Mechanical and Tribological Behavior of Microcrystalline CVD Diamond Coatings

  • Sajad Hussain Din
  • N. A. Sheikh
  • M. Mursaleen Butt
Article
  • 3 Downloads

Abstract

Smooth and adhesive microcrystalline CVD diamond coatings have been acquired successfully on chemically etched titanium alloy (Ti6Al4V) substrates, using hot filament chemical vapor deposition technique. The mechanical and tribological characteristics of HFCVD microcrystalline diamond coatings on titanium alloy (Ti6Al4V) substrates are investigated in this research. SEM and Raman spectroscopy were used to study the morphology and quality of the coatings. The surface roughness has been determined by 3d profilometer measurements. A ball-on-disk tribometer was used to characterize the friction and wear of the coatings. The frictional behavior of the MCD coating was studied, when sliding against smooth alumina ball with increasing load (1–10 N). A coefficient of friction of ~ 0.3–0.287 was obtained at a sliding speed of 12 m/s. The wear of the diamond coating is negligible. The alumina balls are worn out quickly as compared to the diamond coatings. Nanoindentation tests were carried out using Berkovich nanoindenter, and the average super-hardness of MCD coatings was found to be 55 GPa.

Keywords

Titanium alloy Microcrystalline diamond coatings Wear rate Coefficient of friction 

Notes

Acknowledgements

The authors would like to thank MSRC lab, IIT Madras, for the deposition of coatings and C. Anandan (Surface Engineering Division, NAL, Bangalore, India) for carrying out tribological tests.

References

  1. 1.
    Amaral M, Maru MM, Rodrigues SP, Gouvêa CP, Trommer RM, Oliveira FJ, Achete CA, Silva RF (2015) Extremely low wear rates in hip joint bearings coated with nanocrystalline diamond. Tribol Int 89:72–77CrossRefGoogle Scholar
  2. 2.
    Salar Elahi A, Ghoranneviss M (2015) Application of the HFCVD technique for growth of nano-rods and nano-crystals. J Cryst Growth 410:82–92CrossRefGoogle Scholar
  3. 3.
    Spitsyn BV, Bouilov LL, Derjaguin BV (1981) Vapor growth of diamond on diamond and other surfaces. J Cryst Growth 52:219–226CrossRefGoogle Scholar
  4. 4.
    Angus JC, Argoitia A, Gat R, Li Z, Sunkara M, Wang L, Wang Y (1993) Chemical vapour deposition of diamond. Philos Trans R Soc Lond Ser A Phys Eng Sci 342:195–208CrossRefGoogle Scholar
  5. 5.
    DeVries RC (1987) Synthesis of diamond under metastable conditions. Annu Rev Mater Sci 17:161–187CrossRefGoogle Scholar
  6. 6.
    Jones AC, Hitchman ML (2009) Chemical vapor deposition, precursors, processes and applications. RCS PublicationsGoogle Scholar
  7. 7.
    TaoZhang XL, Sun F, Zhang Z (2015) The deposition parameters in the synthesis of CVD microcrystalline diamond powders optimized by the orthogonal experiment. J Cryst Growth 426:15–24CrossRefGoogle Scholar
  8. 8.
    Zhang CZ, Niakan H, Yang L, Li YS, Hu YF, Yang Q (2013) Study of diamond nucleation and growth on Ti6Al4V with tungsten interlayer. Surf Coat Technol 237:248–254CrossRefGoogle Scholar
  9. 9.
    Miyoshi K (1996) Friction and wear properties of as-deposited and carbon ion-implanted diamond films. Mater Sci Eng A 209:38–53CrossRefGoogle Scholar
  10. 10.
    Wang J, Zhoub J, Long HY, Xie YN, Zhang XW, Luo H, Deng ZJ, Wei Q, Yu ZM, Zhang J, Tang ZG (2014) Tribological, anti-corrosive properties and biocompatibility of the micro-and nano-crystalline diamond coated Ti6Al4V. Surf Coat Technol 258:1032–1038CrossRefGoogle Scholar
  11. 11.
    Schafer L, Hofer M, Kroger R (2006) The versatility of hot-filament activated chemical vapor deposition. Thin Solid Films 515:1017–1024CrossRefGoogle Scholar
  12. 12.
    Liu MN, Bian YB, Zheng SJ, Zhua T, Chena YG, Chenb YL, Wang JS (2015) Growth and mechanical properties of diamond films on cemented carbide with buffer layers. Thin Solid Films 584:165–169CrossRefGoogle Scholar
  13. 13.
    May PW, Smith JA, Mankelevich Y (2006) Deposition of NCD films using hot filament CVD and Ar/CH4/H2 gas mixtures. Diam Relat Mater 15:345–352CrossRefGoogle Scholar
  14. 14.
    Tsai H-Y, Tseng P-T (2015) Field emission characteristics of diamond nano-tip array fabricated by anodic aluminum oxide template with nano-conical holes. Appl Surf Sci 351:1004–1010CrossRefGoogle Scholar
  15. 15.
    Chen N, Pua L, Sunb F, He P, Zhua Q, Ren J (2015) Tribological behavior of HFCVD multilayer diamond film on silicon carbide. Surf Coat Technol 272:66–71CrossRefGoogle Scholar
  16. 16.
    Long H, Lia S, Luo H, Wang Y, Wei P, Yu ZM (2015) The effect of periodic magnetic field on the fabrication and field emission properties of nanocrystalline diamond films. Appl Surf Sci 353:548–552CrossRefGoogle Scholar
  17. 17.
    Sarangi SK, Chattopadhyay A, Chattopadhyay AK (2012) Influence of process parameters on growth of diamond crystal on cemented carbide substrates by HFCVD system. Int J Refract Met Hard Mater 31:1–13CrossRefGoogle Scholar
  18. 18.
    Liang Q, Stanishevsky A, Vohra YK (2008) Tribological properties of undoped and boron-doped nanocrystalline diamond films. Thin Solid Films 517:800–804CrossRefGoogle Scholar
  19. 19.
    Ali M, Urgen M (2011) Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations. Appl Surf Sci 257:8420–8426CrossRefGoogle Scholar
  20. 20.
    Trava-Airoldi VJ, Corat EJ, Peiia AFV, Leite NF, Baranauskas V, Salvadori MC (1995) Columnar CVD diamond growth structure on irregular surface substrates. Diam Relat Mater 4:1255–1259CrossRefGoogle Scholar
  21. 21.
    Jeon ID, Park CJ, Kim DY, Hwang NM (2001) Effect of methane concentration on size of charged clusters in the hot filament diamond CVD process. J Cryst Growth 223:6–14CrossRefGoogle Scholar
  22. 22.
    Williams OA, Daenen M, D’Haen J, Haenen K, Maes J, Moshchalkov VV, Nesládek M, Gruen DM (2006) Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam Relat Mater 15:654–658CrossRefGoogle Scholar
  23. 23.
    Buijnsters JG, Vázquez L, ter Meulen JJ (2009) Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth. Diam Relat Mater 18:1239–1246CrossRefGoogle Scholar
  24. 24.
    Sumant AV, Grierson DS, Gerbi JE, Carlisle JA, Auciello O, Carpick RW (2007) Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties. Phys Rev B 76:235429CrossRefGoogle Scholar
  25. 25.
    Amaral M, Silva DJ, Fernandes AJS, Costa FM, Oliveira FJ, Silva RF (2009) Surface activation pre-treatments for NCD films grown by HFCVD. Vacuum 83:1228–1232CrossRefGoogle Scholar
  26. 26.
    Miyoshi K, Wu RLC (2001) Measurements and diagnostics of diamond films and coatings. Measurement 29:113–126CrossRefGoogle Scholar
  27. 27.
    Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385–393CrossRefGoogle Scholar
  28. 28.
    Gruen DM (1999) Nanocrystalline diamond films. Annu Rev Mater Sci 29:211–259CrossRefGoogle Scholar
  29. 29.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  30. 30.
    Wiora M, Brühne K, Flöter A, Gluche P, Willey TM, Kucheyev SO, Van Buuren AW, Hamza AV, Biener J, Fecht HJ (2009) Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD. Diam Relat Mater 18:927–930CrossRefGoogle Scholar
  31. 31.
    Michler J, Mermoux M, von Kaenel Y, Haouni A, Lucazeau G, Blank E (1999) Residual stress in diamond films: origins and modelling. Thin Solid Films 357:189–201CrossRefGoogle Scholar
  32. 32.
    Chowdhury S, De Barra E, Laugier T (2004) Study of mechanical properties of CVD diamond on SiC substrates. Diam Relat Mater 13:1625–1631CrossRefGoogle Scholar
  33. 33.
    Catledge SA, Borham J, Vohra YK, Lacefield WR, Lemons JE (2002) Nanoindentation hardness and adhesion investigations of vapor deposited nanostructured diamond films. J Appl Phys 91:5347–5352CrossRefGoogle Scholar
  34. 34.
    Narayan RJ, Wei W, Jin C, Andara M, Agarwal A, Gerhardt RA, Shih CC, Shih CM, Lin SJ, Su YY, Ramamurti R, Singh RN (2006) Microstructural and biological properties of nanocrystalline diamond coatings. Diam Relat Mater 15:1935–1940CrossRefGoogle Scholar
  35. 35.
    Kulisch W, Popov C, Boycheva S, Buforn L, Favaro G, Conte N (2004) Mechanical properties of nanocrystalline diamond/amorphous carbon composite films prepared by microwave plasma chemical vapour deposition. Diam Relat Mater 13:1997–2002CrossRefGoogle Scholar
  36. 36.
    Achanta S, Liskiewicz T, Drees D, Celis JP (2009) Friction mechanisms at the micro-scale. Tribol Int 42:1792–1799CrossRefGoogle Scholar
  37. 37.
    Panda K, Kumar N, Panigrahi B, Polaki S, Sundaravel B, Dash S, Tyagi A, Lin I-N (2013) Tribological properties of N+ ion implanted ultrananocrystalline diamond films. Tribol Int 57:124–136CrossRefGoogle Scholar
  38. 38.
    Kulesza S, Patyk J, Rozpłoch F (2004) Spontaneous decrease of high surface electrical conductivity in diamond exposed to atmospheric air. Chem Phys Lett 391:56–59CrossRefGoogle Scholar
  39. 39.
    Erdemir A, Bindal C, Fenske G, Zuiker C, Krauss A, Gruen D (1996) Friction and wear properties of smooth diamond films grown in fullerene+ argon plasmas. Diam Relat Mater 5:923–931CrossRefGoogle Scholar
  40. 40.
    Pepper SV (1982) Effect of electronic structure of the diamond surface on the strength of the diamond–metal interface. J Vac Sci Technol 20:643–646CrossRefGoogle Scholar
  41. 41.
    Hollman P, Wänstrand O, Hogmark S (1998) Friction properties of smooth nanocrystalline diamond coatings. Diam Relat Mater 7:1471–1477CrossRefGoogle Scholar
  42. 42.
    Pastewka L, Moser S, Gumbsch P, Moseler M (2011) Anisotropic mechanical amorphization drives wear in diamond. Nat Mater 10:34–38CrossRefGoogle Scholar
  43. 43.
    Grierson DS, Carpick RW (2007) Nanotribology of carbon-based materials. Nano Today 2:12–21CrossRefGoogle Scholar
  44. 44.
    Kumar N, Panda K, Dash S, Popov C, Reithmaier J, Panigrahi B, Tyagi A, Raj B (2012) Tribological properties of nanocrystalline diamond films deposited by hot filament chemical vapor deposition. AIP Adv 2:032164CrossRefGoogle Scholar
  45. 45.
    Wiora M, Brühne K, Flöter A, Gluche P, Willey T, Kucheyev S, Van Buuren A, Hamza A, Biener J, Fecht H-J (2009) Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD. Diam Relat Mater 18:927–930CrossRefGoogle Scholar
  46. 46.
    Bull SJ, Mathews A (1992) Diamond for wear and corrosion applications. Diam Relat Mater 1:1049–1064CrossRefGoogle Scholar
  47. 47.
    Muratov VA, Luangvaranunt T, Fischer TE (1998) The tribochemistry of silicon nitride: effects of friction, temperature and sliding velocity. Tribol Int 31:601–611CrossRefGoogle Scholar
  48. 48.
    Bull SJ (1995) Tribology of carbon coatings: DLC, diamond and beyond. Diam Relat Mater 4:827–836CrossRefGoogle Scholar
  49. 49.
    Kato K (1992) Micro-mechanisms of wear–wear modes. Wear 153:277–295CrossRefGoogle Scholar
  50. 50.
    Blomberg A, Hogmark S, Lu J (1993) An electron microscopy study of worn ceramic surfaces. Tribol Int 26:369–381CrossRefGoogle Scholar
  51. 51.
    Fischer TE, Tomizawa E (1985) Interaction of tribochemistry and microfracture in the friction and wear of silicon nitride. Wear 105:29–45CrossRefGoogle Scholar
  52. 52.
    Fischer TE (1988) Tribochemistry. Annu Rev Mater Sci 18:303–323CrossRefGoogle Scholar
  53. 53.
    Bull SJ, Chalker PR, Johnston C, Moore V (1994) The effect of roughness on the friction and wear of diamond thin films. Surf Coat Technol 68–69:603–610CrossRefGoogle Scholar
  54. 54.
    Erdemir A, Halter M, Fenske GR, Zuiker C, Csencsits R, Krauss AR, Gruen DM (1997) Friction and wear mechanisms of smooth diamond films during sliding in air and dry nitrogen. Tribol Trans 40:667–675CrossRefGoogle Scholar
  55. 55.
    Kumar N, Radhika R, Kozakov AT, Sankaran KJ, Dash S, Tyagi AK, Tai NH, Lin N (2013) Humidity-dependent friction mechanism in an ultrananocrystalline diamond film. Appl Phys 46:275501Google Scholar
  56. 56.
    Chandrasekar S, Bhushan B (1992) The role of environment in the friction of diamond for magnetic recording head applications. Wear 153:79–89CrossRefGoogle Scholar
  57. 57.
    Miyoshi K, Wu RLC, Garscadden A, Barnes PN, Jackson HE (1993) Friction and wear of plasma‐deposited diamond films. J Appl Phys 74:4446–4454CrossRefGoogle Scholar
  58. 58.
    Erdemir A (2002) Friction and wear of diamond and diamond-like carbon films. J Eng Tribol 216:387–400Google Scholar
  59. 59.
    Miki H, Tsutsui A, Takeno T, Takagi T (2012) Friction properties of partially polished CVD diamond films at different sliding speeds. Diam Relat Mater 24:167–170CrossRefGoogle Scholar
  60. 60.
    Hayward IP, Singer IL, Seitzman LE (1992) Effect of roughness on the friction of diamond on CVD diamond coatings. Wear 157:215–227CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sajad Hussain Din
    • 1
  • N. A. Sheikh
    • 1
  • M. Mursaleen Butt
    • 1
  1. 1.Department of Mechanical EngineeringNational Institute of Technology SrinagarSrinagarIndia

Personalised recommendations