A Review of Graphene-Based Materials for Marine Corrosion Protection

Abstract

Graphene-based anti-corrosion materials exhibit excellent chemical inertness and impermeability and are promising and emerging materials for the protection of metals. In this review, the recent progress in the production of graphene-based materials for protection against marine corrosion is discussed. Major mechanisms of marine corrosion and strategies for corrosion protection are illustrated. The properties and methods used for the preparation (micromechanical stripping method and chemical vapor deposition) of graphene are introduced. Two fabrication strategies for graphene-based corrosion protection materials are presented. For pure graphene films, fewer defects and low conductivity lead to the enhancement of anti-corrosion properties. For graphene composite coatings, improving the dispersibility of graphene in the coating matrix and strengthening the durability render graphene coatings to be more effective for marine corrosion protection. Insulation is highly desirable for avoiding electrochemical reactions to protect against heavy marine corrosion in the later stages. Finally, we provide perspectives on the future of graphene-based materials for marine corrosion protection, anticipating that a properly prepared graphene composite coating can serve as a long-term anti-corrosive material for marine applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Chandler KA (1985) Marine and offshore corrosion. Butterworths, London

    Google Scholar 

  2. 2.

    Hou B, Li X, Ma X et al (2017) The cost of corrosion in China. Npj Materi Degrad 1(1):1–10

    Article  Google Scholar 

  3. 3.

    Li X, Zhang D, Liu Z, Li Z et al (2015) Share corrosion data. Nature 527:441–442

    CAS  Article  Google Scholar 

  4. 4.

    Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  Article  Google Scholar 

  5. 5.

    Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  Article  Google Scholar 

  6. 6.

    Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    CAS  Article  Google Scholar 

  7. 7.

    Geim AK, Novoselov KS (2010) The rise of graphene. Nat Commun 6:183–191

    Google Scholar 

  8. 8.

    Cui G, Bi Z, Zhang R et al (2019) A comprehensive review on graphene-based anti-corrosive coatings. Chem Eng J 373:104–121

    CAS  Article  Google Scholar 

  9. 9.

    Wiener MS, Salas BV (2005) Corrosion of the marine infrastructure in polluted seaports. Corros Eng Sci Technol 40(2):137–142

    CAS  Article  Google Scholar 

  10. 10.

    Garescì F (2012) Static and dynamic analysis of bonded sandwich plates. Int J Adhes Adhes 33:7–14

    Article  CAS  Google Scholar 

  11. 11.

    Abd El-Lateef HM et al (2012) Corrosion protection of steel pipelines against CO2 corrosion-a review. Chem J 2(2):52–63

    CAS  Article  Google Scholar 

  12. 12.

    Sun C et al (2016) Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system. Corros Sci 107:193–203

    CAS  Article  Google Scholar 

  13. 13.

    Zheng Y, Brown B, Nešić S (2014) Electrochemical study and modeling of H2S corrosion of mild steel. Corrosion 70(4):351–365

    CAS  Article  Google Scholar 

  14. 14.

    Wang Y, Wharton JA, Shenoi RA (2014) Ultimate strength analysis of aged steel-plated structures exposed to marine corrosion damage: a review. Corros Sci 86:42–60

    CAS  Article  Google Scholar 

  15. 15.

    Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80(4):1226–1236

    Article  CAS  Google Scholar 

  16. 16.

    Venzlaff H et al (2013) Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66:88–96

    CAS  Article  Google Scholar 

  17. 17.

    Enning D et al (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14(7):1772–1787

    CAS  Article  Google Scholar 

  18. 18.

    Chen S, Wang P, Zhang D (2014) Corrosion behavior of copper under biofilm of sulfate-reducing bacteria. Corros Sci 87:407–415

    CAS  Article  Google Scholar 

  19. 19.

    Niu XL, Chen CP (2019) Research progress of corrosion protection of steel structure in marine engineering. Ship Eng 41(4):100–103

    Google Scholar 

  20. 20.

    Zou Y, Wang J, Zheng YY (2011) Electrochemical techniques for determining corrosion rate of rusted steel in seawater. Corros Sci 53(1):208–216

    CAS  Article  Google Scholar 

  21. 21.

    AlAbbas FM et al (2013) The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel. Eng Fail Anal 33:222–235

    CAS  Article  Google Scholar 

  22. 22.

    Zhao X, Liu S, Hou BR (2014) A comparative study of neat epoxy coating and Nano ZrO2/epoxy coating for corrosion protection on carbon steel. Appl Mech Mater 599:3–6

    Google Scholar 

  23. 23.

    Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2(7):457–460

    CAS  Article  Google Scholar 

  24. 24.

    Liu M, Wang S, Jiang L (2017) Nature-inspired superwettability systems. Nat Rev Mater 2(7):17036–17052

    CAS  Article  Google Scholar 

  25. 25.

    Webb HK, Crawford RJ, Ivanova EP (2014) Wettability of natural superhydrophobic surfaces. Adv Colloid Interface Sci 210:58–64

    CAS  Article  Google Scholar 

  26. 26.

    Cao F, Song GL, Atrens A (2016) Corrosion and passivation of magnesium alloys. Corros Sci 111:835–845

    CAS  Article  Google Scholar 

  27. 27.

    Noh J, Laycock N, Gao W, Wells D (2000) Effects of nitric acid passivation on the pitting resistance of 316 stainless steel. Corros Sci 42:2069–2084

    CAS  Article  Google Scholar 

  28. 28.

    Zhao J et al (2016) Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel. Appl Surf Sci 386:371–380

    CAS  Article  Google Scholar 

  29. 29.

    Parsons S et al (2019) Green chemistry for stainless steel corrosion resistance: life cycle assessment of citric acid versus nitric acid passivation. Mater Today Sustain 3:100005–1000013

    Article  Google Scholar 

  30. 30.

    Quiambao KF et al (2019) Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions. Acta Mater 164:362–376

    CAS  Article  Google Scholar 

  31. 31.

    Ma J, Wen J (2010) Corrosion analysis of Al–Zn–In–Mg–Ti–Mn sacrificial anode alloy. J Alloys Compd 496(1–2):110–115

    CAS  Article  Google Scholar 

  32. 32.

    Bu Y, Ao JP (2017) A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy Environ 2(4):331–362

    Article  Google Scholar 

  33. 33.

    Pedeferri P (1996) Cathodic protection and cathodic prevention. Constr Build Mater 10(5):391–402

    Article  Google Scholar 

  34. 34.

    Refait P et al (2015) Corrosion and cathodic protection of carbon steel in the tidal zone: products, mechanisms and kinetics. Corros Sci 90:375–382

    CAS  Article  Google Scholar 

  35. 35.

    Loto CA, Loto RT, Popoola AP (2019) Cathodic protection performance evaluation of magnesium anodes on mild steel corrosion in 0.5 M H2SO4 and seawater environments. J Bio- Tribo- Corros 5(3):72–78

    Article  Google Scholar 

  36. 36.

    Momeni MM, Ghayeb Y, Moosavi N (2018) Preparation of Ni–Pt/Fe–TiO2 nanotube films for photoelectrochemical cathodic protection of 403 stainless steel. Nanotechnology 29(42):425701–425709

    Article  CAS  Google Scholar 

  37. 37.

    Peierls RE (1935) Quelques proprietes typiques des corpses solides. Ann I H Poincare 5:177–222

    Google Scholar 

  38. 38.

    Stankovich S et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    CAS  Article  Google Scholar 

  39. 39.

    Ding R et al (2018) A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J Alloys Compd 764:1039–1055

    CAS  Article  Google Scholar 

  40. 40.

    Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6):064120–064126

    Article  CAS  Google Scholar 

  41. 41.

    Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    CAS  Article  Google Scholar 

  42. 42.

    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758

    CAS  Article  Google Scholar 

  43. 43.

    Böhm S (2014) Graphene against corrosion. Nat Nanotechnol 9:741–742

    Article  CAS  Google Scholar 

  44. 44.

    Huh JH et al (2014) Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating. Nanoscale 6(8):4379–4386

    CAS  Article  Google Scholar 

  45. 45.

    Halkjær S et al (2019) Low-temperature synthesis of a graphene-based, corrosion-inhibiting coating on an industrial grade alloy. Corros Sci 152:1–9

    Article  CAS  Google Scholar 

  46. 46.

    Kang J et al (2012) Graphene transfer: key for applications Nanoscale 4(18):5527–5537

    CAS  Google Scholar 

  47. 47.

    Jayasena B, Subbiah S (2011) A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett 6(1):95–101

    Article  CAS  Google Scholar 

  48. 48.

    Chen J, Duan M, Chen G (2012) Continuous mechanical exfoliation of graphene sheets via three-roll mill. J Mater Chem 22(37):19625–19628

    CAS  Article  Google Scholar 

  49. 49.

    Reina A et al (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35

    Article  CAS  Google Scholar 

  50. 50.

    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    CAS  Article  Google Scholar 

  51. 51.

    Shi L et al (2017) Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes. Nano Lett 17(6):3681–3687

    CAS  Article  Google Scholar 

  52. 52.

    Xu J et al (2017) Fast batch production of high-quality graphene films in a sealed thermal molecular movement system. Small 13(27):1700651–1700662

    Article  CAS  Google Scholar 

  53. 53.

    Böhm S (2014) Graphene against corrosion. Nat Nanotechnol 9(10):741–742

    Article  CAS  Google Scholar 

  54. 54.

    Chen S et al (2011) Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5(2):1321–1327

    CAS  Article  Google Scholar 

  55. 55.

    Raman RKS, Tiwari A (2014) Graphene: The thinnest known coating for corrosion protection. Jom 66(4):637–642

    Article  CAS  Google Scholar 

  56. 56.

    Wang B et al (2016) Graphene coatings as barrier layers to prevent the water-induced corrosion of silicate glass. ACS Nano 10(11):9794–9800

    CAS  Article  Google Scholar 

  57. 57.

    Huang WH et al (2018) Low-temperature CVD graphene nanostructures on Cu and their corrosion properties. Materials 11(10):1989–1998

    Article  CAS  Google Scholar 

  58. 58.

    Prasai D et al (2012) Graphene: corrosion-inhibiting coating. ACS Nano 6(2):1102–1108

    CAS  Article  Google Scholar 

  59. 59.

    Kirkland NT, Schiller T, Medhekar N, Birbilis N (2012) Exploring graphene as a corrosion protection barrier. Corros Sci 56:1–4

    CAS  Article  Google Scholar 

  60. 60.

    Schriver M et al (2013) Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7(7):5763–5768

    CAS  Article  Google Scholar 

  61. 61.

    Zhou F et al (2013) Enhanced room-temperature corrosion of copper in the presence of graphene. ACS Nano 7(8):6939–6947

    CAS  Article  Google Scholar 

  62. 62.

    Wlasny I et al (2013) Role of graphene defects in corrosion of graphene-coated Cu (111) surface. Appl Phys Lett 102(11):111601–111604

    Article  CAS  Google Scholar 

  63. 63.

    Stoot AC et al (2015) Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell. J Power Sources 293:846–851

    CAS  Article  Google Scholar 

  64. 64.

    Wu Y et al (2019) Excellent corrosion resistance of graphene coating on copper due to the low defect overlapping structure. Surf Topography 7(1):015014–015026

    CAS  Google Scholar 

  65. 65.

    Hsieh YP et al (2013) Complete corrosion inhibition through graphene defect passivation. ACS Nano 8(1):443–448

    Article  CAS  Google Scholar 

  66. 66.

    Dai HJ, Wang XR, Tabakman SM (2008) Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc 130:8152–8153

    Article  CAS  Google Scholar 

  67. 67.

    Li Y et al (2009) Spin gapless semiconductor− metal− half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3(7):1952–1958

    CAS  Article  Google Scholar 

  68. 68.

    Ren S et al (2018) N-doping of graphene: toward long-term corrosion protection of Cu. J Mater Chem A 6(47):24136–24148

    CAS  Article  Google Scholar 

  69. 69.

    Cui C, Lim ATO, Huang J (2017) A cautionary note on graphene anti-corrosion coatings. Nat Nanotechnol 12(9):834–835

    CAS  Article  Google Scholar 

  70. 70.

    Chang CH et al (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50(14):5044–5051

    CAS  Article  Google Scholar 

  71. 71.

    Li Y et al (2014) Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. J Mater Chem A 2(34):14139–14145

    CAS  Article  Google Scholar 

  72. 72.

    Röding M et al (2017) Computational screening of diffusive transport in nanoplatelet-filled composites: use of graphene to enhance polymer barrier properties. ACS Appl Nano Mater 1(1):160–167

    Article  CAS  Google Scholar 

  73. 73.

    Cheng J et al (2020) Corrosion-and wear-resistant composite film of graphene and mussel adhesive proteins on carbon steel. Corros Sci 164:108351

    CAS  Article  Google Scholar 

  74. 74.

    Liu S et al (2016) Corrosion resistance of graphene-reinforced waterborne epoxy coatings. J Mater Sci Technol 32(5):425–431

    CAS  Article  Google Scholar 

  75. 75.

    Ding JH et al (2018) A long-term anticorrsive coating through graphene passivation. Carbon 138:197–206

    CAS  Article  Google Scholar 

  76. 76.

    Chen C et al (2017) Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114:356–366

    CAS  Article  Google Scholar 

  77. 77.

    Huang L et al (2014) Core–shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J Mater Chem A 2(43):18246–18255

    CAS  Article  Google Scholar 

  78. 78.

    Cui M et al (2019) Poly (o-phenylenediamine) modified graphene toward the reinforcement in corrosion protection of epoxy coatings. Corros Sci 159:108131–108143

    CAS  Article  Google Scholar 

  79. 79.

    Qiu S et al (2017) Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 35% NaCl solution. ACS Appl Mater Interfaces 9(39):34294–34304

    CAS  Article  Google Scholar 

  80. 80.

    Kinlen PJ, Ding Y, Silverman DC (2002) Corrosion protection of mild steel using sulfonic and phosphonic acid-doped polyanilines. Corrosion 58:490–497

    CAS  Article  Google Scholar 

  81. 81.

    Radhakrishnan S, Sonawane N, Siju CR (2009) Epoxy powder coatings containing polyaniline for enhanced corrosion protection. Prog Org Coat 64:383–386

    CAS  Article  Google Scholar 

  82. 82.

    Ye Y, Zhang D, Liu T et al (2019) Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene. Carbon 142:164–176

    CAS  Article  Google Scholar 

  83. 83.

    Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    CAS  Article  Google Scholar 

  84. 84.

    Sahu SC et al (2013) A facile electrochemical approach for development of highly corrosion protective coatings using graphene nanosheets. Electrochem Commun 32:22–26

    CAS  Article  Google Scholar 

  85. 85.

    Xie Y et al (2017) A fast, low temperature zinc phosphate coating on steel accelerated by graphene oxide. Corros Sci 128:1–8

    CAS  Article  Google Scholar 

  86. 86.

    Hou W et al (2020) Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Mater Today Commun 23:100883

    CAS  Article  Google Scholar 

  87. 87.

    Park JH, Park JM (2014) Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application. Surf Coat Technol 254:167–174

    CAS  Article  Google Scholar 

  88. 88.

    Singh BP et al (2013) Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper. Surf Coat Technol 232:475–481

    CAS  Article  Google Scholar 

  89. 89.

    Zheng H et al (2017) Reinforcing the corrosion protection property of epoxy coating by using graphene oxide–poly(urea–formaldehyde) composites. Corros Sci 123:267–277

    CAS  Article  Google Scholar 

  90. 90.

    Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M (2018) Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel. Corros Sci 137:111–126

    CAS  Article  Google Scholar 

  91. 91.

    Shuai C et al (2019) 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties. Compos B 162:611–620

    CAS  Article  Google Scholar 

  92. 92.

    Mondal J et al (2016) Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel. Corros Sci 105:161–169

    CAS  Article  Google Scholar 

  93. 93.

    Singh BP et al (2013) The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 61:47–56

    CAS  Article  Google Scholar 

  94. 94.

    Qi K et al (2015) A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite. Corros Sci 98:500–506

    CAS  Article  Google Scholar 

  95. 95.

    Yu YH et al (2014) High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym Chem 5(2):535–550

    CAS  Article  Google Scholar 

  96. 96.

    Ramezanzadeh B, Ahmadi A, Mahdavian M (2016) Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros Sci 109:182–205

    CAS  Article  Google Scholar 

  97. 97.

    Cao X et al (2019) Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection. Corros Sci 159:108120–108131

    CAS  Article  Google Scholar 

  98. 98.

    Rekha MY, Srivastava C (2019) Microstructure and corrosion properties of zinc-graphene oxide composite coatings. Corros Sci 152:234–248

    Article  CAS  Google Scholar 

  99. 99.

    Sun W et al (2015) Inhibiting the corrosion-promotion activity of graphene. Chem Mater 27(7):2367–2373

    CAS  Article  Google Scholar 

  100. 100.

    Zhou S et al (2019) Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate. Mater Des 169:107694–1076105

    CAS  Article  Google Scholar 

  101. 101.

    Dou W, Wu J, Gu T, Wang P, Zhang D (2018) Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion. Corros Sci 131:156–163

    CAS  Article  Google Scholar 

  102. 102.

    Zhu H, Hu W, Zhao S et al (2020) Flexible and thermally stable superhydrophobic surface with excellent anti-corrosion behavior. J Mater Sci 55(5):2215–2225

    CAS  Article  Google Scholar 

  103. 103.

    Zhang B, Li J, Zhao X et al (2016) Biomimetic one step fabrication of manganese stearate superhydrophobic surface as an efficient barrier against marine corrosion and Chlorella vulgaris-induced biofouling. Chem Eng J 306:441–451

    CAS  Article  Google Scholar 

  104. 104.

    Nine MJ et al (2015) Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl Mater Interfaces 7(51):28482–28493

    CAS  Article  Google Scholar 

  105. 105.

    Ye Y et al (2019) One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corros Sci 147:9–21

    CAS  Article  Google Scholar 

  106. 106.

    Sherar BWA, Power IM, Keech PG et al (2011) Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corros Sci 53(3):955–960

    CAS  Article  Google Scholar 

  107. 107.

    Beech IB, Sunner JA, Arciola CR et al (2006) Microbially-influenced corrosion: damage to prostheses, delight for bacteria. Int J Artif Organs 29(4):443–452

    CAS  Article  Google Scholar 

  108. 108.

    Guezennec JG (1994) Cathodic protection and microbially induced corrosion. Int Biodeterior Biodegrad 34(3–4):275–288

    CAS  Article  Google Scholar 

  109. 109.

    Krishnamurthy A et al (2013) Passivation of microbial corrosion using a graphene coating. Carbon 56:45–49

    CAS  Article  Google Scholar 

  110. 110.

    Krishnamurthy A, Gadhamshetty V, Mukherjee R et al (2013) Passivation of microbial corrosion using a graphene coating. Carbon 56:45–49

    CAS  Article  Google Scholar 

  111. 111.

    Krishnamurthy A, Gadhamshetty V, Mukherjee R et al (2015) Superiority of graphene over polymer coatings for prevention of microbially induced corrosion. Sci Rep 5(1):1–12

    Article  Google Scholar 

  112. 112.

    Chae K et al (2010) Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresour Technol 101:5350–5357

    CAS  Article  Google Scholar 

  113. 113.

    Li K, Whitfield M, Van Vliet KJ (2013) Beating the bugs: roles of microbial biofilms in corrosion. Corros Rev 31:1–25

    Article  CAS  Google Scholar 

  114. 114.

    Chilkoor G et al (2020) Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon 159:586–597

    CAS  Article  Google Scholar 

  115. 115.

    Tamilarasan TR et al (2017) Effect of reduced graphene oxide (rGO) on corrosion and erosion-corrosion behaviour of electroless Ni-P coatings. Wear 390:385–391

    Article  CAS  Google Scholar 

  116. 116.

    Rana ARK, Farhat Z (2020) Preparation & tribological characterization of graphene enriched Ni-P coatings on X70 pipelne steel [C]//NACE International Corrosion Conference Proceedings. NACE International: 1–15.

  117. 117.

    Rana ARK, Islam MA, Farhat Z (2020) Effect of graphene nanoplatelets (GNPs) addition on erosion–corrosion resistance of electroless Ni–P Coatings. J Bio Tribo-Corrosion 6:11–24

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51805292, 51425502).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pengpeng Bai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, G., Bai, P. & Tian, Y. A Review of Graphene-Based Materials for Marine Corrosion Protection. J Bio Tribo Corros 7, 27 (2021). https://doi.org/10.1007/s40735-020-00456-6

Download citation

Keywords

  • Marine engineering
  • Corrosion protection
  • Graphene film
  • Graphene coating