Advertisement

Wireless Sensors for Smart Orthopedic Implants

  • Cody O’Connor
  • Asimina KiourtiEmail author
Article
Part of the following topical collections:
  1. Advances in Biosensors

Abstract

Orthopedic implants are medical devices which are surgically implanted inside the human body and widely used for replacing missing joints and bones or restoring function of a damaged structure. Examples include orthopedic implants for joint replacement (hip, elbow, knee, shoulder, etc.), implants that treat fractures (ulna, femur, etc.), and implants for fixation of the spine. Recent advances in wireless sensors and medical telemetry are promising new and hitherto unexplored opportunities in orthopedic implants. This implies miniature unobtrusive sensors that are implanted along with the orthopedic device and used to wirelessly communicate information to exterior monitoring/control equipment. This information may be related to the status of the medical device itself and/or the health status of the surrounding biological tissues. This paper provides a review of orthopedic implants with wireless communication capabilities. Example applications reported to date are discussed, along with challenges raised (biocompatibility, wireless interface, and powering), and future directions.

Keywords

Biotelemetry Orthopedic implants Sensors Wireless 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Transparency Market Research (2013) Orthopedic devices market (hip, knee, spine, shoulder, elbow, foot and ankle, craniomaxillofacial and other extremities)—global industry analysis, size, share, growth, trends and forecast, 2013–2019. http://www.transparencymarketresearch.com/pressrelease/global-orthopedic-devices-market.htm
  2. 2.
    Cram P, Lu X, Kates S, Singh J, Li Y, Wolf B (2012) Total knee arthroplasty volume, utilization, and outcomes among medicare beneficiaries, 1991–2010. J. Am. Med. Assoc. 308:1127–1136CrossRefGoogle Scholar
  3. 3.
    Varga M, Wolter KJ (2014) Sensors and imaging methods for detecting loosening of orthopedic implants—a review. In: IEEE 20th International Symposium Design Technology Electron Pack, pp 333–335Google Scholar
  4. 4.
    Li PL, Jones NB, Gregg PJ (1996) Vibration analysis in the detection of total hip prosthetic loosening. Med. Eng. Phys. 18:596–600CrossRefGoogle Scholar
  5. 5.
    Rowlands Duck FA, Cunningham JL (2008) Bone vibration measurement using ultrasound: application to detection of hip prosthesis loosening. Med. Eng. Phys. 30:278–284CrossRefGoogle Scholar
  6. 6.
    Ruther C (2011) A novel sensor concept for optimization of loosening diagnostics in total hip replacement. J. Biomech. Eng. 133:104503-1–104503-5CrossRefGoogle Scholar
  7. 7.
    Forchelet D, Simoncini M, Arami A, Bertsch A, Meurville E, Aminian K, Ryser P, Renaud P (2014) Enclosed electronic system for force measurements in knee implants. Sensors 14:15009–15021CrossRefGoogle Scholar
  8. 8.
    Seide K, Aljudaibi M, Weinrich N, Kowald B, Jurgens C, Muller J, Faschingbauer M (2012) Telemetric assessment of bone healing with an instrumented internal fixator. J. Bone Joint Surg. Br. 94:398–404CrossRefGoogle Scholar
  9. 9.
    Liu JA, Etemadi M, Heller JA, Kwiat D, Fechter R, Harrison MR, Roy S (2012) RoboImplant II: development of a noninvasive controller/actuator for wireless correction of orthopedic structural deformities. J. Med. Devices 6:1–5CrossRefGoogle Scholar
  10. 10.
    Bergmann G, Graichen F, Dymke J, Rohlmann A, Duda GN, Damm P (2012) High-tech hip implant for wireless temperature measurements in vivo. PLoS One 7:1–7Google Scholar
  11. 11.
    Westerhoff P, Graichen F, Bender A, Rohlmann A, Bergmann G (2009) An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder. Med. Eng. Phys. 31:207–213CrossRefGoogle Scholar
  12. 12.
    Mouzakis DE, Dimogianopoulos D, Giannikas D (2009) Contact-free magnetoelastic smart microsensors with stochastic noise filtering for diagnosing orthopedic implant failures. IEEE Trans. Industr. Electron 56:1092–1100CrossRefGoogle Scholar
  13. 13.
    Lin JT, Walsh KW, Jackson D, Aebersold J, Crain M, Naber JF, Hnat WP (2007) Development of capacitive pure bending strain sensor for wireless spinal fusion monitoring. Sens. Actuators 138:276–287CrossRefGoogle Scholar
  14. 14.
    Trino LD, Royhman D, Mathew MT (2017) Corrosion, tribology, and tribocorrosion research in biomedical implants: progressive trend in the published literature. J. Bio. Tribo. Corros. 3:1CrossRefGoogle Scholar
  15. 15.
    Barril S, Debaud N, Mischler S, Landolt D (2002) A tribo-electrochemical apparatus for in vitro investigation of fretting-corrosion of metallic implant materials. Elsevier Wear 252:744–754CrossRefGoogle Scholar
  16. 16.
    Lgried M, Liskiewicz T, Neville A (2012) Electrochemical investigation of corrosion and wear interactions under fretting conditions. Elsevier Wear 282:52–58CrossRefGoogle Scholar
  17. 17.
    Yang L, Webster TJ (2011) Monitoring tissue healing through nanosensors. In: Nanotechnology enabled in situ sensors for monitoring health, chap 2, pp 41–59Google Scholar
  18. 18.
    Kiourti A (2010) Biomedical telemetry: communication between implanted devices and the external world. Opticon 1826(8):1–7Google Scholar
  19. 19.
    Kiourti A, Nikita KS (2012) A review of implantable patch antennas for biomedical telemetry: challenges and solutions. IEEE Antennas Propag. Mag. 54:210–228CrossRefGoogle Scholar
  20. 20.
    Kiourti A, Costa J, Fernandes CA, Santiago AG, Nikita KS (2012) Miniatures implantable antennas for biomedical telemetry: from simulation to realization. IEEE Trans. Biomed. Eng. 59:3140–3147CrossRefGoogle Scholar
  21. 21.
    Kiourti A, Nikita KS (2014) Implantable antennas: a tutorial on design, fabrication and in vitro/in vivo testing. IEEE Microw. Mag. 15:77–91CrossRefGoogle Scholar
  22. 22.
    Zakavi P, Karmakar NC, Griggs I (2010) Wireless orthopedic pin for bone healing and growth: antenna development. IEEE Trans. Antennas Propag. 58:4069–4074CrossRefGoogle Scholar
  23. 23.
    Alrawashdeh R, Huang Y, Sajak AAB (2014) A flexible loop antenna for biomedical bone implants. In: 8th European Conference on Antennas and Propagation, pp 861–864Google Scholar
  24. 24.
    Gattiker F, Umbrecht F, Neuenschwander J, Sennhauser U, Hierold C (2008) Novel ultrasound read-out for a wireless implantable passive strain sensor. Sens. Actuators 145:291–298CrossRefGoogle Scholar
  25. 25.
    Graichen F, Arnold R, Rohlmann A, Bergmann G (2007) Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants. IEEE Trans. Biomed. Eng. 54:253–261CrossRefGoogle Scholar
  26. 26.
    Catrysse M, Hermans B, Puers R (2004) An inductive power system with integrated bi-directional data transmission. Sens. Actuators 115:221–229CrossRefGoogle Scholar
  27. 27.
    RamRakhyani AK, Mirabbasi S, Chiao M (2011) Design and optimization of resonance-based efficient wireless power delivery system for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 5:48–63CrossRefGoogle Scholar
  28. 28.
    Olgun U, Chen CC, Volakis JL (2012) Design of an efficient ambient WiFi energy harvesting system. IET Microw. Antennas Propag. 6:1200–1206CrossRefGoogle Scholar
  29. 29.
    Chen H, Liu M, Jia C, Wang Z (2009) Power harvesting using PZT ceramics embedded in orthopedic implants. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56:2010–2014CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations