Electrochemical Corrosion Characteristics of 439 Ferritic, 301 Austenitic, S32101 Duplex and 420 Martensitic Stainless Steel in Sulfuric Acid/NaCl Solution


The corrosion behavior and pitting corrosion resistance of 439 ferritic, 301 austenitic, 420 martensitic and S32101 duplex stainless steel in 2 M H2SO4 at 0–1.5%NaCl concentrations were studied through potentiodynamic polarization measurement and optical microscopy analysis. Experimental observation shows that corrosion rate, pitting potential and passivation potential are influenced by the Cl ion concentration, alloy composition and metallurgical properties of the steels. 439 ferritic steel had significantly the lowest corrosion rate and highest pitting corrosion resistance. Surface morphology showed no visible change from comparison of steel samples before and after corrosion. The corrosion rates of the duplex steel were comparably lower than the austenitic and martensitic steel; however, it had the least pitting corrosion resistance with respect to Cl ion concentration. The martensitic steel despite quenching heat treatment for improved corrosion resistance had the highest corrosion rate values. The surface morphology of the steel samples except 439 ferritic steel showed the presence of micro- and macro-pits, and visible surface deterioration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Guo LQ, Lin MC, Qiao LJ, Volinsky AA (2014) Duplex stainless steel passive film electrical properties studied by in situ current sensing atomic force microscopy. Corros Sci 78:55–62. doi:10.1016/j.corsci.2013.08.031

    Article  Google Scholar 

  2. 2.

    Fredriksson W, Malmgren S, Gustafsson T, Gorgoi M, Edström K (2012) Full depth profile of passive films on 316L stainless steel based on high resolution HAXPES in combination with ARXPS. Appl Surf Sci 258(15):5790–5797. doi:10.1016/j.apsusc.2012.02.099

    Article  Google Scholar 

  3. 3.

    Williams DE, Kilburn R, Cliff J, Waterhouse GIN (2010) Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion. Corros Sci 52(11):3702–3716. doi:10.1016/j.corsci.2010.07.021

    Article  Google Scholar 

  4. 4.

    Williams DE, Stewart J, Balkwill PH (1994) The nucleation, growth and stability of micropits in stainless steel. Corros Sci 36(7):1213–1235. doi:10.1016/0010-938X(94)90145-7

    Article  Google Scholar 

  5. 5.

    Paroni ASM, Alonso-Falleiros Magnabosco R (2006) Sensitization and pittingcorrosion resistance of ferritic stainless steel aged at 800 °C. Corrosion 62(11):1039–1046. doi:10.5006/1.3278231

    Article  Google Scholar 

  6. 6.

    Munoz AI, Anton JG, Nuevalos SL, Guinon JL, Herranz VP (2004) Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures. Corros Sci 46(12):2955–2974. doi:10.1016/j.corsci.2004.05.025

    Article  Google Scholar 

  7. 7.

    Gan Y, Li Y, Lin HC (2001) Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl. Corros Sci 43(3):397–411. doi:10.1016/S0010-938X(00)00090-1

    Article  Google Scholar 

  8. 8.

    Revie RW, Uhlig HH (2008) Corrosion and corrosion control. Wiley, New York. doi:10.1002/bbpc.19630670926

    Google Scholar 

  9. 9.

    Moayed MH, Newman RC (2006) Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature. Corros Sci 48(4):1004–1018

    Article  Google Scholar 

  10. 10.

    Pistorius PC, Burstein GT (1992) Metastable pitting corrosion of stainless steel and the transition to stability. Philos Trans Phys Sci Eng 341(1662):531–559. doi:10.1098/rsta.1992.0114

    Article  Google Scholar 

  11. 11.

    Pistorius PC, Burstein GT (1992) Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate. Corros Sci 33(12):1885–1897. doi:10.1016/0010-938X(92)90191-5

    Article  Google Scholar 

  12. 12.

    Ernst P, Laycock NJ, Moayed MH, Newman RC (1997) The mechanism of lacy cover formation in pitting. Corros Sci 39(6):1133–1136. doi:10.1016/S0010-938X(97)00043-7

    Article  Google Scholar 

  13. 13.

    Ramezanzadeha B, Niroumandradb S, Ahmadib A, Mahdaviana M, Moghadam Mohamadzadeh MH (2016) Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros Sci 103:283–304. doi:10.1016/j.corsci.2015.11.033

    Article  Google Scholar 

  14. 14.

    Nianwei D, Lai-Chang Z, Junxi Z, Qimeng C, Maoliang W (2016) Corrosion behaviour of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros Sci 102:484–489

    Article  Google Scholar 

  15. 15.

    Samira N, Babak J, Ali E (2015) Electrophoretic deposition of graphene oxide on aluminum: characterization, low thermal annealing, surface and anticorrosive properties. Bull Chem Soc Jpn 88(5):722–728. doi:10.1246/bcsj.20140402

    Article  Google Scholar 

  16. 16.

    Marchebois H, Leyer J, Orlans-Joliet B (2007) SCC performance of a super 13Cr martensitic stainless steel for OCTG: three-dimensional fitness-for-purpose mapping according to PH2S, pH and chloride content. In: NACE corrosion conference. NACE International Houston

  17. 17.

    Li X, Bell T (2006) Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions. Corros Sci 48(8):2036–2049. doi:10.1016/j.corsci.2005.08.011

    Article  Google Scholar 

  18. 18.

    Loto RT, Aiguwurhuo O, Evana U (2016) Corrosion resistance study of heat treated 420 martensitic stainless steel and 316 austenitic stainless steel in dilute acid concentrations. Rev Téc Ing Univ Zulia 39(7):35–40. doi:10.21311/

    Google Scholar 

  19. 19.

    ASTM G1-03 (2011) Standard practice for preparing, cleaning, and evaluating corrosion test specimens. http://www.astm.org/Standards/G1. Retrieved 30 May 2016

  20. 20.

    ASTM G59-97 (2014) Standard test method for conducting potentiodynamic polarization resistance measurements. http://www.astm.org/Standards/G31. Retrieved 30 May 2016

  21. 21.

    ASTM G102-89(2015)e1 Standard practice for calculation of corrosion rates and related information from electrochemical measurements. http://www.astm.org/Standards/G31. Retrieved 30 May 2016

  22. 22.

    Choi YS, Nesic S, Ling S (2011) Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochim Acta 56(4):1752–1760. doi:10.1016/j.electacta.2010.08.049

    Article  Google Scholar 

  23. 23.

    Burstein GT, Mattin SP (1992) Nucleation of corrosion pits on stainless steel. Philos Mag Lett 66(1–4):127–131. doi:10.1016/0010-938X(93)90133-2

    Article  Google Scholar 

  24. 24.

    Burstein GT, Vines SP (2001) Repetitive nucleation of corrosion pits on stainless steel and the effects of surface roughness. J Electrochem Soc 148(12):B504–B516. doi:10.1149/1.1416503

    Article  Google Scholar 

  25. 25.

    Wood GC, Richardson JA, Abd Rabbo MF, Mapa LB, Sutton WH (1978) The role of flaws in breakdown of passivity of aluminum and crevice corrosion of stainless steel. In: Frankenthal RP, Kruger J (eds) Passivity of metals, the electrochemical society. Princeton University Press, Princeton, pp 973–988

    Google Scholar 

  26. 26.

    Frankel GS (1998) Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc 145(6):2186–2198. doi:10.1149/1.1838615

    Article  Google Scholar 

  27. 27.

    Sato N (1971) A theory for breakdown of anodic oxide films on metals. Electrochim Acta 16(10):1683–1692. doi:10.1016/0013-4686(71)85079-X

    Article  Google Scholar 

  28. 28.

    Sato N, Kudo K, Noda T (1971) The anodic oxide film on iron in neutral solution. Electrochim Acta 16(11):1909–1921. doi:10.1016/0013-4686(71)85146-0

    Article  Google Scholar 

Download references


The author is grateful to Covenant University, Ota, Ogun State, Nigeria for the funding of the research and provision of research facilities.

Author information



Corresponding author

Correspondence to Roland Tolulope Loto.

Ethics declarations

Conflict of interest

Author declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loto, R.T. Electrochemical Corrosion Characteristics of 439 Ferritic, 301 Austenitic, S32101 Duplex and 420 Martensitic Stainless Steel in Sulfuric Acid/NaCl Solution. J Bio Tribo Corros 3, 24 (2017). https://doi.org/10.1007/s40735-017-0084-1

Download citation


  • Corrosion
  • Steel
  • Pitting
  • Passivation
  • Chloride