Bioceramic Coatings on Magnesium Alloys

  • Anil MahapatroEmail author
  • Sai A. Arshanapalli
Part of the following topical collections:
  1. Surface Modifications and Coatings


Magnesium (Mg)-based materials have attracted interest as for its use as a biodegradable metallic implant material. However, one of the main challenges in the use of magnesium and its alloys for biomedical applications is its poor corrosion resistance in physiological environments. Surface coatings to control biodegradation of magnesium offer the flexibility to be easily modified for specific applications and have significantly less investment. Hydroxyapatite-based bioceramic coatings on metallic implants have been favorably viewed because of its excellent bioactivity and biocompatibility and the fact that the composition of hydroxyapatite is similar to that of natural bone. In this manuscript, we discuss the context of magnesium as biodegradable metal, current challenges on use of magnesium-based materials for biomedical applications. Focusing specifically on orthopedic applications, we elaborate on calcium phosphate-based bioceramic coatings. Recent work on hydroxyapatite coatings on magnesium, fabrication process and the biological response of the coatings are highlighted.


Magnesium alloy Biodegradable metals Bioceramic coatings Hydroxyapatite 


Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Wong HM, Yeung KW, Lam KO, Tam V, Chu PK, Luk KD et al (2010) A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31(8):2084–2096CrossRefGoogle Scholar
  2. 2.
    Frosch K-H, Stürmer K (2006) Metallic Biomaterials in Skeletal Repair. Eur J Trauma 32(2):149–159CrossRefGoogle Scholar
  3. 3.
    Gehrig LMB (2011) Orthopedic surgery. Am J Surg 202(3):364–368CrossRefGoogle Scholar
  4. 4.
    Scholz MS, Blanchfield JP, Bloom LD, Coburn BH, Elkington M, Fuller JD et al (2011) The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos Sci Technol 71(16):1791–1803CrossRefGoogle Scholar
  5. 5.
    Iizuka T, Hallermann W, Seto I, Smolka W (2006) A titanium arch bar for maxillomandibular fixation in oral and maxillofacial surgery. J Oral Maxillofac Surg 64(6):989–992CrossRefGoogle Scholar
  6. 6.
    Koul S, Moliterno DJ (2009) Bare-metal versus drug-eluting stent placement among patients presenting with anemia. JACC Cardiovasc Interv 2(4):337–338CrossRefGoogle Scholar
  7. 7.
    Bhure R, Mahapatro A, Bonner C, Abdel-Fattah TM (2013) In vitro stability study of organophosphonic self assembled monolayers (SAMs) on cobalt chromium (Co–Cr) alloy. Mater Sci Eng, C 33(4):2050–2058CrossRefGoogle Scholar
  8. 8.
    Abdel-Fattah TM, Loftis D, Mahapatro A (2011) Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel. J Biomed Nanotechnol 7(6):794–800CrossRefGoogle Scholar
  9. 9.
    Bhure R, Abdel-Fattah TM, Bonner C, Hall JC, Mahapatro A (2010) Formation of nanosized phosphonic acid self assembled monolayers on cobalt-chromium alloy for potential biomedical applications. J Biomed Nanotechnol 6:117–128CrossRefGoogle Scholar
  10. 10.
    Puleo DA, Huh WW (1995) Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J Appl Biomater Off J Soc Biomater 6(2):109–116CrossRefGoogle Scholar
  11. 11.
    Kulshrestha AS, Mahapatro LA, Henderson LA (2012) Biomaterials. ACS Symposium Series. Oxford University Press, OxfordGoogle Scholar
  12. 12.
    Matos TD, King N, Simmons L, Walker C, McClain AR, Mahapatro A et al (2011) Microwave assisted lipase catalyzed solvent-free poly-caprolactone synthesis. Green Chem Lett 4(1):73–79CrossRefGoogle Scholar
  13. 13.
    Mahapatro A, Matos Negrón TD (2013) Biodegradable poly-pentadecalactone (PDL) synthesis via synergistic lipase and microwave catalysis. Am J Biomed Eng 3(1):9–13Google Scholar
  14. 14.
    Mahapatro A, Matos Negrón TD (2013) Microwave-assisted biocatalytic polymerizations. In: Green polymer chemistry: biocatalysis and materials II, vol 1144. American Chemical Society, pp 69–80Google Scholar
  15. 15.
    Smith EJ, Jain AK, Rothman MT (2006) New Developments in Coronary Stent Technology. J Interv Cardiol 19(6):493–499CrossRefGoogle Scholar
  16. 16.
    Erne P, Schier M, Resink T (2006) The road to bioabsorbable stents: reaching clinical reality? CardioVasc Interv Radiol 29(1):11–16CrossRefGoogle Scholar
  17. 17.
    Ron W (2006) Update on bioabsorbable stents: from bench to clinical. J Interv Cardiol 19(5):414–421CrossRefGoogle Scholar
  18. 18.
    Mahapatro A, Malladi L (2016) Fabrication of hybrid polymeric-metallic foams as scaffolds for bone tissue engineering. Soc Plast Eng ANTEC 2016:1861–1864Google Scholar
  19. 19.
    Waizy H, Seitz J-M, Reifenrath J, Weizbauer A, Bach F-W, Meyer-Lindenberg A et al (2013) Biodegradable magnesium implants for orthopedic applications. J Mater Sci 48(1):39–50CrossRefGoogle Scholar
  20. 20.
    Mahapatro A, Matos Negron TD, Gomes AS (2016) Nanostructured self assembled monolayers on magnesium for improved biological performance. Mater Technol 31(13):818–827CrossRefGoogle Scholar
  21. 21.
    Mahapatro A (2015) Bio-functional nano-coatings on metallic biomaterials. Mater Sci Eng, C 55:227–251CrossRefGoogle Scholar
  22. 22.
    Mahapatro A, Taina M, Nguyen A (2015) Spectroscopic evaluations of interfacial oxidative stability of phosphonic nanocoatings on magnesium. J Spectrosc 2015:8CrossRefGoogle Scholar
  23. 23.
    Mahapatro A, Negron TMD, Arshanapalli SA, Gomes AS, Yao L (2015) Fabrication, biofunctionality and biocompatibility evaluations of octadecyltrichlorosilane nano coatings on magnesium alloy. J Nanoeng Nanomanuf 5(4):294–303CrossRefGoogle Scholar
  24. 24.
    Mahapatro A, Kumar SS (2015) Determination of ionic liquid and magnesium compatibility via microscopic evaluations. J Adv Microsc Res 10(2):89–92CrossRefGoogle Scholar
  25. 25.
    Bontrager J, Mahapatro A, Gomes AS (2014) Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions. J Microsc 255(2):104–115Google Scholar
  26. 26.
    Mahapatro A (2012) Metals for biomedical applications and devices. J Biomater Tissue Eng 2(4):259–268CrossRefGoogle Scholar
  27. 27.
    Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10):1329–1344CrossRefGoogle Scholar
  28. 28.
    Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30(4):484–498CrossRefGoogle Scholar
  29. 29.
    Mehta DS, Masood SH, Song WQ (2004) Investigation of wear properties of magnesium and aluminum alloys for automotive applications. J Mater Process Technol 155–156:1526–1531CrossRefGoogle Scholar
  30. 30.
    Yang Z, Li JP, Zhang JX, Lorimer GW, Robson J (2008) Review on research and development of magnesium alloys. Acta Metall Sinica (English Lett) 21(5):313–328CrossRefGoogle Scholar
  31. 31.
    Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRefGoogle Scholar
  32. 32.
    Yang J, Cui F-Z, Lee IS, Wang X (2010) Plasma surface modification of magnesium alloy for biomedical application. Surf Coat Technol 205, Supplement 1:S182–S187CrossRefGoogle Scholar
  33. 33.
    Vormann J (2003) Magnesium: nutrition and metabolism. Mol Asp Med 24(1–3):27–37CrossRefGoogle Scholar
  34. 34.
    Okuma T (2001) Magnesium and bone strength. Nutrition 17(7–8):679–680CrossRefGoogle Scholar
  35. 35.
    Harrison R, Maradze D, Lyons S, Zheng Y, Liu Y (2014) Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment. Prog Nat Sci Mater Int 24(5):539–546CrossRefGoogle Scholar
  36. 36.
    Meyer U, Büchter A, Wiesmann HP, Joos U, Jones DB (2005) Basic reactions of osteoblasts on structured material surfaces. Eur Cells Mater 9:39–49CrossRefGoogle Scholar
  37. 37.
    Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):1–27CrossRefGoogle Scholar
  38. 38.
    Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R Rep 77:1–34CrossRefGoogle Scholar
  39. 39.
    Maguire M, Cowan J (2002) Magnesium chemistry and biochemistry. Biometals 15(3):203–210CrossRefGoogle Scholar
  40. 40.
    Avedesian MM, Baker H (1999) Magnesium and magnesium alloys. ASM International, Materials Parks, p 10Google Scholar
  41. 41.
    Avedesian MM, Baker H, Committee AIH (1999) Magnesium and magnesium alloys. Mater Information Society, ASM InternationalGoogle Scholar
  42. 42.
    Guo KW (2010) A review of magnesium/magnesium alloys corrosion and its protection. Recent Pat Corros Sci 2:13–21CrossRefGoogle Scholar
  43. 43.
    I.J P. 5 - Magnesium alloys. Light Alloys (Fourth Edition). Oxford: Butterworth-Heinemann; 2005. p. 237–97Google Scholar
  44. 44.
    Watarai H (2006) Trend of research and development for magnesium alloys: reducing the weight of structural materials in motor vehicles. Sci Technol Trends 18:84–97Google Scholar
  45. 45.
    Mezbahul-Islam M, Mostafa AO, Medraj M (2014) Essential magnesium alloys binary phase diagrams and their thermochemical data. J Mater 2014:33Google Scholar
  46. 46.
    Mahapatro A, Matos Negrón TD, Bonner C, Abdel-Fattah TM (2013) Nanolayers on magnesium (Mg) alloy for metallic bone tissue engineering scaffolds. J Biomater Tissue Eng 3(2):196–204CrossRefGoogle Scholar
  47. 47.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ et al (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563CrossRefGoogle Scholar
  48. 48.
    Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A et al (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27(7):1013–1018CrossRefGoogle Scholar
  49. 49.
    Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12(5–6):63–72CrossRefGoogle Scholar
  50. 50.
    Song G, Atrens A (2007) Recent insights into the mechanism of magnesium corrosion and research suggestions. Adv Eng Mater 9(3):177–183CrossRefGoogle Scholar
  51. 51.
    Ducheyne P, Qiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20(23–24):2287–2303CrossRefGoogle Scholar
  52. 52.
    Atrens A, Song G-L, Liu M, Shi Z, Cao F, Dargusch MS (2015) Review of recent developments in the field of magnesium corrosion. Adv Eng Mater 17(4):400–453CrossRefGoogle Scholar
  53. 53.
    Hänzi AC, Gunde P, Schinhammer M, Uggowitzer PJ (2009) On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomater 5(1):162–171CrossRefGoogle Scholar
  54. 54.
    Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8(3):925–936CrossRefGoogle Scholar
  55. 55.
    Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys - a review. Acta Biomater 8(7):2442–2455CrossRefGoogle Scholar
  56. 56.
    Shashikala AR, Umarani R, Mayanna SM, Sharma AK (2008) Chemical conversion coatings on magnesium alloys: a comparative study. Int J Electrochem Sci 3:993–1004Google Scholar
  57. 57.
    Mahapatro A, Hakim J, Crane JB, Kumar SS (2013) Electrodeposition of niobium on magnesium using green ionic liquids. ECS Trans 53(19):77–81CrossRefGoogle Scholar
  58. 58.
    Song YW, Shan DY, Han EH (2008) Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett 62(17):3276–3279CrossRefGoogle Scholar
  59. 59.
    Oosterbeek RN, Seal CK, Seitz J-M, Hyland MM (2013) Polymer–bioceramic composite coatings on magnesium for biomaterial applications. Surf Coat Technol 236:420–428CrossRefGoogle Scholar
  60. 60.
    Yamamoto A, Terawaki T, Tsubakino H (2008) Microstructures and corrosion properties on fluoride treated magnesium alloy. Mater Trans 49(7):1042–1044CrossRefGoogle Scholar
  61. 61.
    Gray JE, Luan B (2002) Protective coatings on magnesium and its alloys — a critical review. J Alloys Compd 336(1–2):88–113CrossRefGoogle Scholar
  62. 62.
    Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC (2013) An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res, Part A 101(11):3349–3364Google Scholar
  63. 63.
    Dorozhkin SV (2007) Bioceramics based on calcium orthophosphates (Review). Glass Ceram 64(11):442–447CrossRefGoogle Scholar
  64. 64.
    Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052CrossRefGoogle Scholar
  65. 65.
    Morgan H, Wilson RM, Elliott JC, Dowker SE, Anderson P (2000) Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. Biomaterials 21(6):617–627CrossRefGoogle Scholar
  66. 66.
    Silva RV, Camilli JA, Bertran CA, Moreira NH (2005) The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg 34(2):178–184CrossRefGoogle Scholar
  67. 67.
    Deram V, Minichiello C, Vannier R, Le Maguer A, Murano D (2003) Microstructural characterizations of plasma sprayed hydroxyapatite coatings. Surf Coat Technol 166:153–159CrossRefGoogle Scholar
  68. 68.
    Oryan A, Meimandi-Parizi A, Shafiei-Sarvestani Z, Bigham AS (2012) Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank 13(4):639–651CrossRefGoogle Scholar
  69. 69.
    Kikuchi M (2013) Hydroxyapatite/collagen bone-like nanocomposite. Biol Pharm Bull 36(11):1666–1669CrossRefGoogle Scholar
  70. 70.
    Burg KJL, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359CrossRefGoogle Scholar
  71. 71.
    Narasaraju TSB, Phebe DE (1996) some physic-chemical aspects of hydroxyapatite. J Mater Sci Lett 31:1–21CrossRefGoogle Scholar
  72. 72.
    Evans GP, Behiri JC, Currey JD, Bonfield W (1990) Microhardness and Young’s modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue. J Mater Sci Mater Med 1(1):38–43CrossRefGoogle Scholar
  73. 73.
    Aoki H (1991) Science and medical applications of hydroxyapatite. Japanese Association of Apatite ScienceGoogle Scholar
  74. 74.
    Athanasou NA (1999) Color atlas of bone, joint, and soft tissue pathology of metals and semiconductors from ionic liquids. Electrochem Act 48:3053–3061Google Scholar
  75. 75.
    Buma P, Van Loon PJM, Versleyen H, Weinans H, Slooff H, De Groot K, Huiskes R (1997) Histological and biomechanical analysis of bone and interface reactions around hydroxyapatite-coated intramedullary implants of different stiffness. Biomaterials 18(9):1251–1260CrossRefGoogle Scholar
  76. 76.
    Ducheyne P, Beight J, Cuckler J, Evans B, Radin S (1990) Effect of calcium phosphate coating characteristics on early post-operative bone tissue ingrowth. Biomaterials 11(8):531–540CrossRefGoogle Scholar
  77. 77.
    Hench LL, Wilson J (1993) An Introduction to Bioceramics. World Scientific Publishing Company Incorporated, SingaporeCrossRefGoogle Scholar
  78. 78.
    Morks MF, Kobayashi A (2007) Effect of gun current on the microstructure and crystallinity of plasma sprayed hydroxyapatite coatings. Appl Surf Sci 253(17):7136–7142CrossRefGoogle Scholar
  79. 79.
    Morks MF, Kobayashi A (2006) Influence of gas flow rate on the microstructure and mechanical properties of hydroxyapatite coatings fabricated by gas tunnel type plasma spraying. Surf Coat Technol 201(6):2560–2566CrossRefGoogle Scholar
  80. 80.
    Surmenev RA (2012) A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf Coat Technol 206(8–9):2035–2056CrossRefGoogle Scholar
  81. 81.
    Sun L, Berndt CC, Gross KA, Kucuk A (2001) Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res 58(5):570–592CrossRefGoogle Scholar
  82. 82.
    Davis JR (2004) Handbook of thermal spray technology. ASM International, Russell TownshipGoogle Scholar
  83. 83.
    Gray-Munro JE, Strong M (2009) The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. J Biomed Mater Res, Part A 90A(2):339–350CrossRefGoogle Scholar
  84. 84.
    Song YL, Liu YH, Wang SH, Yu SR, Zhu XY (2007) Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy. Mater Corros 58(3):189–192CrossRefGoogle Scholar
  85. 85.
    Tampieri A, Celotti G, Sprio S, Mingazzini C (2000) Characteristics of synthetic hydroxyapatites and attempts to improve their thermal stability. Mater Chem Phys 64(1):54–61CrossRefGoogle Scholar
  86. 86.
    Rojaee R, Fathi M, Raeissi K (2013) Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments. Appl Surf Sci 285, Part B:664–673CrossRefGoogle Scholar
  87. 87.
    Cheang P, Khor KA (1995) Thermal spraying of hydroxyapatite (HA) coatings: effects of powder feedstock. J Mater Process Technol 48(1):429–436CrossRefGoogle Scholar
  88. 88.
    Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X et al (2010) In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg–Zn alloy. Biomaterials 31(22):5782–5788CrossRefGoogle Scholar
  89. 89.
    Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K (2009) In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30(8):1512–1523CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringWichita State UniversityWichitaUSA
  2. 2.Department of Industrial and Manufacturing EngineeringWichita State UniversityWichitaUSA

Personalised recommendations