Skip to main content
Log in

Study on Influence of Friction on Process Parameters in Tube Hydroforming

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

This work presents a new analytical method to estimate COF in THF using tube-upsetting method. Mathematical model presented in Rudraksha and Gawande (J Bio- and Tribo-Corros 3(4): 1–13, 2017. https://doi.org/10.1007/s40735-017-9) is used to estimate COF in tube hydroforming. From investigations, it is observed that COF can be determined using geometrical parameters of the given tube, optimized pressure, and thickness of tube. In this paper, influence of friction on different process parameters such as material properties, geometrical parameters and variation in thickness of tube has been analyzed theoretically and experimentally. The proposed method is verified by analytical and experimental approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Plancak M, Vollertsen F, Woitschig J (2005) Analysis, finite element simulation and experimental investigation of friction in tube hydroforming. J Mater Process Technol 170:220–228

    Article  CAS  Google Scholar 

  2. Ngail G, Gariety M, Altan T (2006) Enhancing tribological conditions in tube hydroforming by using textured tubes. J Tribol 128:674–680

    Article  Google Scholar 

  3. Rudraksha SP, Gawande SH (2017) Optimization of process parameters to study the influence of the friction in tube hydroforming. J Bio- and Tribo-Corros 3(4):1–13. https://doi.org/10.1007/s40735-017-9

    Article  Google Scholar 

  4. Fuchizawa S (1984) Influence of strain hardening exponent on the deformation of thin-walled tube of finite length subjected to hydrostatic internal pressure. Int Proc Conf Adv Technol Plast 1:297–302

    Google Scholar 

  5. Orban H, JackHu S (2007) Analytical modeling of wall thinning during corner filling in structural tube hydroforming. J Mater Process Technol 194(1–3):7–14. https://doi.org/10.1016/j.jmatprotec.2007.03.112

    Article  CAS  Google Scholar 

  6. Kridli GT, Bao PLP, Mallick PK, Tian Y (2003) Investigation of thickness variation and corner filling in tube hydroforming. J Mater Process Technol 133(3):287–296

    Article  Google Scholar 

  7. Lianfa Y, Cheng G (2008) Determination of stress–strain relationship of tubular material with hydraulic bulge test. Thin-Walled Struct 46(2):147–154

    Article  Google Scholar 

  8. Muammer K, Eren B, Ömer Necati C (2011) An experimental study on the comparative assessment of hydraulic bulge test analysis methods. Mater Des 32(1):272–281

    Article  Google Scholar 

  9. Kwan C-T, Lin F-C (2003) Investigation of T-shape tube hydroforming with finite element method. Int J Adv Manuf Technol 21(6):420–425

    Article  Google Scholar 

  10. Tirosh J, Neuberger A, Shirizly A (1996) On tube expansion by internal fluid pressure with additional compressive stress. Int J Mech Sci 38(8–9):839–851. https://doi.org/10.1016/0020-7403(95)00113-1

    Article  Google Scholar 

  11. Carleer B, Van der Kevie G, de Winter L, Van Veldhuizen B (2000) Analysis of the effect of material properties on the hydroforming process of tubes. J Mater Process Technol 104:158–166

    Article  Google Scholar 

  12. Shi Y, Jin H, Wu PD, Lloyd DJ (2017) Effects of superimposed hydrostatic pressure on necking and fracture of the tube under hydroforming. Int J Solids Struct 113(114):209–217

    Article  Google Scholar 

  13. Muammer K, Allen T, Suwat J, Altan T (2000) The use of FEA and design of experiments to establish design guidelines for simple hydroformed parts. Int J Mach Tools Manuf 40(15):2249–2266

    Article  Google Scholar 

  14. Chen F, Wang S, Lin R (2007) A study of forming pressure in the tube-hydroforming process. J Mater Process Technol. 192–193:404–440

    Article  Google Scholar 

  15. Kim S, Kim Y (2002) Analytical study for tube hydroforming. J Mater Process Technol 128:232–239

    Article  Google Scholar 

  16. Jansson M, Nilsson L, Simonsson K (2007) On process parameter estimation for the tube hydroforming process. J Mater Process Technol 190(1–3):1–11. https://doi.org/10.1016/j.jmatprotec.2007.02.050

    Article  CAS  Google Scholar 

  17. Nikhare C, Weiss M, Hodgson PD (2017) Buckling in low pressure tube hydroforming. J Manuf Process 28:1–10

    Article  Google Scholar 

  18. Kang BH, Lee MY, Shon SM, Moon YH (2005) Forming various shapes of tubular bellows using a single-step hydroforming process. J Mater Process Technol 160:24–33

    Article  Google Scholar 

  19. Manabe K, Amino M (2002) Effects of process parameters and material properties on deformation process in tube hydroforming. J Mater Process Technol 123:285–291

    Article  CAS  Google Scholar 

  20. Limb ME, Chakrabarty J, Garber S, Mellor B (1973) The forming of axisymmetric and asymmetric components from tube. In: Proceedings of the 14th International MTDR Conference, Palgrave, London, pp. 799–805. https://doi.org/10.1007/978-1-349-01921-2_102

  21. Ngaile G, Jaeger S, Altan T (2004) Lubrication in tube hydroforming (THF) part II. Performance evaluation of lubricants using LDH test and pear-shaped tube expansion test. J Mater Process Technol 146:116–123

    Article  CAS  Google Scholar 

  22. Ngaile G, Jaeger S, Altan T (2004) Lubrication in tube hydroforming (THF) Part I. Lubrication mechanism and development of model tests to evaluate lubricants and die coatings in the transition and expansion zones. J Mater Process Technol 146(11):108–115. https://doi.org/10.1016/S0924-0136(03)00850-1

    Article  CAS  Google Scholar 

  23. Lee BH, Keum YT, Wagoner RH (2002) Modeling of the friction caused by lubrication and surface roughness in sheet metal forming. J Mater Process Technol 130–131:60–63

    Article  Google Scholar 

  24. Hwang YM, Huang LS (2005) Friction test in tube hydroforming. Proc Inst Mech Eng B J Eng Manuf 219(8):587–593. https://doi.org/10.1243/095440505X32517

    Article  CAS  Google Scholar 

  25. Rudraksha SP, Gawande SH (2020) Influence of lubricants on coefficient of friction in tube hydroforming. J Bio- and Tribo-Corros 6(1):1–14. https://doi.org/10.1007/s40735-019-0309-6

    Article  Google Scholar 

  26. He Z, Yuan S, Yuan S, Li L, Fan X (2012) Reduction of friction in the guiding zone during tube hydroforming. Proc Inst Mech Eng B J Eng Manuf 226(7):1275–1280

    Article  Google Scholar 

  27. Venkateshwar Reddy P, Veerabhadra Reddy B, Janaki Ramulu P (2020) An investigation on tube hydroforming process considering the effect of frictional coefficient and corner radius. Adv Mater Process Technol 6(1):84–103

    Google Scholar 

Download references

Funding

This work is not supported fully or partially by any funding organization or agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Gawande.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudraksha, S.P., Gawande, S.H. Study on Influence of Friction on Process Parameters in Tube Hydroforming. J Bio Tribo Corros 6, 82 (2020). https://doi.org/10.1007/s40735-020-00374-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00374-7

Keywords

Navigation