(1):014501

    Article  Google Scholar 

  7. Mulugeta BA, Gerawork A (2017) Aerodynamic design of horizontal axis wind turbine blades. FME Trans 45(4):647–660

    Article  Google Scholar 

  8. Shen X, Zhu X, Du Z (2011) Wind turbine aerodynamics and loads control in wind shear flow. Energy 36(3):1424–1434

    Article  Google Scholar 

  9. Bottasso CL, Campagnolo F, Petrović V (2014) Wind tunnel testing of scaled wind turbine models: beyond aerodynamics. J Wind Eng Ind Aerodyn 127:11–28

    Article  Google Scholar 

  10. Brøndsted P, Lilholt H, Lystrup A (2005) Composite materials for wind power turbine blades. Annu Rev Mater Res 35:505–538

    Article  Google Scholar 

  11. Sørensen BF, Jørgensen E, Debel CP, Jensen FM, Jensen HM, Jacobsen TK, Halling KM (2004) Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1) Summary Report (Risø-R Report). Risø National Laboratory.

  12. Shokrieh MM, Rafiee R (2006) Simulation of fatigue failure in a full composite wind turbine blade. Compos Struct 74(3):332–342

    Article  Google Scholar 

  13. Montesano J, Chu H, Singh CV (2016) Development of a physics-based multi-scale progressive damage model for assessing the durability of wind turbine blades. Compos Struct 141:50–62

    Article  Google Scholar 

  14. Montesano J, McCleave B, Singh CV (2018) Prediction of ply crack evolution and stiffness degradation in multidirectional symmetric laminates under multiaxial stress states. Compos B 133:53–67

    Article  CAS  Google Scholar 

  15. Yang J, Peng C, Xiao J, Zeng J, Xing S, Jin J, Deng H (2013) Structural investigation of composite wind turbine blade considering structural collapse in full-scale static tests. Compos Struct 97:15–29

    Article  Google Scholar 

  16. Overgaard LC, Lund E, Thomsen OT (2010) Structural collapse of a wind turbine blade. Part A: static test and equivalent single layered models. Compos Part A 41(2):257–270

    Article  Google Scholar 

  17. Overgaard LCT, Lund E (2010) Structural collapse of a wind turbine blade. Part B: progressive interlaminar failure models. Compos Part A 41(2):271–283

    Article  Google Scholar 

  18. Kennedy CR, Leen SB, ÓBrádaigh CM (2016) Immersed fatigue performance of glass fibre-reinforced composites for tidal turbine blade applications. J Bio Tribo Corros 2:12. https://doi.org/10.1007/s40735-016-0038-z

    Article  Google Scholar 

  19. Tarfaoui M, Nachtane M, Khadimallah H, Saifaoui D (2017) Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads. Appl Compos Mater 25:1–18

    Google Scholar 

  20. Lin CC, Lee YJ (2004) Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Compos Struct 63(3–4):339–345

    Article  Google Scholar 

  21. Boudounit H, Tarfaoui M, Saifaoui D (2020) Modal analysis for optimal design of offshore wind turbine blades. Mater Today: Proceedings 30:998–1004. https://doi.org/10.1016/j.matpr.2020.04.373

    Article  Google Scholar 

  22. Tarfaoui M, Nachtane M, Boudounit H (2020) Finite element analysis of composite offshore wind turbine blades under operating conditions. J Therm Sci Eng Appl 12(1):4042123

    Article  Google Scholar 

  23. Tarfaoui M, Nachtane M, Shah OR, Boudounit H (2019) Numerical study of the structural static and fatigue strength of wind turbine blades. Mater Today 13:1215–1223

    Google Scholar 

  24. Boudounit H, Tarfaoui M, Saifaoui D (2019) Structural design and analysis of a 5mw offshore wind turbine blades under critical aerodynamic loads. 14th Congress of Mechanics, April 16–19, 2019 (Rabat, MOROCCO)

  25. Boudounit H, Tarfaoui M, Saifaoui D (2017) Étude numérique d’une pale composite d’une éolienne flottante en service. 13ème Congrès de mécanique - CMM, Apr 2017, Meknès, Maroc. ffhal-01730071

  26. Boudounit H, Saifaoui D (2020) Wind farm design approach: feasibility and optimization study-case of the Dakhla site in Morocco. J Appl Sci Environ Stud 3(1):26–36

    Google Scholar 

  27. Nachtane M, Tarfaoui M, El Moumen A, Saifaoui D (2017) Damage prediction of horizontal axis marine current turbines under hydrodynamic, hydrostatic and impacts loads. Compos Struct 170:146–157

    Article  Google Scholar 

  28. Nachtane M, Tarfaoui M, Saifaoui D, El Moumen A, & Boudounit H (2017) Caractérisation mécanique d'une hydrolienne en matériau composite dans un environnement marin.

  29. Geubelle PH, Baylor JS (1998) Impact-induced delamination of composites: a 2D simulation. Compos B 29(5):589–602

    Article  Google Scholar 

  30. E. Trousset (2013) Prévision des dommages d'impact basse vitesse et basse énergie dans les composites à matrice organique stratifiés. Thèse de doctorat, Ecole nationale supérieure d'arts et métiers-ENSAM.

  31. Hamitouche L, Tarfaoui M, Vautrin A (2008) An interface debonding law subject to viscous regularization for avoiding instability: application to the delamination problems. Eng Fract Mech 75(10):3084–3100

    Article  Google Scholar 

  32. Pugh K, Rasool G, Stack MM (2018) Some thoughts on mapping tribological issues of wind turbine blades due to effects of onshore and offshore raindrop erosion. J Bio Tribo Corros 4:50. https://doi.org/10.1007/s40735-018-0165-9

    Article  Google Scholar 

  33. Pugh K, Rasool G, Stack MM (2019) Raindrop erosion of composite materials: some views on the effect of bending stress on erosion mechanisms. J Bio Tribo Corros 5:45. https://doi.org/10.1007/s40735-019-0234-8

    Article  Google Scholar 

  34. Ahamed RAR, Johnstone CM, Stack MM (2016) Impact angle effects on erosion maps of GFRP: applications to tidal turbines. J Bio Tribo Corros 2:14. https://doi.org/10.1007/s40735-016-0044-1

    Article  Google Scholar 

  35. Abrate S (2001) Modeling of impacts on composite structures. Compos Struct 51(2):129–138

    Article  Google Scholar 

  36. Davies GAO, Zhang X (1995) Impact damage prediction in carbon composite structures. Int J Impact Eng 16:149–170

    Article  Google Scholar 

  37. Davies GAO, Olsson R (2004) Impact on composite structures. Aeronaut J 108:541–563

    Article  Google Scholar 

  38. Olsson R (2000) Mass criterion for wave controlled impact response of composite plates. Compos A 31(8):879–887

    Article  Google Scholar 

  39. Mitrevski T, Marshall I, Thomson R (2006) The influence of impactor shape on the damage to composite laminates. Compos Struct 76(1):116–122

    Article  Google Scholar 

  40. Yamada SE, Sun CT (1978) Analysis of laminate strength and its distribution. J Compos Mater 12:275–284

    Article  Google Scholar 

  41. L. J. Hart-Smith (1989) A new approach to fibrous composite laminate strength prediction. eighth DOD/NASA/FAA conference on fibrous composites in structural design, NASA CP-3087, Part 2, pp. 663–693. 3.

  42. Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47(329–334):4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Boudounit.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudounit, H., Tarfaoui, M., Saifaoui, D. et al. Parametric Study of Accidental Impacts on an Offshore Wind Turbine Composite Blade. J Bio Tribo Corros 7, 33 (2021). https://doi.org/10.1007/s40735-021-00473-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00473-z

Keywords

Navigation