Improved Performance of 1-Ethyl-3-Methylimidazolium Tetrafluoroborate at Steel/HCl Interface by Iodide Ions

  • Husnu Gerengi
  • Moses M. Solomon
  • Saviour A. Umoren
  • H. Ibrahim Ugras
  • Mesut Yildiz
  • Pawel Slepski
Article
  • 79 Downloads

Abstract

The corrosion and corrosion inhibition of St37 steel in 0.1 M HCl solution by 1-ethyl-3-methylimidazolium tetrafluoroborate (EMITFB) and the effect of addition of KI on the inhibitive performance of EMITFB have been examined by electrochemical [electrochemical impedance spectroscopy, potentiodynamic polarization, and dynamic electrochemical impedance spectroscopy (DEIS)] and surface examination [scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS)] techniques. Results show that EMITFB could only afford the protection of St37 steel in HCl medium on an average scale. The highest studied concentration of EMITFB (4 mM) affords optimum inhibition efficiency of 78.86% from DEIS method. Addition of iodide ions to EMITFB has beneficial effect on the inhibition efficiency; 86.10% has been achieved by addition of 1 mM KI to 4 mM EMITFB. Adsorption of EMITFB molecules onto the metal surface is via physical adsorption mechanism and follows El Awady et al. kinetic/thermodynamic adsorption isotherm model. SEM and EDS results confirm the improvement of corrosion inhibiting ability of EMITFB by iodide ions. EMITFB and EMITFB + KI behave as mixed-type corrosion inhibitor in the studied environment.

Keywords

St37 steel Acid solution Corrosion Ionic liquid Corrosion inhibition Iodide ions 

Notes

Funding

Husnu Gerengi thanks the Scientific and Technological Research Council of Turkey for the financial support under the TUBİTAK-114M933 coded project. Moses M. Solomon is grateful to King Fahd University of Petroleum and Minerals, Saudi Arabia for accepting him as a Postdoctoral Research Fellow.

Compliance with Ethical Standards

Conflict of interest

The authors declare that no conflict of interest exist with this manuscript.

References

  1. 1.
    Abd El Rehim SS, Ibrahim MAM, Khalid KF (2001) The inhibition of 4-(2′-amino-5′-methylphenylazo) antipyrine on corrosion of mild steel in HCl solution. Mater Chem Phys 70(3):268–273CrossRefGoogle Scholar
  2. 2.
    Afia L, Salghi R, Zarrouk A, Zarrok H, Bazzi EH, Hammouti B, Zougagh M (2013) Comparative study of corrosion inhibition on mild steel in HCl medium by three green compounds: Argania spinosa press cake, kernels and hulls extracts. Trans Indian Inst Met 66(1):43–49CrossRefGoogle Scholar
  3. 3.
    Ansari KR, Quraishi MA, Singh A (2015) Corrosion inhibition of mild steel in hydrochloric acid by some pyridine derivatives: an experimental and quantum chemical study. J Ind Eng Chem 25(1):89–98CrossRefGoogle Scholar
  4. 4.
    Ateya BG, El-Anadouli BE, El-Nizamy FM (1984) The adsorption of thiourea on mild steel. Corros Sci 24(6):509–515CrossRefGoogle Scholar
  5. 5.
    Bai L, Feng LJ, Wang HY, Lu YB, Lei XW, Bai FL (2015) Comparison of the synergistic effect of counterions on the inhibition of mild steel corrosion in acid solution: electrochemical, gravimetric and thermodynamic studies. RSC Adv 5(1):4716–4726CrossRefGoogle Scholar
  6. 6.
    Bilgic S, Sahin M (2001) The corrosion inhibition of austenitic chromium–nickel steel in H2SO4 by 2-butyn-1-ol. Mater Chem Phys 70(3):290–295CrossRefGoogle Scholar
  7. 7.
    Diamanti MV, Verlardi UV, Brenna A, Mele A, Pedeferri MP, Ormellese M (2016) Compatibility of imidazolium-based ionic liquids for CO2 capture with steel alloys: a corrosion perspective. Electrochim Acta 192(1):414–421CrossRefGoogle Scholar
  8. 8.
    El-Awady AA, Abd-El-Nabey AB, Aziz SG (1992) Kinetic-thermodynamic and adsorption isotherms analyses for the inhibition of the acid corrosion of steel by cyclic and open-chain amines. J Electrochem Soc 139:2149–2154CrossRefGoogle Scholar
  9. 9.
    Gerengi H, Jazdzewska A, Kurtay M (2015) A comprehensive evaluation of mimosa extract as a corrosion inhibitor on AA6060 alloy in acid rain solution: part I. Electrochemical AC methods. J Adhes Sci Technol 29(1):36–48CrossRefGoogle Scholar
  10. 10.
    Gerengi H, Slepski P, Bereket G (2013) Dynamic electrochemical impedance spectroscopy and polarization studies to evaluate the inhibition effect of benzotriazole on copper-manganese-aluminium alloy in artificial sea water. Mater Corros 64(11):1024–1031CrossRefGoogle Scholar
  11. 11.
    Gerengi H, Ugras HI, Solomon MM, Umoren SA, Kurtay M, Atar N (2016) Synergistic corrosion inhibition effect of 1-ethyl-1-methylpyrrolidinium tetrafluoroborate and iodide ions for low carbon steel in HCl solution. J Adhes Sci Technol 30(21):2383–2403CrossRefGoogle Scholar
  12. 12.
    Hanza AP, Naderi R, Kowsari E, Sayebani M (2016) Corrosion behavior of mild steel in H2SO4 solution with 1,4-di[1-methylene-3-methyl imidazolium bromide]-benzene as an ionic liquid. Corros Sci 107(1):96–106CrossRefGoogle Scholar
  13. 13.
    Hassan SA, Hadi AK (2015) Sudan III as corrosion inhibitor for carbon steel St37-2 in H2SO4 solutions. Int J Recent Sci Res 6(7):5445–5453Google Scholar
  14. 14.
    He X, Jiang Y, Li C, Wang W, Hou B, Wu L (2014) Inhibition properties and adsorption behavior of imidazole and 2-phenyl-2-imidazoline on AA5052 in 1.0 M HCl solution. Corros Sci 83(1):124–136CrossRefGoogle Scholar
  15. 15.
    Jeyaprabha C, Sathiyanarayanan S, Venkatachari G (2006) Influence of halide ions on the adsorption of diphenylamine on iron in 0.5 M H2SO4 solution. Electrochim Acta 51(1):4080–4088CrossRefGoogle Scholar
  16. 16.
    Jeyaprabha C, Sathiyanarayanan S, Muralidharan S, Venkatachari G (2006) Corrosion inhibition of iron in 0.5 mol L−1 H2SO4 by halide ions. J Braz Chem Soc 17(1):61–67CrossRefGoogle Scholar
  17. 17.
    Kannan P, Karthikeyan J, Murugan P, Rao TS, Rajendran N (2016) Corrosion inhibition effect of novel methyl benzimidazolium ionic liquid for carbon steel in HCl medium. J Mol Liq 221(1):368–380CrossRefGoogle Scholar
  18. 18.
    Khamis A, Saleh MM, Awad MI, El-Anadouli BE (2014) Inhibitory action of quaternary ammonium bromide on mild steel and synergistic effect with other halide ions in 0.5 M H2SO4. J Adv Res 5(6):637–646CrossRefGoogle Scholar
  19. 19.
    Kowsari E, Arman SY, Shahini MH, Zandi H, Ehsani A, Naderi R, PourghasemiHanza A, Mehdipour M (2016) In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1 M HCl solution. Corros Sci 112(1):73–85CrossRefGoogle Scholar
  20. 20.
    Li X, Deng S, Xie X (2014) Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution. Corros Sci 81(1):162–175CrossRefGoogle Scholar
  21. 21.
    Likhanova NV, Dominguez-Aguilar MA, Olivares-Xometl O, Nava-Entzana N, Arce E, Dorantes H (2010) The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros Sci 52(6):2088–2097CrossRefGoogle Scholar
  22. 22.
    Meresht ES, Farahani TS, Neshati J (2012) 2-Butyne-1,4-diol as anovel corrosion inhibitor for API X65 steel pipeline in carbonate/bicarbonatesolutioni. Corros Sci 54(1):36–44CrossRefGoogle Scholar
  23. 23.
    Mourya P, Singh P, Rastogi RB, Singh MM (2016) Inhibition of mild steel corrosion by1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0.5 M H2SO4. Appl Surf Sci 380(1):141–150CrossRefGoogle Scholar
  24. 24.
    Nagaraja S, Rajendran N (2010) Electrochemical corrosion behaviour of alloy 31 using dynamic electrochemical impedance spectroscopy. Trans Mater Res Soc Jpn 35(3):631–634CrossRefGoogle Scholar
  25. 25.
    Nasibi M, Mohammady M, Ghasemi E, Ashrafi A, Zaarei D, Rashed G (2013) Corrosion inhibition of mild steel by Nettle (Urticadioica L.) extract: polarization, EIS, AFM, SEM and EDS studies. J Adhes Sci Technol 27(17):1873–1885CrossRefGoogle Scholar
  26. 26.
    Obot IB, Madhankumar A (2016) Synergistic effect of iodide ion addition on the inhibition of mild steel corrosion in 1 M HCl by 3-amino-2 methylbenzylalcohol. Mater Chem Phys 177(1):266–275CrossRefGoogle Scholar
  27. 27.
    Safak S, Duran B, Yurt A, Türkoglu G (2012) Schiff bases as corrosion inhibitor for aluminium in HCl solution. Corros Sci 54(1):251–259CrossRefGoogle Scholar
  28. 28.
    Sasikumar Y, Adekunle AS, Olasunkanmi LO, Bahadur I, Baskar R, Kabanda MM, Obot IB, Ebenso EE (2015) Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J Mol Liq 211(1):105–118CrossRefGoogle Scholar
  29. 29.
    Singh AK, Shukla SK, Quraishi MA (2011) Corrosion behaviour of mild steel in sulphuric acid solution in presence of ceftazidime. Int J Electrochem Sci 6(11):5802–5814Google Scholar
  30. 30.
    Solomon MM, Umoren SA (2015) Enhanced corrosion inhibition of mild steel by polypropylene glycol in the presence of iodide ions in acid solutions. J Environ Chem Eng 3(3):1812–1826CrossRefGoogle Scholar
  31. 31.
    Solomon MM, Umoren SA (2015) Performance assessment of poly (methacrylic acid)/silver nanoparticles composite as corrosion inhibitor for aluminium in acidic environment. J Adhes Sci Technol 29(11):2311–2333CrossRefGoogle Scholar
  32. 32.
    Solomon MM, Umoren SA (2015) “Performance evaluation of poly (methacrylic acid) as corrosion inhibitor in the presence of iodide ions for mild steel in H2SO4 solution. J Adhes Sci Technol 29(11):1060–1080CrossRefGoogle Scholar
  33. 33.
    Solomon MM, Umoren SA (2016) In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steelcorrosion in acid solution. J Colloid Interface Sci 462(1):29–41CrossRefGoogle Scholar
  34. 34.
    Solomon MM, Umoren SA, Abai EJ (2015) Poly(methacrylic acid)/silver nanoparticles composites: in situ preparation, characterization and anticorrosion property for mild steel in H2SO4 solution. J Mol Liq 212(1):340–351CrossRefGoogle Scholar
  35. 35.
    Solomon MM, Umoren SA, Udousoro II, Udoh AP (2010) Inhibitive and adsorption behavior of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corros Sci 52(4):1317–1325CrossRefGoogle Scholar
  36. 36.
    Solomon MM, Umoren SA, Udousoro II, Israel AU, Etim IG (2016) Synergistic inhibition of aluminium corrosion in H2SO4 solution by polypropylene glycol in the presence of iodide ions. Pigment Resin Technol 45(4):280–293CrossRefGoogle Scholar
  37. 37.
    Tawfik SM (2016) Ionic liquids based gemini cationic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution. J Mol Liq 216(1):624–635CrossRefGoogle Scholar
  38. 38.
    Tuken T, Demir F, Kıcır N, Sıgırcık G, Erbil M (2012) Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corros Sci 59(1):110–118CrossRefGoogle Scholar
  39. 39.
    Umoren S, Solomon MM, Israel AU, Eduok UM, Jonah AE (2015) Comparative study of the corrosion inhibition efficacy of polypropylene glycol and poly(methacrylic acid) for mild steel in acid solution. J Dispers Sci Technol 36(12):1721–1735CrossRefGoogle Scholar
  40. 40.
    Umoren SA, Solomon MM (2014) Effect of halide ions on the corrosion inhibition efficiency of different organic species—a review. J Ind Eng Chem 21(1):81–100Google Scholar
  41. 41.
    Umoren SA, Banera MJ, Alonso-Garcia T, Gervasi CA, Mirífico MV (2013) Inhibition of mild steel corrosion in HCl solution using chitosan. Cellulose 20(1):29–2545Google Scholar
  42. 42.
    Umoren SA, Solomon MM, Eduok UB, Obot IB, Israel AU (2014) Inhibition of mild steel corrosion in H2SO4 solution by coconut coir dust extract obtained from different solvent systems and synergistic effect of iodide ions: ethanol and acetone extracts. J Environ Chem Eng 2(2):1040–1060CrossRefGoogle Scholar
  43. 43.
    Umoren SA, Solomon MM, Udousoro II, Udoh AP (2010) Synergistic and antagonistic effects between halide ions and carboxymethyl cellulose for the corrosion inhibition of mild steel in sulphuric acid solution. Cellulose 17(3):635–648CrossRefGoogle Scholar
  44. 44.
    Zhang QB, Hua YX (2009) Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochim Acta 54(6):1881–1887CrossRefGoogle Scholar
  45. 45.
    Zhang S, Sun N, He X, Lu X, Zhang X (2006) Physical properties of ionic liquids:database and evaluation. J Phys Chem 35(4):1475–1517Google Scholar
  46. 46.
    Zheng X, Zhang S, Li W, Gong M, Yin L (2015) Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution. Corros Sci 95(1):168–179CrossRefGoogle Scholar
  47. 47.
    Zhou X, Yang H, Wang F (2011) [BMIM]BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochim Acta 56(11):4268–4275CrossRefGoogle Scholar
  48. 48.
    Zou C, Yan X, Qin Y, Wang M, Liu Y (2014) Inhibiting evaluation of β-Cyclodextrin-modified acrylamide polymer on alloy steel in sulfuric solution. Corros Sci 85(1):445–454CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Husnu Gerengi
    • 1
  • Moses M. Solomon
    • 2
  • Saviour A. Umoren
    • 2
  • H. Ibrahim Ugras
    • 3
  • Mesut Yildiz
    • 1
  • Pawel Slepski
    • 4
  1. 1.Corrosion Research Laboratory, Department of Mechanical Engineering, Faculty of EngineeringDuzce UniversityDuzceTurkey
  2. 2.Centre of Research Excellence in Corrosion, Research InstituteKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Department of Chemistry, Faculty of SciencesDuzce UniversityDuzceTurkey
  4. 4.Department of Electrochemistry, Corrosion and Materials EngineeringGdansk University of TechnologyGdańskPoland

Personalised recommendations