Skip to main content

Excessive Valuation of Social Interaction in Text-Message Dependency: A Behavioral Economic Demand Analysis

Abstract

The purpose of the present study was to determine whether a behavioral economic framework of demand analysis can be used to characterize text-message dependency. To this end, we developed a novel hypothetical task using likelihood measures to quantify demand for social interaction through text messaging. Participants completed the hypothetical demand task in which they rated their likelihood of paying an extra charge, ranging from $0.10 to $80, to continue text messaging after reaching their monthly limit. The demand for social interaction from text messaging was more intense and less elastic for the participants with higher levels of text-message dependency compared to those with lower levels of text-message dependency. The results of this proof-of-concept study support the utility of behavioral economic demand analysis for characterizing text-message dependency. In addition, the greater intensity and lesser elasticity of the demand for social interaction shown by text-dependent participants suggests that text-message dependency can be characterized by both excessiveness and persistence of the behavior, similar to other impulsivity related problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of Data and Materials

The datasets used and analyzed during the current study are available from the corresponding author on request.

References

  1. Amlung, M. T., Acker, J., Stojek, M. K., Murphy, J. G., & MacKillop, J. (2012). Is talk “cheap”? An initial investigation of the equivalence of alcohol purchase task performance for hypothetical and actual rewards. Alcoholism: Clinical and Experimental Research, 36, 716–724. https://doi.org/10.1111/j.1530-0277.2011.01656.x.

    Article  Google Scholar 

  2. Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T., & Gatchalian, K. M. (2011). The behavioral economics and neuroeconomics of reinforcer pathologies: Implications for etiology and treatment of addiction. Current Psychiatry Reports, 13, 406–415. https://doi.org/10.1007/s11920-011-0215-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bickel, W. K., Johnson, M. W., Koffarnus, M. N., MacKillop, J., & Murphy, J. G. (2014). The behavioral economics of substance use disorders: Reinforcement pathologies and their repair. Annual Review of Clinical Psychology, 10, 641–677. https://doi.org/10.1146/annurev-clinpsy-032813-153724.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Billieux, J., Maurage, P., Lopez-Fernandez, O., Kuss, D. J., & Griffiths, M. D. (2015). Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research. Current Addiction Reports, 2, 156–162. https://doi.org/10.1007/s40429-015-0054-y.

    Article  Google Scholar 

  5. Billieux, J., van Rooij, A. J., Heeren, A., Schimmenti, A., Maurage, P., Edman, J., et al. (2017). Behavioural addiction open definition 2.0: Using the open science framework for collaborative and transparent theoretical development. Addiction, 112, 1723–1724. https://doi.org/10.1111/add.13938.

    Article  PubMed  Google Scholar 

  6. Blessington, G. P., & Hayashi, Y. (2020). Gender as a moderating variable between delay discounting and text dependency in college students. The Psychological Record, 70, 99–108. https://doi.org/10.1007/s40732-019-00373-2.

    Article  Google Scholar 

  7. Broadbent, J., & Dakki, M. A. (2015). How much is too much to pay for internet access? A behavioral economic analysis of internet use. Cyberpsychology, Behavior, & Social Networking, 18, 457–461. https://doi.org/10.1089/cyber.2014.0367.

    Article  Google Scholar 

  8. Cyders, M. A., & Coskunpinar, A. (2011). Measurement of constructs using self-report and behavioral lab tasks: Is there overlap in nomothetic span and construct representation for impulsivity? Clinical Psychology Review, 31, 965–982. https://doi.org/10.1016/j.cpr.2011.06.001.

    Article  PubMed  Google Scholar 

  9. Drouin, M., Kaiser, D. H., & Miller, D. A. (2012). Phantom vibrations among undergraduates: Prevalence and associated psychological characteristics. Computers in Human Behavior, 28, 1490–1496. https://doi.org/10.1016/j.chb.2012.03.013.

    Article  Google Scholar 

  10. Ellis, D. A. (2019). Are smartphones really that bad? Improving the psychological measurement of technology-related behaviors. Computers in Human Behavior, 97, 60–66. https://doi.org/10.1016/j.chb.2019.03.006.

    Article  Google Scholar 

  11. Epstein, L. H., Salvy, S. J., Carr, K. A., Dearing, K. K., & Bickel, W. K. (2010). Food reinforcement, delay discounting and obesity. Physiology & Behavior, 100, 438–445. https://doi.org/10.1016/j.physbeh.2010.04.029.

    Article  Google Scholar 

  12. Epstein, L. H., Paluch, R. A., Carr, K. A., Temple, J. L., Bickel, W. K., & MacKillop, J. (2018). Reinforcing value and hypothetical behavioral economic demand for food and their relation to BMI. Eating Behaviors, 29, 120–127. https://doi.org/10.1016/j.eatbeh.2018.03.008.

    Article  PubMed  Google Scholar 

  13. Ferraro, F. R., Winger, A., Kreiger, M., Langseth, M., Weivoda, L., Palmiscno, J., … Wulff, T. (2012). Text-message dependence, impulsivity, and executive function. In M. A. Cyders (Ed.), Psychology of impulsivity (pp. 233–236). Nova Science.

  14. Ferraro, F. R., Holfeld, B., Frankl, S., Frye, N., & Halvorson, N. (2015). Texting/iPod dependence, executive function and sleep quality in college students. Computers in Human Behavior, 49, 44–49. https://doi.org/10.1016/j.chb.2015.02.043.

    Article  Google Scholar 

  15. Hayashi, Y., & Blessington, G. P. (2018). A behavioral economic analysis of media multitasking: Delay discounting as an underlying process of texting in the classroom. Computers in Human Behavior, 86, 245–255. https://doi.org/10.1016/j.chb.2018.04.049.

    Article  Google Scholar 

  16. Hayashi, Y., Russo, C. T., & Wirth, O. (2015). Texting while driving as impulsive choice: A behavioral economic analysis. Accident Analysis & Prevention, 83, 182–189. https://doi.org/10.1016/j.aap.2015.07.025.

    Article  Google Scholar 

  17. Hayashi, Y., Friedel, J. E., Foreman, A. M., & Wirth, O. (2019a). A behavioral economic analysis of demand for texting while driving. The Psychological Record, 69, 225–237. https://doi.org/10.1007/s40732-019-00341-w.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hayashi, Y., Friedel, J. E., Foreman, A. M., & Wirth, O. (2019b). A cluster analysis of text message users based on their demand for text messaging: A behavioral economic approach. Journal of the Experimental Analysis of Behavior, 112, 273–289. https://doi.org/10.1002/jeab.554.

    Article  PubMed  Google Scholar 

  19. Higgins, S. T., Reed, D. D., Redner, R., Skelly, J. M., Zvorsky, I. A., & Kurti, A. N. (2017). Simulating demand for cigarettes among pregnant women: A low-risk method for studying vulnerable populations. Journal of the Experimental Analysis of Behavior, 107, 176–190. https://doi.org/10.1002/jeab.232.

    Article  PubMed  Google Scholar 

  20. Hursh, S. R. (1980). Economic concepts for the analysis of behavior. Journal of the Experimental Analysis of Behavior, 34, 219–238. https://doi.org/10.1901/jeab.1980.34-219.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hursh, S. R., & Silberberg, A. (2008). Economic demand and essential value. Psychological Review, 115, 186–198. https://doi.org/10.1037/0033-295X.115.1.186.

    Article  PubMed  Google Scholar 

  22. Iacobucci, D., Posavac, S. S., Kardes, F. R., Schneider, M. J., & Popovich, D. L. (2015). Toward a more nuanced understanding of the statistical properties of a median split. Journal of Consumer Psychology, 25, 652–665. https://doi.org/10.1016/j.jcps.2014.12.002.

    Article  Google Scholar 

  23. Igarashi, T., Motoyoshi, T., Takai, J., & Yoshida, T. (2008). No mobile, no life: Self-perception and text-message dependency among Japanese high school students. Computers in Human Behavior, 24, 2311–2324. https://doi.org/10.1016/j.chb.2007.12.001.

    Article  Google Scholar 

  24. Jacobs, E. A., & Bickel, W. K. (1999). Modeling drug consumption in the clinic using simulation procedures: Demand for heroin and cigarettes in opioid-dependent outpatients. Experimental & Clinical Psychopharmacology, 7, 412–426. https://doi.org/10.1037/1064-1297.7.4.412.

    Article  Google Scholar 

  25. Kaplan, B. A., & Reed, D. D. (2018). Happy hour drink specials in the Alcohol Purchase Task. Experimental & Clinical Psychopharmacology, 26, 156–167. https://doi.org/10.1037/pha0000174.

    Article  Google Scholar 

  26. Koffarnus, M. N., & Kaplan, B. A. (2018). Clinical models of decision making in addiction. Pharmacology Biochemistry & Behavior, 164, 71–83. https://doi.org/10.1016/j.pbb.2017.08.010.

    Article  Google Scholar 

  27. Koffarnus, M. N., Franck, C. T., Stein, J. S., & Bickel, W. K. (2015). A modified exponential behavioral economic demand model to better describe consumption data. Experimental & Clinical Psychopharmacology, 23, 504–512. https://doi.org/10.1037/pha0000045.

    Article  Google Scholar 

  28. Kruger, D. J., & Djerf, J. M. (2017). Bad vibrations? Cell phone dependency predicts phantom communication experiences. Computers in Human Behavior, 70, 360–364. https://doi.org/10.1016/j.chb.2017.01.017.

    Article  Google Scholar 

  29. Lepp, A., Barkley, J. E., & Karpinski, A. C. (2014). The relationship between cell phone use, academic performance, anxiety, and satisfaction with life in college students. Computers in Human Behavior, 31, 343–350. https://doi.org/10.1016/j.chb.2013.10.049.

    Article  Google Scholar 

  30. Liese, B. S., Benau, E. M., Atchley, P., Reed, D., Becirevic, A., & Kaplan, B. (2019). The Self-perception of Text-message Dependency Scale (STDS): Psychometric update based on a United States sample. American Journal of Drug & Alcohol Abuse, 45, 42–50. https://doi.org/10.1080/00952990.2018.1465572.

    Article  Google Scholar 

  31. Lu, X., Watanabe, J., Liu, Q., Uji, M., Shono, M., & Kitamura, T. (2011). Internet and mobile phone text-messaging dependency: Factor structure and correlation with dysphoric mood among Japanese adults. Computers in Human Behavior, 27, 1702–1709. https://doi.org/10.1016/j.chb.2011.02.009.

    Article  Google Scholar 

  32. Lu, X., Katoh, T., Chen, Z., Nagata, T., & Kitamura, T. (2014). Text messaging: Are dependency and excessive use discretely different for Japanese university students? Psychiatry Research, 216, 255–262. https://doi.org/10.1016/j.psychres.2013.12.024.

    Article  PubMed  Google Scholar 

  33. MacKillop, J., Murphy, J. G., Ray, L. A., Eisenberg, D. T. A., Lisman, S. A., Lum, J. K., & Wilson, D. S. (2008). Further validation of a cigarette purchase task for assessing the relative reinforcing efficacy of nicotine in college smokers. Experimental & Clinical Psychopharmacology, 16, 57–65. https://doi.org/10.1037/1064-1297.16.1.57.

    Article  Google Scholar 

  34. Morris, V., Amlung, M., Kaplan, B. A., Reed, D. D., Petker, T., & MacKillop, J. (2017). Using crowdsourcing to examine behavioral economic measures of alcohol value and proportionate alcohol reinforcement. Experimental & Clinical Psychopharmacology, 25, 314–321. https://doi.org/10.1037/pha0000130.

    Article  Google Scholar 

  35. Murphy, J. G., & MacKillop, J. (2006). Relative reinforcing efficacy of alcohol among college student drinkers. Experimental & Clinical Psychopharmacology, 14, 219–227. https://doi.org/10.1037/1064-1297.14.2.219.

    Article  Google Scholar 

  36. Nederhof, A. J. (1985). Methods of coping with social desirability bias: A review. European Journal of Social Psychology, 15, 263–280. https://doi.org/10.1002/ejsp.2420150303.

    Article  Google Scholar 

  37. Pew Research Center. (2019). Mobile fact sheet. Retrieved from http://www.pewinternet.org/fact-sheet/mobile/.

  38. Reed, D. D., Becirevic, A., Atchley, P., Kaplan, B. A., & Liese, B. S. (2016). Validation of a novel delay discounting of text messaging questionnaire. The Psychological Record, 66, 253–261. https://doi.org/10.1007/s40732-016-0167-2.

    Article  Google Scholar 

  39. Roberts, J. A., Yaya, L. H. P., & Manolis, C. (2014). The invisible addiction: Cell-phone activities and addiction among male and female college students. Journal of Behavioral Addictions, 3, 254–265. https://doi.org/10.1556/JBA.3.2014.015.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sánchez-Martínez, M., & Otero, A. (2008). Factors associated with cell phone use in adolescents in the community of Madrid (Spain). CyberPsychology & Behavior, 12, 131–137. https://doi.org/10.1089/cpb.2008.0164.

    Article  Google Scholar 

  41. Snider, S. E., LaConte, S. M., & Bickel, W. K. (2016). Episodic future thinking: Expansion of the temporal window in individuals with alcohol dependence. Alcoholism: Clinical & Experimental Research, 40, 1558–1566. https://doi.org/10.1111/acer.13112.

    Article  Google Scholar 

  42. Stein, J. S., Koffarnus, M. N., Snider, S. E., Quisenberry, A. J., & Bickel, W. K. (2015). Identification and management of nonsystematic purchase-task data: Towards best practice. Experimental & Clinical Psychopharmacology, 23, 377–386. https://doi.org/10.1037/pha0000020.

    Article  Google Scholar 

  43. Stein, J. S., Wilson, A. G., Koffarnus, M. N., Daniel, T. O., Epstein, L. H., & Bickel, W. K. (2016). Unstuck in time: Episodic future thinking reduces delay discounting and cigarette smoking. Psychopharmacology, 233, 3771–3778. https://doi.org/10.1007/s00213-016-4410-y.

    Article  PubMed  Google Scholar 

  44. Stein, J. S., Tegge, A. N., Turner, J. K., & Bickel, W. K. (2018). Episodic future thinking reduces delay discounting and cigarette demand: An investigation of the good-subject effect. Journal of Behavioral Medicine, 41, 269–276. https://doi.org/10.1007/s10865-017-9908-1.

    Article  PubMed  Google Scholar 

  45. Sze, Y. Y., Stein, J. S., Bickel, W. K., Paluch, R. A., & Epstein, L. H. (2017). Bleak present, bright future: Online episodic future thinking, scarcity, delay discounting, and food demand. Clinical Psychological Science, 5, 683–697. https://doi.org/10.1177/2167702617696511.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Teeters, J. B., Meshesha, L. Z., Dennhardt, A. A., & Murphy, J. G. (2019). Elevated demand and proportionate substance-related reinforcement are associated with driving after cannabis use. Canadian Journal of Addiction, 10, 42. https://doi.org/10.1097/CXA.0000000000000062.

    Article  Google Scholar 

  47. Weinstock, J., Mulhauser, K., Oremus, E. G., & D’Agostino, A. R. (2016). Demand for gambling: Development and assessment of a gambling purchase task. International Gambling Studies, 16, 316–327. https://doi.org/10.1080/14459795.2016.1182570.

    Article  Google Scholar 

  48. Zvorsky, I., Nighbor, T. D., Kurti, A. N., DeSarno, M., Naudé, G., Reed, D. D., & Higgins, S. T. (2019). Sensitivity of hypothetical purchase task indices when studying substance use: A systematic literature review. Preventive Medicine, 128, 105789. https://doi.org/10.1016/j.ypmed.2019.105789.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yusuke Hayashi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayashi, Y., Blessington, G.P. Excessive Valuation of Social Interaction in Text-Message Dependency: A Behavioral Economic Demand Analysis. Psychol Rec 71, 237–245 (2021). https://doi.org/10.1007/s40732-020-00418-x

Download citation

Keywords

  • Text-message dependency
  • Text messaging
  • Demand analysis
  • Behavioral economics
  • College students