Advertisement

Facile Synthesis of Nanosilver-Incorporated Titanium Nanotube for Antibacterial Surfaces

  • Sachin M. BhosleEmail author
  • Craig R. Friedrich
Article
  • 117 Downloads
Part of the following topical collections:
  1. Surface Modifications and Coatings

Abstract

The battle against postoperative infection in orthopedic surgery calls for the development of surfaces with antibacterial activity on the implant side of the bacterial biofilm. Incorporation of nanosilver into titanium nanotube surfaces offers a potential solution. This study presents a novel single-step anodization approach to incorporating nanosilver particles within and among anodized titanium nanotubes on implant surfaces using a new hybrid electrolyte. The amount of nanosilver deposited on the titanium nanotubes was analyzed by varying the silver concentration in the hybrid electrolyte. Successful fabrication of titanium nanotubes by anodization of foils, rods and thermal plasma-sprayed surfaces of Ti6Al4V, and simultaneous nanosilver deposition was quantified by field emission scanning electron microscopy, transmission electron microscopy and X-ray energy-dispersive spectroscopy. Upon post-anodization heat treatment, the amorphous to anatase conversion of these structures was confirmed using X-ray diffraction analysis. This study presents a simple single-step fabrication of antibacterial titanium nanotube surfaces allowing controlled nanosilver deposition needed to avoid unintended cytotoxicity.

Keywords

Orthopedic Implant infection Antimicrobial TiO2 nanotube, surface anodization Silver 

Notes

Acknowledgements

This work performed under the M-TRAC program was supported by Grant Case-48161 of the Twenty-First Century Jobs Trust Fund received through the Michigan Strategic Fund from the State of Michigan. The M-TRAC program is funded by the Michigan Strategic Fund with program oversight by the Michigan Economic Development Corporation. The work was also supported by the Multi-Scale Technologies Institute at Michigan Technological University.

References

  1. 1.
    Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M et al (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28:2869–2875CrossRefGoogle Scholar
  2. 2.
    Song Z, Borgwardt L, Hoiby N, Wu H, Sorensen TS, Borgwardt A (2013) Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthop Rev 5:65–71CrossRefGoogle Scholar
  3. 3.
    Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA (2016) Periprosthetic joint infection. Lancet 387:386–394CrossRefGoogle Scholar
  4. 4.
    Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654CrossRefGoogle Scholar
  5. 5.
    Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 91:470–480CrossRefGoogle Scholar
  6. 6.
    Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39CrossRefGoogle Scholar
  7. 7.
    Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110CrossRefGoogle Scholar
  8. 8.
    Gallo J, Holinka M, Moucha CS (2014) Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 15:13849–13880CrossRefGoogle Scholar
  9. 9.
    Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27:2331–2339CrossRefGoogle Scholar
  10. 10.
    Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739CrossRefGoogle Scholar
  11. 11.
    Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2008) Advancing dental implant surface technology from micron to nanotopography. Biomaterials 29:3822–3835CrossRefGoogle Scholar
  12. 12.
    Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 78:97–103CrossRefGoogle Scholar
  13. 13.
    Indira K, Mudali UK, Nishimura T, Rajendran N (2015) A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. J Bio- Tribo-Corrosion 1:28CrossRefGoogle Scholar
  14. 14.
    Indira K, Kamachi Mudali U, Rajendran N (2017) Development of self-assembled titania nanopore arrays for orthopedic applications. J Bio Tribo-Corrosion 3Google Scholar
  15. 15.
    Crawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A (2007) Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater 3:359–367CrossRefGoogle Scholar
  16. 16.
    Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material—ultrasonic and microtensile measurements. J Biomech 26:111–119CrossRefGoogle Scholar
  17. 17.
    Oh SH, Finones RR, Daraio C, Chen LH, Jin S (2005) Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26:4938–4943CrossRefGoogle Scholar
  18. 18.
    Das K, Bose S, Bandyopadhyay A (2009) TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell-materials interaction. J Biomed Mater Res A 90:225–237CrossRefGoogle Scholar
  19. 19.
    Vara A, Baker EA, Salisbury M, Fleischer M, Bhosle SM, Friedrich C et al (2016) Enhancing osseointegration of orthopaedic implants with titania nanotube surfaces. Foot Ankle Orthop 1:1CrossRefGoogle Scholar
  20. 20.
    Ercan B, Taylor E, Alpaslan E, Webster TJ (2011) Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 22:295102–295112CrossRefGoogle Scholar
  21. 21.
    Perez-Jorge C, Conde A, Arenas MA, Perez-Tanoira R, Matykina E, de Damborenea JJ et al (2012) In vitro assessment of staphylococcus epidermidis and staphylococcus aureus adhesion on TiO2 nanotubes on Ti-6Al-4V alloy. J Biomed Mater Res A 100:1696–1705CrossRefGoogle Scholar
  22. 22.
    Peng Z, Ni J, Zheng K, Shen Y, Wang X, He G et al (2013) Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Int J Nanomed 8:3093–3105Google Scholar
  23. 23.
    Golda-Cepa M, Syrek K, Brzychczy-Wloch M, Sulka GD, Kotarba A (2016) Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection. Mater Sci Eng C Mater Biol Appl 66:100–105CrossRefGoogle Scholar
  24. 24.
    Torres CC, Campos CH, Diaz C, Jimenez VA, Vidal F, Guzman L et al (2016) PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications. Mater Sci Eng C Mater Biol Appl 65:164–171CrossRefGoogle Scholar
  25. 25.
    Wang Q, Huang JY, Li HQ, Chen Z, Zhao AZ, Wang Y et al (2016) TiO2 nanotube platforms for smart drug delivery: a review. Int J Nanomed 11:4819–4834CrossRefGoogle Scholar
  26. 26.
    Abdel-Fatah WI, Gobara MM, Mustafa SFM, Ali GW, Guirguis OW (2016) Role of silver nanoparticles in imparting antimicrobial activity of titanium dioxide. Mater Lett 179:190–193CrossRefGoogle Scholar
  27. 27.
    Sobana N, Muruganadham M, Swaminathan M (2006) Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J Mol Catal A-Chem 258:124–132CrossRefGoogle Scholar
  28. 28.
    Nganga S, Travan A, Marsich E, Donati I, Soderling E, Moritz N et al (2013) In vitro antimicrobial properties of silver-polysaccharide coatings on porous fiber-reinforced composites for bone implants. J Mater Sci Mater Med 24:2775–2785CrossRefGoogle Scholar
  29. 29.
    Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391CrossRefGoogle Scholar
  30. 30.
    Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF et al (2010) Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials 31:680–690CrossRefGoogle Scholar
  31. 31.
    Necula BS, Fratila-Apachitei LE, Zaat SA, Apachitei I, Duszczyk J (2009) In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant staphylococcus aureus. Acta Biomater 5:3573–3580CrossRefGoogle Scholar
  32. 32.
    Wan AT, Conyers RAJ, Coombs CJ, Masterton JP (1991) Determination of silver in blood urine and tissues of volunteers and burn patients. Clin Chem 37:1683–1687Google Scholar
  33. 33.
    Indira K, KamachiMudali U, Rajendran N (2014) In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications. Appl Surf Sci 316:264–275CrossRefGoogle Scholar
  34. 34.
    Bhosle SM, Tewari R, Friedrich CR (2016) Dependence of nanotextured titanium orthopedic surfaces on electrolyte condition. J Surf Eng Mater Adv Technol 06:164–175Google Scholar
  35. 35.
    Raja KS, Gandhi T, Misra M (2007) Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem Commun 9:1069–1076CrossRefGoogle Scholar
  36. 36.
    Zhao Y, Xing Q, Janjanam J, He K, Long F, Low KB et al (2014) Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays. Int J Nanomedicine. 9:5177–5187Google Scholar
  37. 37.
    Bhosle SM, Friedrich CR (2016) Effects of aging and thermal treatment on nanotextured titanium surfaces. ORS annual meeting, Orlando, FL, USA, March 5–8Google Scholar
  38. 38.
    Regonini D, Jaroenworaluck A, Stevens R, Bowen CR (2010) Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interf Anal 42:139–144CrossRefGoogle Scholar
  39. 39.
    Friedrich CR, Shokuhfar T (2013) Compositions, methods and devices for generating nanotubes on a surface. Google PatentsGoogle Scholar
  40. 40.
    Bondarenko O, Ivask A, Kakinen A, Kurvet I, Kahru A (2013) Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS ONE 8:e64060CrossRefGoogle Scholar
  41. 41.
    Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V et al (2009) Antifungal activity of silver nanoparticles against candida spp. Biomaterials 30:6333–6340CrossRefGoogle Scholar
  42. 42.
    Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  43. 43.
    Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518CrossRefGoogle Scholar
  44. 44.
    Mazare A, Dilea M, Ionita D, Titorencu I, Trusca V, Vasile E (2012) Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. Bioelectrochemistry 87:124–131CrossRefGoogle Scholar
  45. 45.
    He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P et al (2008) The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci Mater Med 19:3465–3472CrossRefGoogle Scholar
  46. 46.
    Yeniyol S, He Z, Yuksel B, Boylan RJ, Urgen M, Ozdemir T et al (2014) Antibacterial activity of as-annealed TiO2 nanotubes doped with Ag nanoparticles against periodontal pathogens. Bioinorg Chem Appl 2014:829496CrossRefGoogle Scholar
  47. 47.
    Jia H, Kerr LL (2015) Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite-pH dependent study. J Appl Polym Sci 132:n/a–n/aGoogle Scholar
  48. 48.
    Cai K, Jiang F, Luo Z, Chen X (2010) Temperature-responsive controlled drug delivery system based on titanium nanotubes. Adv Eng Mater 12:B565–B570CrossRefGoogle Scholar
  49. 49.
    Aw MS, Losic D (2013) Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays. Int J Pharm 443:154–162CrossRefGoogle Scholar
  50. 50.
    Li J, Zhou H, Qian S, Liu Z, Feng J, Jin P et al (2014) Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application. Appl Phys Lett 104:261110CrossRefGoogle Scholar
  51. 51.
    Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C (2012) Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater 8:904–915CrossRefGoogle Scholar
  52. 52.
    Hang R, Gao A, Huang X, Wang X, Zhang X, Qin L et al (2014) Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes. J Biomed Mater Res A 102:1850–1858CrossRefGoogle Scholar
  53. 53.
    Raphel J, Holodniy M, Goodman SB, Heilshorn SC (2016) Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 84:301–314CrossRefGoogle Scholar
  54. 54.
    Chen X, Cai K, Fang J, Lai M, Li J, Hou Y et al (2013) Dual action antibacterial TiO2 nanotubes incorporated with silver nanoparticles and coated with a quaternary ammonium salt (QAS). Surf Coat Technol 216:158–165CrossRefGoogle Scholar
  55. 55.
    Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H et al (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Multi Scale Technologies InstituteMichigan Technological UniversityHoughtonUSA
  2. 2.Vidya Pratishthan’s Kamalnayan Bajaj Institute of Engineering and TechnologyBaramatiIndia

Personalised recommendations