An Investigation on Hot Corrosion Behaviour of Cermet Coatings in Simulated Boiler Environment

  • Amandeep Singh
  • Khushdeep GoyalEmail author
  • Rakesh Goyal


In this research work, hot corrosion behaviour of different Cr3C2–NiCr coatings has been investigated. The coatings were deposited on commercially available boiler tube steel with high velocity oxy fuel thermal spraying technique. The uncoated and coated specimens were exposed to elevated temperature in a silicon tube furnace at 700 °C in molten salt environment. The thermogravimetric technique was used to compare the corrosion resistance of different coatings for 50 cycles at high temperature. The microstructures of exposed specimens were evaluated with X-ray diffraction and scanning electron microscopy with elemental compositional analysis. 10Cr3C2–90NiCr and 20Cr3C2–80NiCr coatings provided the higher resistance to corrosion as compared to 100NiCr and 35Cr3C2–65NiCr. The formation of chromium carbide layer on the coated surface and this layer protect them from corrosion.


Corrosion Boiler Steel Coating Temperature 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Singh G, Goyal K, Bhatia R (2018) Hot corrosion studies of plasma-sprayed chromium oxide coatings on boiler tube steel at 850 °C in simulated boiler environment. Iran J Sci Technol Trans Mech Eng 42(2):149CrossRefGoogle Scholar
  2. 2.
    Saladi S, Menghani JV, Prakash S (2015) Characterization and evaluation of cyclic hot corrosion resistance of detonation-gun sprayed Ni-5 Al coatings on inconel-718. J Therm Spray Technol 24(5):778CrossRefGoogle Scholar
  3. 3.
    Dobrzański L, Lukaszkowicz K, Zarychta A, Cunha L (2005) Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate. J Mater Process Technol 164:816CrossRefGoogle Scholar
  4. 4.
    Goyal K, Singh H, Bhatia R (2016) Current status of thermal spray coatings for high temperature corrosion resistance of boiler steel. J Mater Metall Eng 6(1):29Google Scholar
  5. 5.
    Zhou W, Zhou K, Li Y, Deng C, Zeng K (2017) High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings. Appl Surf Sci 416:33CrossRefGoogle Scholar
  6. 6.
    Goyal K, Singh H, Bhatia R (2018) Effect of carbon nanotubes on properties of ceramics based composite coatings. Adv Eng Forum 26:53CrossRefGoogle Scholar
  7. 7.
    Chatha SS, Sidhu HS, Sidhu BS (2016) Performance of 75Cr3C2-25NiCr coating produced by HVOF process in a coal-fired thermal power plant. Adv Mater Res 1137:88CrossRefGoogle Scholar
  8. 8.
    Goyal K, Singh H, Bhatia R (2018) Mechanical and microstructural properties of carbon nanotubes reinforced chromium oxide coated boiler steel. World J Eng 15(4):429CrossRefGoogle Scholar
  9. 9.
    Kaur M, Singh H, Prakash S (2009) High-temperature corrosion studies of HVOF-sprayed Cr3C2-NiCr coating on SAE-347H boiler steel. J Therm Spray Technol 18(4):619CrossRefGoogle Scholar
  10. 10.
    Chatha SS, Sidhu HS, Sidhu BS (2012) High temperature hot corrosion behaviour of NiCr and Cr3C2–NiCr coatings on T91 boiler steel in an aggressive environment at 750 °C. Surf Coat Technol 206(19–20):3839CrossRefGoogle Scholar
  11. 11.
    Kaewsai D, Watcharapasorn A, Singjai P, Wirojanupatump S, Niranatlumpong P, Jiansirisomboon S (2010) Thermal sprayed stainless steel/carbon nanotube composite coatings. Surf Coat Technol 205(7):2104CrossRefGoogle Scholar
  12. 12.
    Goyal K, Singh H, Bhatia R (2019) Behaviour of carbon nanotubes-Cr2O3 thermal barrier coatings in actual boiler. Surf Eng. CrossRefGoogle Scholar
  13. 13.
    Hemmati A, Soltanieh S, Masoudpanah S (2018) On the Interaction between erosion and corrosion in chromium carbide coating. J Bio Tribo-Corros 4(1):10CrossRefGoogle Scholar
  14. 14.
    Rezakhani D (2007) Corrosion behaviours of several thermal spray coatings used on boiler tubes at elevated temperatures. Anticorros Methods Mater 54(4):237CrossRefGoogle Scholar
  15. 15.
    Maiti A, Mukhopadhyay N, Raman R (2007) Effect of adding WC powder to the feedstock of WC–Co–Cr based HVOF coating and its impact on erosion and abrasion resistance. Surf Coat Technol 201(18):7781CrossRefGoogle Scholar
  16. 16.
    Singh H, Puri D, Prakash S (2005) Some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy. Surf Coat Technol 192(1):27CrossRefGoogle Scholar
  17. 17.
    Chawla V, Puri D, Prakasha S, Chawla A, Sidhu BS (2009) Characterization and comparison of corrosion behavior of nanostructured TiAlN and AlCrN coatings on superfer 800H (INCOLOY 800 H) substrate. J Miner Mater Charact Eng 8(09):715Google Scholar
  18. 18.
    Sidhu VPS, Goyal K, Goyal R (2017) Comparative study of corrosion behaviour of HVOF-coated boiler steel in actual boiler environment of a thermal power plant. J Aust Ceram Soc 53(2):925CrossRefGoogle Scholar
  19. 19.
    Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37(10):891CrossRefGoogle Scholar
  20. 20.
    da Silva F, Bedoya J, Dosta S, Cinca N, Cano I, Guilemany J et al (2017) Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel. Corros Sci 114:57CrossRefGoogle Scholar
  21. 21.
    Doolabi MS, Ghasemi B, Sadrnezhaad S, Habibollahzadeh A, Jafarzadeh K (2017) Hot corrosion behavior and near-surface microstructure of a “low-temperature high-activity Cr-aluminide” coating on inconel 738LC exposed to Na2SO4, Na2SO4 + V2O5 and Na2SO4 + V2O5 + NaCl at 900° C. Corros Sci 128:42CrossRefGoogle Scholar
  22. 22.
    Goyal K, Singh H, Bhatia R (2018) Experimental investigations of carbon nanotubes reinforcement on properties of ceramic-based composite coating. J Aust Ceram Soc 55:315CrossRefGoogle Scholar
  23. 23.
    Huang S, Sun D, Wang W (2015) Microstructures and properties of Ni based composite coatings prepared by plasma spray welding with mixed powders. Int J Refract Metal Hard Mater 52:36CrossRefGoogle Scholar
  24. 24.
    Irissou E, Legoux J-G, Arsenault B, Moreau C (2007) Investigation of Al-Al2O3 cold spray coating formation and properties. J Therm Spray Technol 16(5–6):661CrossRefGoogle Scholar
  25. 25.
    Karthikeyan J, Sreekumar K, Venkatramani N, Rohatgi V (1988) Preparation and characterization of plasma-sprayed thick ceramic coatings reinforced with metal pins. High Temp High Press 20(6):653Google Scholar
  26. 26.
    Tianshun D, Xiukai Z, Guolu L, Li L, Ran W (2018) Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting. Mater Res Express 5(2):026411CrossRefGoogle Scholar
  27. 27.
    Mistry JM, Gohil PP (2018) Research review of diversified reinforcement on aluminum metal matrix composites: fabrication processes and mechanical characterization. Sci Eng Compos Mater 25(4):633CrossRefGoogle Scholar
  28. 28.
    Fauchais P, Vardelle M, Vardelle A, Goutier S (2018) Sprays used for thermal barrier coatings. Applications paradigms of droplet and spray transport: paradigms and applications. Springer, Singapore, p 311CrossRefGoogle Scholar
  29. 29.
    Xu S, Chen L, Gong M, Hu X, Zhang X, Zhou Z (2017) Characterization and engineering application of a novel ceramic composite insulation material. Composites B 111:143CrossRefGoogle Scholar
  30. 30.
    Ozgurluk Y, Doleker KM, Karaoglanli AC (2017) Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Appl Surf Sci 438:96–113CrossRefGoogle Scholar
  31. 31.
    Keyvani A, Bahamirian M (2017) Hot corrosion and mechanical properties of nanostructured Al2O3/CSZ composite TBCs. Surf Eng 33(6):433CrossRefGoogle Scholar
  32. 32.
    Sidhu VPS, Goyal K, Goyal R (2017) An investigation of corrosion resistance of HVOF coated ASME SA213 T91 boiler steel in an actual boiler environment. Anticorros Methods Mater 64(5):499CrossRefGoogle Scholar
  33. 33.
    Goyal K, Singh H, Bhatia R (2018) Cyclic high temperature corrosion studies of carbon nanotubes-Cr2O3 composite coatings on boiler steel at 900 °C in molten salt environment. Anticorros Methods Mater 65(6):646CrossRefGoogle Scholar
  34. 34.
    Goyal K, Singh H, Bhatia R (2019) Hot-corrosion behavior of Cr2O3-CNT-coated ASTM-SA213-T22 steel in a molten salt environment at 700°C. Int J Miner Metall Mater 26(3):337CrossRefGoogle Scholar
  35. 35.
    Goyal K, Singh H, Bhatia R (2018) Hot corrosion behaviour of carbon nanotubes reinforced chromium oxide composite coatings at elevated temperature. Mater Res Express 5(11):116408CrossRefGoogle Scholar
  36. 36.
    Manikandan DWM (2018) High-temperature corrosion behaviour of HVOF sprayed Cr3C2-25NiCr coated on alloy X22CrMoV12-1 at 600 °C. J Therm Spray Eng 1(1):7Google Scholar
  37. 37.
    Khan MA, Sundarrajan S, Natarajan S (2017) Hot corrosion behaviour of super 304H for marine applications at elevated temperatures. Anticorros Methods Mater 64(5):508CrossRefGoogle Scholar
  38. 38.
    Kaplan M, Uyaner M, Ozgurluk Y, Doleker KM, Karaoglanli AC (2019) Evaluation of hot corrosion behavior of APS and HVOF sprayed thermal barrier coatings (TBCs) exposed to molten Na2SO4 + V2O5 salt at 1000 °C. Engineering design applications. Springer, Cham, p 441CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentPunjabi UniversityPatialaIndia
  2. 2.Chitkara University Institute of Engineering and Technology, Chitkara UniversityRajpuraIndia

Personalised recommendations