Advertisement

Natural Adhesion System Leads to Synthetic Adhesives

  • Ashish K. Kasar
  • Rahul Ramachandran
  • Pradeep L. Menezes
Article

Abstract

Nature has developed multi-functional geometric structures, and surface textures with excellent tribological characteristics, such as feet of geckos. Geckos have extraordinary abilities to climb walls and even upside down on the ceiling. Studies have revealed that hierarchical structure of gecko’s feet can bear the weight of two humans and this strong adhesion force is mainly generated by weak van der Waals force. This paper reviews the mechanisms and the forces responsible for gecko’s adhesion, and the effect of humidity on adhesion against different hydrophobic/hydrophilic surfaces. The excellent adhesive and frictional properties of gecko adhesion system have inspired many researchers to develop gecko-inspired synthetic adhesives. In this paper, recent development of gecko-inspired synthetic adhesives has been presented in terms of various fabrication methods, different tip structures, and the effect of counter surface roughness as well as design criteria to avoid bunching of nano-structures. The application of synthetic adhesives is also discussed for wall climbing robots and novel applications in the field of space, biomedical and sports accessories.

Keywords

Dry adhesion Van der Waals force Capillary force Frictional force Adhesion force Nano fibers 

Notes

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Achrai B, Bar-On B, Wagner HD (2015) Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues. Bioinspiration Biomimetics 10(1):016009CrossRefGoogle Scholar
  2. 2.
    Kotay K, Rus D (2000) The inchworm robot: a multi-functional system. Auton Robots 8(1):53–69CrossRefGoogle Scholar
  3. 3.
    Hu Z, Thiyagarajan K, Bhusal A, Letcher T, Fan QH, Liu Q, Salem D (2017) Design of ultra-lightweight and high-strength cellular structural composites inspired by biomimetics. Compos B 121:108–121CrossRefGoogle Scholar
  4. 4.
    Schmitt OH (1969) Some interesting and useful biomimetic transforms. Proc. 3rd Int. InBiophysics Congress (Boston, MA, 29 Aug–3Sept) p 297 AbstractsGoogle Scholar
  5. 5.
    Gao L, McCarthy TJ (2006) The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir 22(7):2966–2967CrossRefGoogle Scholar
  6. 6.
    Siddaiah A, Menezes PL (2016) Advances in bio-inspired tribology for engineering applications. J Bio Tribo Corros 2(4):23CrossRefGoogle Scholar
  7. 7.
    Jung YC, Bhushan B (2009) Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J Phys 22(3):035104Google Scholar
  8. 8.
    Burkett JR, Wojtas JL, Cloud JL, Wilker JJ (2009) A method for measuring the adhesion strength of marine mussels. J Adhes 85(9):601–615CrossRefGoogle Scholar
  9. 9.
    Stewart RJ, Ransom TC, Hlady V (2011) Natural underwater adhesives. J Polym Sci B 49(11):757–771CrossRefGoogle Scholar
  10. 10.
    Lin AYM, Brunner R, Chen PY, Talke FE, Meyers MA (2009) Underwater adhesion of abalone: the role of van der Waals and capillary forces. Acta Mater 57(14):4178–4185.  https://doi.org/10.1016/j.actamat.2009.05.015 CrossRefGoogle Scholar
  11. 11.
    Barnes WJP, Goodwyn PJP, Nokhbatolfoghahai M, Gorb SN (2011) Elastic modulus of tree frog adhesive toe pads. J Comp Physiol A 197(10):969.  https://doi.org/10.1007/s00359-011-0658-1 CrossRefGoogle Scholar
  12. 12.
    Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192(11):1213–1222CrossRefGoogle Scholar
  13. 13.
    Wolff JO, Gorb SN (2011) The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc R Soc Lond B 2011:rspb20110505Google Scholar
  14. 14.
    Wiegemann M, Watermann B (2003) Peculiarities of barnacle adhesive cured on non-stick surfaces. J Adhes Sci Technol 17(14):1957–1977.  https://doi.org/10.1163/156856103770572070 CrossRefGoogle Scholar
  15. 15.
    Sun C, Fantner GE, Adams J, Hansma PK, Waite JH (2007) The role of calcium and magnesium in the concrete tubes of the sandcastle worm. J Exp Biol 210(8):1481–1488CrossRefGoogle Scholar
  16. 16.
    Graham LD, Glattauer V, Huson MG, Maxwell JM, Knott RB, White JW, Vaughan PR, Peng Y, Tyler MJ, Werkmeister JA (2005) Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennetti. Biomacromol 6(6):3300–3312CrossRefGoogle Scholar
  17. 17.
    Hanna G, Barnes WJP (1991) Adhesion and detachment of the toe pads of tree frogs. J Exp Biol 155:103–125Google Scholar
  18. 18.
    Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42(6):1100–1106CrossRefGoogle Scholar
  19. 19.
    Autumn K, Sitti M, Liang YCA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99(19):12252–12256.  https://doi.org/10.1073/pnas.192252799 CrossRefGoogle Scholar
  20. 20.
    Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206(16):2733–2738CrossRefGoogle Scholar
  21. 21.
    Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Natl Acad Sci USA 97(12):6568–6573.  https://doi.org/10.1073/pnas.97.12.6568 CrossRefGoogle Scholar
  22. 22.
    Dirks J-H (2014) Physical principles of fluid-mediated insect attachment-Shouldn’t insects slip? Beilstein J Nanotechnol 5:1160CrossRefGoogle Scholar
  23. 23.
    Labonte D, Federle W (2015) Rate-dependence of ‘wet’biological adhesives and the function of the pad secretion in insects. Soft Matter 11(44):8661–8673CrossRefGoogle Scholar
  24. 24.
    Dirks J-H, Li M, Kabla A, Federle W (2012) In vivo dynamics of the internal fibrous structure in smooth adhesive pads of insects. Acta Biomater 8(7):2730–2736.  https://doi.org/10.1016/j.actbio.2012.04.008 CrossRefGoogle Scholar
  25. 25.
    Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42(6):1081–1090CrossRefGoogle Scholar
  26. 26.
    Russell AP (2002) Integrative functional morphology of the gekkotan adhesive system (reptilia: Gekkota). Integr Comp Biol 42(6):1154–1163CrossRefGoogle Scholar
  27. 27.
    Irschick DJ, Austin CC, Petren K, Fisher RN, Losos JB, Ellers O (1996) A comparative analysis of clinging ability among pad-bearing lizards. Biol J Linn Soc 59(1):21–35CrossRefGoogle Scholar
  28. 28.
    Dellit W-D (1933) Zur anatomie und physiologie der Geckozehe. Diss. Fischer, HamptonGoogle Scholar
  29. 29.
    Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117(3):271–293CrossRefGoogle Scholar
  30. 30.
    Bhushan B, Peressadko AG, Kim T-W (2006) Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ‘smart adhesion’. J Adhes Sci Technol 20(13):1475–1491.  https://doi.org/10.1163/156856106778666408 CrossRefGoogle Scholar
  31. 31.
    Nosonovsky M, Bhushan B (2007) Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater Sci Eng 58(3):162–193.  https://doi.org/10.1016/j.mser.2007.09.001 CrossRefGoogle Scholar
  32. 32.
    Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685CrossRefGoogle Scholar
  33. 33.
    Schmidt HR (1904) Zur anatomie und physiologie der geckopfote. Diss. Universität Zürich, ZürichGoogle Scholar
  34. 34.
    Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209(18):3569–3579CrossRefGoogle Scholar
  35. 35.
    Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006) Dynamics of geckos running vertically. J Exp Biol 209(2):260–272CrossRefGoogle Scholar
  36. 36.
    Kendall K (1975) Thin-film peeling-the elastic term. J Phys D 8(13):1449CrossRefGoogle Scholar
  37. 37.
    Hu S, Lopez S, Niewiarowski PH, Xia Z (2012) Dynamic self-cleaning in gecko setae via digital hyperextension. J R Soc Interface 9(76):2781–2790CrossRefGoogle Scholar
  38. 38.
    Emerson SB, Diehl D (1980) Toe pad morphology and mechanisms of sticking in frogs. Biol J Linn Soc 13 (3):199–216.  https://doi.org/10.1111/j.1095-8312.1980.tb00082.x CrossRefGoogle Scholar
  39. 39.
    Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99(19):12252–12256CrossRefGoogle Scholar
  40. 40.
    PTFE (2017) A sticky situation for the gecko. https://www.engineeringclicks.com/forum/threads/ptfe-a-sticky-situation-for-the-gecko.5118/. Accessed 25 Oct 2017
  41. 41.
    Solid surface energy data (SFE) (2017) For common polymers. http://www.surface-tension.de/solid-surface-energy.htm. Accessed 24 Oct 2017
  42. 42.
    Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA 102(45):16293–16296CrossRefGoogle Scholar
  43. 43.
    Kim TW, Bhushan B (2008) The adhesion model considering capillarity for gecko attachment system. J R Soc Interface 5(20):319–327CrossRefGoogle Scholar
  44. 44.
    Stark AY, Sullivan TW, Niewiarowski PH (2012) The effect of surface water and wetting on gecko adhesion. J Exp Biol 215(17):3080–3086.  https://doi.org/10.1242/jeb.070912 CrossRefGoogle Scholar
  45. 45.
    Puthoff JB, Prowse MS, Wilkinson M, Autumn K (2010) Changes in materials properties explain the effects of humidity on gecko adhesion. J Exp Biol 213(21):3699–3704CrossRefGoogle Scholar
  46. 46.
    Chen B, Gao H (2010) An alternative explanation of the effect of humidity in gecko adhesion: stiffness reduction enhances adhesion on a rough surface. Int J Appl Mech 2(01):1–9CrossRefGoogle Scholar
  47. 47.
    Prowse MS, Wilkinson M, Puthoff JB, Mayer G, Autumn K (2011) Effects of humidity on the mechanical properties of gecko setae. Acta Biomater 7(2):733–738.  https://doi.org/10.1016/j.actbio.2010.09.036 CrossRefGoogle Scholar
  48. 48.
    Stark AY, McClung B, Niewiarowski PH, Dhinojwala A (2014) Reduction of water surface tension significantly impacts gecko adhesion underwater. Integr Comp Biol 54(6):1026–1033.  https://doi.org/10.1093/icb/icu066 CrossRefGoogle Scholar
  49. 49.
    Huber G, Gorb SN, Hosoda N, Spolenak R, Arzt E (2007) Influence of surface roughness on gecko adhesion. Acta Biomater 3(4):607–610.  https://doi.org/10.1016/j.actbio.2007.01.007 CrossRefGoogle Scholar
  50. 50.
    Pugno NM, Lepore E (2008) Observation of optimal gecko’s adhesion on nanorough surfaces. Biosystems 94(3):218–222.  https://doi.org/10.1016/j.biosystems.2008.06.009 CrossRefGoogle Scholar
  51. 51.
    Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R (2006) Effective elastic modulus of isolated gecko setal arrays. J Exp Biol 209(18):3558–3568.  https://doi.org/10.1242/jeb.02469 CrossRefGoogle Scholar
  52. 52.
    Ashby MF, Cebon D (1993) Materials selection in mechanical design. Le J de Phys IV 3(C7):C7-1Google Scholar
  53. 53.
    Cheung E, Sitti M (2008) Adhesion of biologically inspired oil-coated polymer micropillars. J Adhes Sci Technol 22(5–6):569–589.  https://doi.org/10.1163/156856108x295545 CrossRefGoogle Scholar
  54. 54.
    Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151):338.  https://doi.org/10.1038/nature05968 CrossRefGoogle Scholar
  55. 55.
    Sitti M, Fearing RS, Ieee (2002) Nanomolding based fabrication of synthetic gecko foot-hairs. Proceedings of the 2002 2nd IEEE Conference on Nanotechnology. pp. 137–140.  https://doi.org/10.1109/nano.2002.1032153
  56. 56.
    Rong Z, Zhou Y, Chen B, Robertson J, Federle W, Hofmann S, Steiner U, Goldberg-Oppenheimer P (2014) Bio-inspired hierarchical polymer fiber-carbon nanotube adhesives. Adv Mater 26(9):1456–1461.  https://doi.org/10.1002/adma.201304601 CrossRefGoogle Scholar
  57. 57.
    Jin K, Cremaldi JC, Erickson JS, Tian Y, Israelachvili JN, Pesika NS (2014) Biomimetic bidirectional switchable adhesive inspired by the gecko. Adv Funct Mater 24(5):574–579.  https://doi.org/10.1002/adfm.201301960 CrossRefGoogle Scholar
  58. 58.
    Kwak MK, Pang C, Jeong HE, Kim HN, Yoon H, Jung HS, Suh KY (2011) Towards the next level of bioinspired dry adhesives: new designs and applications. Adv Funct Mater 21(19):3606–3616.  https://doi.org/10.1002/adfm.201100982 CrossRefGoogle Scholar
  59. 59.
    Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2(7):461–463CrossRefGoogle Scholar
  60. 60.
    Glassmaker NJ, Jagota A, Hui CY, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. making contact. J R Soc Interface 1(1):23–33CrossRefGoogle Scholar
  61. 61.
    Greiner C, del Campo A, Arzt E (2007) Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir 23(7):3495–3502CrossRefGoogle Scholar
  62. 62.
    Schubert B, Majidi C, Groff RE, Baek S, Bush B, Maboudian R, Fearing RS (2007) Towards friction and adhesion from high modulus microfiber arrays. J Adhes Sci Technol 21(12–13):1297–1315.  https://doi.org/10.1163/156856107782328344 CrossRefGoogle Scholar
  63. 63.
    Spolenak R, Gorb S, Arzt E (2005) Adhesion design maps for bio-inspired attachment systems. Acta Biomater 1(1):5–13.  https://doi.org/10.1016/j.actbio.2004.08.004 CrossRefGoogle Scholar
  64. 64.
    Murphy MP, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Technol 21(12–13):1281–1296CrossRefGoogle Scholar
  65. 65.
    Lee J, Fearing RS, Komvopoulos K (2008) Directional adhesion of gecko-inspired angled microfiber arrays. Appl Phys Lett.  https://doi.org/10.1063/1.3006334 Google Scholar
  66. 66.
    Kim T-I, Jeong HE, Suh KY, Lee HH (2009) Stooped nanohairs: geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Adv Mater 21(22):2276.  https://doi.org/10.1002/adma.200803710 CrossRefGoogle Scholar
  67. 67.
    Parness A, Soto D, Esparza N, Gravish N, Wilkinson M, Autumn K, Cutkosky M (2009) A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. J R Soc Interface 6(41):1223–1232.  https://doi.org/10.1098/rsif.2009.0048 CrossRefGoogle Scholar
  68. 68.
    Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16(8):1159CrossRefGoogle Scholar
  69. 69.
    Kustandi TS, Samper VD, Yi DK, Ng WS, Neuzil P, Sun WX (2007) Self-assembled nanoparticles based fabrication of gecko foot-hair-inspired polymer nanofibers. Adv Funct Mater 17(13):2211–2218.  https://doi.org/10.1002/adfm.200600564 CrossRefGoogle Scholar
  70. 70.
    Reddy S, Arzt E, del Campo A (2007) Bioinspired surfaces with switchable adhesion. Adv Mater 19(22):3833–3837CrossRefGoogle Scholar
  71. 71.
    Lee J, Majidi C, Schubert B, Fearing RS (2008) Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour. J R Soc Interface 5(25):835CrossRefGoogle Scholar
  72. 72.
    Northen MT, Greiner C, Arzt E, Turner KL (2008) A gecko-inspired reversible adhesive. Adv Mater 20(20):3905.  https://doi.org/10.1002/adma.200801340 CrossRefGoogle Scholar
  73. 73.
    Asbeck A, Dastoor S, Parness A, Fullerton L, Esparza N, Soto D, Heyneman B, Cutkosky M (2009) Climbing rough vertical surfaces with hierarchical directional adhesion. InRobotics and Automation, 2009. ICRA’09. IEEE International Conference on 2009 May 12 (pp. 2675-2680). IEEEGoogle Scholar
  74. 74.
    Kustandi TS, Samper VD, Ng WS, Chong AS, Gao H (2007) Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J Micromech Microeng 17(10):N75–N81.  https://doi.org/10.1088/0960-1317/17/10/n02 CrossRefGoogle Scholar
  75. 75.
    Ho AYY, Yeo LP, Lam YC, Rodriguez I (2011) Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano 5(3):1897–1906.  https://doi.org/10.1021/nn103191q CrossRefGoogle Scholar
  76. 76.
    Lee DY, Lee DH, Lee SG, Cho K (2012) Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Matter 8(18):4905–4910.  https://doi.org/10.1039/c2sm07319f CrossRefGoogle Scholar
  77. 77.
    Roehrig M, Thiel M, Worgull M, Hoelscher H (2012) 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 8(19):3009–3015.  https://doi.org/10.1002/smll.201200308 CrossRefGoogle Scholar
  78. 78.
    Yu J, Chary S, Das S, Tamelier J, Turner KL, Israelachvili JN (2012) Friction and adhesion of gecko-inspired PDMS flaps on rough surfaces. Langmuir 28(31):11527–11534CrossRefGoogle Scholar
  79. 79.
    Nansai S, Mohan RE (2016) A survey of wall climbing robots: recent advances and challenges. Robotics.  https://doi.org/10.3390/robotics5030014 Google Scholar
  80. 80.
    Zhang HX, Zhang JW, Wang W, Liu R, Zong GH (2007) A series of pneumatic glass-wall cleaning robots for high-rise buildings. Ind Robot Int J 34(2):150–160.  https://doi.org/10.1108/01439910710727504 CrossRefGoogle Scholar
  81. 81.
    Zhang HX, Zhang JW, Zong GH, Ieee (2006) Effective nonlinear control algorithms for a series of pneumatic climbing robots. 2006 IEEE International Conference on Robotics and Biomimetics, Vols 1–3:994.  https://doi.org/10.1109/robio.2006.340364
  82. 82.
    Zhang HX, Zhang JW, Zong GH, IEEE (2004) Requirements of glass cleaning and development of climbing robot systems. Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation. pp. 101–106Google Scholar
  83. 83.
    Kawasaki S, Kikuchi K (2014) Development of a small legged wall climbing robot with passive suction cups. In Proceedings of the 3rd International Conference on Design Engineering and Science—ICDES, Pilsen 2014 (Vol. 31, pp. 112–116)Google Scholar
  84. 84.
    Lee G, Kim H, Seo K, Kim J, Sitti M, Seo T (2016) Series of multilinked caterpillar track-type climbing robots. J Field Robot 33(6):737–750.  https://doi.org/10.1002/rob.21550 CrossRefGoogle Scholar
  85. 85.
    Lee G, Kim H, Seo K, Kim J, Kim HS (2015) MultiTrack: a multi-linked track robot with suction adhesion for climbing and transition. Robot Auton Syst 72:207–216.  https://doi.org/10.1016/j.robot.2015.05.011 CrossRefGoogle Scholar
  86. 86.
    Yan W, Shuliang L, Dianguo X, Yanzheng Z, Hao S, Xueshan G (1999) Development and application of wall-climbing robots. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on 1999 (Vol. 2, pp. 1207–1212). IEEE.Google Scholar
  87. 87.
    Liu SY, Gao XS, Li KJ, Li J, Duan XG, Ieee (2007) A small-sized wall-climbing robot for anti-terror scout. 2007 Ieee International Conference on Robotics and Biomimetics, Vols 1–5:1866–1870.  https://doi.org/10.1109/robio.2007.4522451
  88. 88.
    Miyake T, Ishihara H, IEEE (2003) Mechanisms and basic properties of window cleaning robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Jul 20–24 2003. IEEE ASME International Conference on Advanced Intelligent Mechatronics. pp 1372–1377Google Scholar
  89. 89.
    Lee G, Park J, Kim H, Seo K, Kim J, Seo T (2014) Wall climbing robots with track-wheel mechanism. In Proceedings of the 3rd International Conference on Machine Learning and Computing (ICMLC 2011), Guillin, 2011 Jul (pp. 10–14).Google Scholar
  90. 90.
    Nam S, Oh J, Lee G, Kim J, Seo T (2014) Dynamic analysis during internal transition of a compliant multi-body climbing robot with magnetic adhesion. J Mech Sci Technol 28(12):5175–5187.  https://doi.org/10.1007/s12206-014-1141-z CrossRefGoogle Scholar
  91. 91.
    Aksak B, Murphy MP, Sitti M, Ieee (2008) Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces. In: 2008 Ieee International Conference on Robotics and Automation, Vols 1–9. IEEE International Conference on Robotics and Automation ICRA. pp 3058–3063.  https://doi.org/10.1109/robot.2008.4543675
  92. 92.
    Murphy MP, Kute C, Mengüç Y, Sitti M (2011) Waalbot II: adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. Int J Robot Res 30(1):118–133CrossRefGoogle Scholar
  93. 93.
    Unver O, Sitti M (2010) Tankbot: a palm-size, tank-like climbing robot using soft elastomer adhesive treads. Int J Robot Res 29(14):1761–1777CrossRefGoogle Scholar
  94. 94.
    Spenko MJ, Haynes GC, Saunders JA, Cutkosky MR, Rizzi AA, Full RJ, Koditschek DE (2008) Biologically inspired climbing with a hexapedal robot. J Field Robot 25(4-5):223–242CrossRefGoogle Scholar
  95. 95.
    Liu J, Tong Z, Fu J, Wang D, Su Q, Zou J (2011) A gecko inspired fluid driven climbing robot. In Robotics and Automation (ICRA), 2011 IEEE International Conference on 2011 May 9 (pp. 783–788). IEEE.Google Scholar
  96. 96.
    Gecko-inspired robot gripper may help clean space waste - KT10 (2017)Google Scholar
  97. 97.
    Gecko Grippers Moving On Up. NASAJPL-Caltech (2017) http://www.jpl.nasa.gov/news/news.php?feature=4688. Accessed 09 Nov 2017
  98. 98.
    Palacio MLB, Bhushan B, Schricker SR (2013) Gecko-inspired fibril nanostructures for reversible adhesion in biomedical applications. Mater Lett 92:409–412.  https://doi.org/10.1016/j.matlet.2012.11.023 CrossRefGoogle Scholar
  99. 99.
    GeckSkin is a new super-adhesive based on the mechanics of gecko feet. (2017) https://geckskin.umass.edu/#science. Accessed 09 Nov 2017
  100. 100.
    Gecko Inspired Products (2017) NanoGriptech. http://nanogriptech.com/products. Accessed 09 Nov 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ashish K. Kasar
    • 1
  • Rahul Ramachandran
    • 1
  • Pradeep L. Menezes
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Nevada RenoRenoUSA

Personalised recommendations