Advertisement

4-(2-(2-(2-(2-(Pyridine-4-yl)ethylthio)ethoxy)ethylthio)ethyl)pyridine as New Corrosion Inhibitor for Mild Steel in 1.0 M HCl Solution: Experimental and Theoretical Studies

  • A. Khadiri
  • A. Ousslim
  • K. Bekkouche
  • A. Aouniti
  • I. Warad
  • A. Elidrissi
  • B. Hammouti
  • F. Bentiss
  • M. Bouachrine
  • A. Zarrouk
Article
  • 26 Downloads

Abstract

The inhibition effect of 4-(2-(2-(2-(2-(pyridine-4-yl)ethylthio)ethoxy)ethylthio)ethyl)pyridine (P4E4P) on mild steel corrosion in 1.0 M HCl solution was investigated by quantum chemical calculations, electrochemical techniques, and weight loss measurements. The experimental results reveal that this compound has a good inhibiting effect and the inhibition efficiency, increased with the inhibitor concentration to reach 97% at 1 mM. The effect of temperature on the corrosion behavior of mild steel has been examined in the temperature range of 308–353 K. The inhibition efficiency increases with increasing inhibitor concentration, but decreases with increasing temperature. The adsorption of the inhibitor on mild steel surface obeyed the Langmuir adsorption isotherm. The kinetic and thermodynamic parameters for mild steel corrosion and inhibition adsorption, respectively, were determined and discussed. Potentiodynamic polarization suggested that it is a mixed type of inhibitor. Data obtained from EIS measurements were analyzed to model the corrosion inhibition process through the appropriate equivalent circuit model. Quantum chemical calculations were employed to study the electronic properties of P4E4P to ascertain the correlation between the inhibitory effect and the molecular structure. Both the experimental and theoretical results are in good agreement with each other in this regard and confirm that P4E4P is an effective inhibitor.

Keywords

Pyridine derivative Mild steel Corrosion inhibition Adsorption Theoretical study 

References

  1. 1.
    Schmitt G (1984) Application of inhibitors for acid media: report prepared for the European federation of corrosion working party on inhibitors. Br Corros J 19(4):165–176CrossRefGoogle Scholar
  2. 2.
    Bendaha H, Zarrouk A, Aouniti A, Hammouti B, El Kadiri S, Salghi R, Touzani R (2012) Adsorption and corrosion inhibitive properties of some tripodal pyrazolic compounds on mild steel in hydrochloric acid systems. Phys Chem News 64:95–103Google Scholar
  3. 3.
    Ghazoui A, Bencaht N, Al-Deyab SS, Zarrouk A, Hammouti B, Ramdani M, Guenbour M (2013) An investigation of two novel pyridazine derivatives as corrosion inhibitor for C38 steel in 1.0 M HCl. Int J Electrochem Sci 8:2272–2292Google Scholar
  4. 4.
    Zarrouk A, Zarrok H, Salghi R, Bouroumane N, Hammouti B, Al-Deyab SS, Touzani R (2012) The adsorption and corrosion inhibition of 2-[bis-(3,5-dimethyl-pyrazol-1-ylmethyl)-amino]-pentanedioic acid on carbon steel corrosion in 1.0 m HCl. Int J Electrochem Sci 7:10215–10232Google Scholar
  5. 5.
    Zarrok H, Zarrouk A, Salghi R, Ramli Y, Hammouti B, Assouag M, Essassi EM, Oudda H, Taleb M (2012) 3,7-Dimethylquinoxalin-2-(1H)-one for inhibition of acid corrosion of carbon steel. J Chem Pharm Res 4(12):5048–5055Google Scholar
  6. 6.
    Zarrouk A, Hammouti B, Zarrok H, Bouachrine M, Khaled KF, Al-Deyab SS (2012) Corrosion inhibition of copper in nitric acid solutions using a new triazole derivative. Int J Electrochem Sci 7:89–105Google Scholar
  7. 7.
    Ghazoui A, Saddik R, Benchat N, Guenbour M, Hammouti B, Al-Deyab SS, Zarrouk A (2012) Comparative study of pyridine and pyrimidine derivatives as corrosion inhibitors of C38 steel in molar HCl. Int J Electrochem Sci 7:7080–7097Google Scholar
  8. 8.
    Zarrok H, Al Mamari K, Zarrouk A, Salghi R, Hammouti B, Al-Deyab SS, Essassi EM, Bentiss F, Oudda H (2012) Gravimetric and electrochemical evaluation of 1-allyl-1hindole-2,3-dione of carbon steel corrosion in hydrochloric acid. Int J Electrochem Sci 7:10338–10357Google Scholar
  9. 9.
    Zarrouk A, Hammouti B, Dafali A, Bentiss F (2013) Inhibitive properties and adsorption of purpald as a corrosion inhibitor for copper in nitric acid medium. Ind Eng Chem Res 52(7):2560–2568CrossRefGoogle Scholar
  10. 10.
    Zarrok H, Oudda H, El Midaoui A, Zarrouk A, Hammouti B, Touhami ME, Attayibat A, Radi S, Touzani R (2012) ome new bipyrazole derivatives as corrosion inhibitors for C38 steel in acidic medium. Res Chem Intermed 38(8):2051–2063CrossRefGoogle Scholar
  11. 11.
    Solmaz R, Altunbas E, Kardas G (2011) Investigation of adsorption and corrosion inhibition effect of 1,1’-thiocarbonyldiimidazole on mild steel in hydrochloric acid solution. Prot Met Phys Chem Sur 47(2):264–271CrossRefGoogle Scholar
  12. 12.
    Solmaz R, Mert ME, Kardas G, Yazici B, Erbil M (2008) Adsorption and corrosion inhibition effect of 1,1’-thiocarbonyldiimidazole on mild steel in H2SO4 solution and synergistic effect of iodide ion. Acta Phys Chim Sin 24(7):1185–1191CrossRefGoogle Scholar
  13. 13.
    Belayachi M, Serrar H, Zarrok H, El Assyry A, Zarrouk A, Oudda H, Boukhris S, Hammouti B, Ebenso EE, Geunbour A (2015) New pyrimidothiazine derivative as corrosion inhibitor for carbon steel in acidic media. Int J Electrochem Sci 10:3010–3025Google Scholar
  14. 14.
    Caliskan N, Akbas E (2012) Contribution to adsorption of aromatic amines on mild steel surface from HCl solutions by impedance, UV, and Raman spectroscopy. Mater Corros 63(3):231–237CrossRefGoogle Scholar
  15. 15.
    Abd El-Maksoud SA, Fouda AS (2005) Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater Chem Phys 93(1):84–90CrossRefGoogle Scholar
  16. 16.
    Quraishi MA, Sharma HK (2002) 4-Amino-3-butyl-5-mercapto-1,2,4-triazole: a new corrosion inhibitor for mild steel in sulphuric acid. Mater Chem Phys 78(1):18–21CrossRefGoogle Scholar
  17. 17.
    Ansari KR, Quraishi MA, Singh A (2014) Schiff’s base of pyridyl substituted triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci 79:5–15CrossRefGoogle Scholar
  18. 18.
    Kosari A, Moayed MH, Davoodi A, Parvizi R, Momeni M, Eshghi H, Moradi H (2014) Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros Sci 78:138–150CrossRefGoogle Scholar
  19. 19.
    Bentiss F, Outirite M, Traisnel M, Vezin H, Lagrenée M, Hammouti B, Al-Deyab SS, Jama C (2012) Improvement of corrosion resistance of carbon steel in hydrochloric acid medium by 3,6-bis(3-pyridyl)pyridazine. Int J Electrochem Sci 7:1699–1723Google Scholar
  20. 20.
    Elbakri M, Touir R, Touhami ME, Zarrouk A, Aouine Y, Sfaira M, Bouachrine M, Alami A, El Hallaoui A (2013) Inhibiting effects of benzamide derivatives on the corrosion of mild steel in hydrochloric acid solution. Res Chem Intermed 39(6):2417–2433CrossRefGoogle Scholar
  21. 21.
    Tu S, Jiang X, Zhou L, Duan M, Wang H, Jiang X (2012) Synthesis of N-alkyl-4-(4-hydroxybut-2-ynyl) pyridinium bromides and their corrosion inhibition activities on X70 steel in 5 M HCl. Corros Sci 65:13–25CrossRefGoogle Scholar
  22. 22.
    Zhang F, Tang Y, Cao Z, Jing W, Wu Z, Chen Y (2012) Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corros Sci 61:1–9CrossRefGoogle Scholar
  23. 23.
    Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 50(11):2981–2992CrossRefGoogle Scholar
  24. 24.
    Torres VV, Rayol VA, Magalhaes M, Viana GM, Aguiar LCS, Machado SP, Orofino H, D’Elia E (2014) Study of thioureas derivatives synthesized from a green route as corrosion inhibitors for mild steel in HCl solution. Corros Sci 79:108–118CrossRefGoogle Scholar
  25. 25.
    Issaadi S, Douadi T, Chafaa S (2014) Adsorption and inhibitive properties of a new heterocyclic furan Schiff base on corrosion of copper in HCl 1 M: experimental and theoretical investigation. Appl Surf Sci 316:582–589CrossRefGoogle Scholar
  26. 26.
    Zarrok H, Zarrouk A, Salghi R, Touhami ME, Oudda H, Hammouti B, Touir R, Bentiss F, Al-Deyab SS (2013) Corrosion inhibition of C38 steel in acidic medium using N-1 naphthylethylenediamine dihydrochloride monomethanolate. Int J Electrochem Sci 8:6014–6032Google Scholar
  27. 27.
    Ma H, Chen S, Liu Z, Sun Y (2006) Theoretical elucidation on the inhibition mechanism of pyridine–pyrazole compound: a Hartree Fock study. J Mol Struct (THEOCHEM) 774(1–3):19–22CrossRefGoogle Scholar
  28. 28.
    Henríquez-Román JH, Padilla-Campos L, Páez MA, Zagal JH, María Rubio A, Rangel CM, Costamagna J, Cárdenas-Jirón G (2005) The influence of aniline and its derivatives on the corrosion behaviour of copper in acid solution: a theoretical approach. J Mol Struct (THEOCHEM) 757(1–3):1–7CrossRefGoogle Scholar
  29. 29.
    Rodrguez-Valdez LM, Martnez-Villafane A, Glossman-Mitnik D (2005) Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties. J Mol Struct (THEOCHEM) 713:65–70CrossRefGoogle Scholar
  30. 30.
    Feng Y, Chen S, Guo W, Zhang Y, Liu G (2007) Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H2SO4 solutions. J Electroanal Chem 602(1):115–122CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JrJA., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratman RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  32. 32.
    Dewar MJS, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99(15):4899–4907CrossRefGoogle Scholar
  33. 33.
    Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740CrossRefGoogle Scholar
  34. 34.
    Wang Z (2012) The inhibition effect of bis-benzimidazole compound for mild steel in 0.5 M HCl solution. Int J Electrochem Sci 7:11149–11160Google Scholar
  35. 35.
    Saliyan VR, Adhikari AV (2008) Quinolin-5-ylmethylene-3-{[8-(trifluoromethyl)quinolin-4-yl]thio}propanohydrazide as an effective inhibitor of mild steel corrosion in HCl solution. Corros Sci 50(1):55–61CrossRefGoogle Scholar
  36. 36.
    Liu FG, Du M, Zhang J, Qiu M (2009) Electrochemical behavior of Q235 steel in saltwater saturated with carbon dioxide based on new imidazoline derivative inhibitor. Corros Sci 51(1):102–109CrossRefGoogle Scholar
  37. 37.
    Krim O, Elidrissi A, Hammouti B, Ouslim A, Benkaddour M (2009) Synthesis, characterization, and comparative study of pyridine derivatives as corrosion inhibitors of mild steel in HCl medium. Chem Eng Comm 196:1536–1546CrossRefGoogle Scholar
  38. 38.
    Bouklah M, Attayibat A, Hammouti B, Ramdani A, Radi S, Benkaddour M (2005) Pyridine–pyrazole compound as inhibitor for steel in 1M HCl. App Surf Sci 240:341–348CrossRefGoogle Scholar
  39. 39.
    Tebbji K, Oudda H, Hammouti B, Benkaddour M, El Kodadi M, Ramdani A (2005) Inhibition effect of two organic compounds pyridine–pyrazole type in acidic corrosion of steel. Colloids Surf A Physicochem Eng Asp 259:143–149CrossRefGoogle Scholar
  40. 40.
    Meng Y, Ning W, Xu B, Yang W, Zhang K, Chen Y, Li L, Liu X, Zhenga J, Zhang Y (2017) Inhibition of mild steel corrosion in hydrochloric acid using two novel pyridine Schiff base derivatives: a comparative study of experimental and theoretical results. RSC Adv 7:43014–43029CrossRefGoogle Scholar
  41. 41.
    Amin MA, Abd El-Rehim SS, El-Sherbini EEF, Bayyomi RS (2007) The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies. Electrochim Acta 52(11):3588–3600CrossRefGoogle Scholar
  42. 42.
    Lenderink HJW, Linden MVD, De Wit JHW (1993) Corrosion of aluminium in acidic and neutral solutions. Electrochim Acta 38(14):1989–1992CrossRefGoogle Scholar
  43. 43.
    Amin MA, Khaled KF, Mohsen Q, Arida HA (2010) A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros Sci 52(5):1684–1695CrossRefGoogle Scholar
  44. 44.
    Kedam M, Mattos OR, Takenouti H (1981) Reaction model for iron dissolution studied by electrode impedance: I. Experimental results and reaction model. J Electrochem Soc 128(2):257–266CrossRefGoogle Scholar
  45. 45.
    Veloz MA, Gonzalez I (2002) Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S. Electrochim Acta 48(2):135–144CrossRefGoogle Scholar
  46. 46.
    Lebrini M, Robert F, Lecante A, Roos C (2011) Corrosion inhibition of C38 steel in 1M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant. Corros Sci 53(2):687–695CrossRefGoogle Scholar
  47. 47.
    Morad MS (2000) An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions. Corros Sci 42(8):1307–1326CrossRefGoogle Scholar
  48. 48.
    Sherif EM, Park SM (2006) Effects of 1,4-naphthoquinone on aluminum corrosion in 0.50M sodium chloride solutions. Electrochim Acta 51(7):1313–1321CrossRefGoogle Scholar
  49. 49.
    Kelly EJ (1965) Iron dissolution and hydrogen evolution reactions in acidic sulfate solutions. J Electrochem Soc 112(2):124–131CrossRefGoogle Scholar
  50. 50.
    Mahdavian M, Ashhari S (2010) Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution. Electrochim Acta 55(5):1720–1724CrossRefGoogle Scholar
  51. 51.
    Xu B, Yang W, Liu Y, Yin X, Gong W, Chen Y (2014) Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci 78:260–268CrossRefGoogle Scholar
  52. 52.
    Macdonald JR (1987) Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. Electroanal Chem 223(1–2):25–50CrossRefGoogle Scholar
  53. 53.
    Behpour M, Ghroreishi SM, Soltani N, Salavati-Niasari M, Hamadanian M, Gandomi A (2008) Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros Sci 50(8):2172–2181CrossRefGoogle Scholar
  54. 54.
    Lopez DA, Simison SN, de Sanchez SR (2003) The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim Acta 48(7):845–854CrossRefGoogle Scholar
  55. 55.
    Stoynov ZB, Grafov BM, Savova-Stoynova B, Elkin VV (1991) Electrochemical impedance. Nauka, MoscowGoogle Scholar
  56. 56.
    Musa AY, Kadhum AAH, Mohamad AB, Takriff MS (2010) Experimental and theoretical study on the inhibition performance of triazole compounds for mild steel corrosion. Corros Sci 52(10):3331–3340CrossRefGoogle Scholar
  57. 57.
    Jacob KS, Parameswaran G (2010) Corrosion inhibition of mild steel in hydrochloric acid solution by Schiff base furoin thiosemicarbazone. Corros Sci 52(1):224–228CrossRefGoogle Scholar
  58. 58.
    Labjar N, Lebrini M, Bentiss F, Chihib N, ElHajjaji S, Jama C (2010) Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methylenephosphonic) acid. Mater Chem Phys 119(1–2):330–336CrossRefGoogle Scholar
  59. 59.
    Zheng X, Zhang S, Li W, Yin H, He J, Wua J (2014) Investigation of 1-butyl-3-methyl-1H-benzimidazolium iodide as inhibitor for mild steel in sulfuric acid solution. Corros Sci 80:383–392CrossRefGoogle Scholar
  60. 60.
    Outirite M, Lagrenee M, Lebrini M, Traisnel M, Jama C, Vezin H, Bentiss F (2010) AC impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution. Electrochim Acta 55(5):1670–1681CrossRefGoogle Scholar
  61. 61.
    Growcock FB, Jasinski JH (1989) Time-resolved impedance spectroscopy of mild steel in concentrated hydrochloric acid. J Electrochem Soc 136(8):2310–2314CrossRefGoogle Scholar
  62. 62.
    Morad MS (2008) Inhibition of iron corrosion in acid solutions by Cefatrexyl: behaviour near and at the corrosion potential. Corros Sci 50(2):436–448CrossRefGoogle Scholar
  63. 63.
    Lebrini M, Bentiss F, Chihib N, Jama C, Hornez JP, Lagrenée M (2008) Polyphosphate derivatives of guanidine and urea copolymer: inhibiting corrosion effect of Armco iron in acid solution and antibacterial activity. Corros Sci 50(10):2914–2918CrossRefGoogle Scholar
  64. 64.
    Popova A, Christov M, Vasilev A (2007) itive properties of quaternary ammonium bromides of N-containing heterocycles on acid mild steel corrosion. Part II: EIS results. Corros Sci 49(8):3290–3302CrossRefGoogle Scholar
  65. 65.
    Zarrok H, Zarrouk A, Hammouti B, Salghi R, Jama C, Bentiss F (2012) Corrosion control of carbon steel in phosphoric acid by purpald—weight loss, electrochemical and XPS studies. Corros Sci 64:243–252CrossRefGoogle Scholar
  66. 66.
    Yadav DK, Quraishi MA, Maiti B (2012) Inhibition effect of some benzylidenes on mild steel in 1 M HCl: an experimental and theoretical correlation. Corros Sci 55:254–266CrossRefGoogle Scholar
  67. 67.
    Herrag L, Hammouti B, Elkadiri S, Aouniti A, Jama C, Vezin H, Bentiss F (2010) Adsorption properties and inhibition of mild steel corrosion in hydrochloric solution by some newly synthesized diamine derivatives: experimental and theoretical investigations. Corros Sci 52(9):3042–3051CrossRefGoogle Scholar
  68. 68.
    Singh AK, Quraishi MA (2010) The effect of some bis-thiadiazole derivatives on the corrosion of mild steel in hydrochloric acid. Corros Sci 52(4):1373–1385CrossRefGoogle Scholar
  69. 69.
    Bentiss F, Lebrini M, Lagrenée M (2005) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system. Corros Sci 47(12):2915–2931CrossRefGoogle Scholar
  70. 70.
    Ghazoui A, Saddik R, Benchat N, Hammouti B, Guenbour M, Zarrouk A, Ramdani M (2012) The role of 3-amino-2-phenylimidazo[1,2-a]pyridine as corrosion inhibitor for C38 steel in 1M HCl. Der Pharm Chem 4(1):352–364Google Scholar
  71. 71.
    Stern M, Geary AL (1957) Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104(1):56–63CrossRefGoogle Scholar
  72. 72.
    Labjar N, Bentiss F, Lebrini M, Jama C, El hajjaji S (2011) Study of temperature effect on the corrosion inhibition of C38 carbon steel using amino-tris(methylenephosphonic) acid in hydrochloric acid solution. Int J Corros.  https://doi.org/10.1155/2011/548528 CrossRefGoogle Scholar
  73. 73.
    Amin MA (2006) Weight loss, polarization, electrochemical impedance spectroscopy, SEM and EDX studies of the corrosion inhibition of copper in aerated NaCl solutions. J Appl Electrochem 36(2):215–226CrossRefGoogle Scholar
  74. 74.
    Ebenso EE, Obot IB (2010) Inhibitive properties, thermodynamic characterization and quantum chemical studies of secnidazole on mild steel corrosion in acidic medium. Int J Electrochem Sci 5:2012–2035Google Scholar
  75. 75.
    El Azzouzi M, Aouniti A, Tighadouin S, Elmsellem H, Radi S, Hammouti B, El Assyry A, Bentiss F, Zarrouk A (2016) Some hydrazine derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: weight loss, electrochemichal, SEM and theoretical studies. J Mol Liq 221:633–641CrossRefGoogle Scholar
  76. 76.
    Tang L, Mu G, Liu G (2003) The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid. Corros Sci 45(10):2251–2261CrossRefGoogle Scholar
  77. 77.
    Mu G, Li X, Li F (2004) Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid. Mater Chem Phys 86(1):59–68CrossRefGoogle Scholar
  78. 78.
    Elachouri M, Hajji MS, Salem M, Kertit S, Aride J, Coudert R, Essassi E (1996) Some nonionic surfactants as inhibitors of the corrosion of iron in acid chloride solutions. Corrosion 52(2):103–108CrossRefGoogle Scholar
  79. 79.
    El Faydy M, Touir R, Touhami ME, Zarrouk A, Jama C, Lakhrissi B, Olasunkanmi LO, Ebenso EE, Bentiss F (2018) Corrosion inhibition performance of newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives for carbon steel in 1 M HCl solution: experimental, DFT and Monte Carlo simulation studies. Phys Chem Chem Phys 20:20167CrossRefGoogle Scholar
  80. 80.
    Tayebi H, Bourazmi H, Himmi B, El Assyry A, Ramli Y, Zarrouk A, Geunbour A, Hammouti B (2014) Combined electrochemical and quantum chemical study of new quinoxaline derivative as corrosion inhibitor for carbon steel in acidic media. Der Pharm Chem 6(5):220–234Google Scholar
  81. 81.
    Tayebi H, Bourazmi H, Himmi B, El Assyry A, Ramli Y, Zarrouk A, Geunbour A, Hammouti B, Ebenso EE (2014) An electrochemical and theoretical evaluation of new quinoline derivative as a corrosion inhibitor for carbon steel in HCL solutions. Der Pharm Lett 6(6):20–34Google Scholar
  82. 82.
    Gomma GK, Wahdan MH (1995) Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution. Mater Chem Phys 39(3):209–213CrossRefGoogle Scholar
  83. 83.
    Durnie W, De Marco R, Kinsella B, Jefferson A (1999) Development of a structure–activity relationship for oil field corrosion inhibitors. J Electrochem Soc 146(5):1751–1756CrossRefGoogle Scholar
  84. 84.
    Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system. Appl Surf Sci 199(1–4):83–89CrossRefGoogle Scholar
  85. 85.
    Abd El-Hameed RS (2011) Aminolysis of polyethylene terephthalate waste as corrosion inhibitor for carbon steel in HCl corrosive medium. Adv Appl Sci Res 2(3):483–499Google Scholar
  86. 86.
    El-Tabei AS, Hegazy MA (2013) A corrosion inhibition study of a novel synthesized gemini nonionic surfactant for carbon steel in 1 M HCl solution. J Surfact Deterg 16(5):757–766CrossRefGoogle Scholar
  87. 87.
    Li DZ, Zhang SG, He B, Zhang LC (2009) Quantum chemistry study of the inhibitive properties of benzimidazoles. Comput Appl Chem 3:324–328Google Scholar
  88. 88.
    Gece G (2011) A review of promising novel corrosion inhibitors. Corros Sci 53(12):3873–3898CrossRefGoogle Scholar
  89. 89.
    Daoud D, Douadi T, Issaadi S, Chafaa S (2014) Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions. Corros Sci 79:50–58CrossRefGoogle Scholar
  90. 90.
    Hegazy MA, Badawi AM, Abd El Rehim SS, Kamel WM (2013) Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy)ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling. Corros Sci 69:110–122CrossRefGoogle Scholar
  91. 91.
    Radilla J, Negron-Silva GE, Palomar-Pardave M, Romero-Romo M, Galvan M (2013) DFT study of the adsorption of the corrosion inhibitor 2-mercaptoimidazole onto Fe(1 0 0) surface. Electrochim Acta 112:577–586CrossRefGoogle Scholar
  92. 92.
    Arslan T, Kandemirli F, Ebenso EE, Love I, Alemu H (2009) Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros Sci 51(1):35–47CrossRefGoogle Scholar
  93. 93.
    John S, Joseph A (2012) Electro analytical, surface morphological and theoretical studies on the corrosion inhibition behavior of different 1,2,4-triazole precursors on mild steel in 1 M hydrochloric acid. Mater Chem Phys 133(2–3):1083–1091CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • A. Khadiri
    • 1
  • A. Ousslim
    • 1
  • K. Bekkouche
    • 1
  • A. Aouniti
    • 2
  • I. Warad
    • 3
  • A. Elidrissi
    • 2
  • B. Hammouti
    • 2
  • F. Bentiss
    • 4
  • M. Bouachrine
    • 5
  • A. Zarrouk
    • 2
  1. 1.LCSMA - Faculté des SciencesUniversité Mohammed PremierOujdaMorocco
  2. 2.LC2AME, Faculty of ScienceMohammed First UniversityOujdaMorocco
  3. 3.Department of ChemistryAN-Najah National UniversityNablusPalestine
  4. 4.Laboratoire de Catalyse et de Corrosion des Matériaux (LCCM), Faculté des SciencesUniversité Chouaib DoukkaliEl JadidaMorocco
  5. 5.ESTMUniversité Moualy IsmailMeknesMorocco

Personalised recommendations