Advertisement

The Psychological Record

, Volume 67, Issue 2, pp 241–251 | Cite as

A Longitudinal Behavioral Economic Analysis of Non-medical Prescription Opioid Use Among College Students

  • Lidia Z. MesheshaEmail author
  • Alison M. Pickover
  • Jenni B. Teeters
  • James G. Murphy
Original Article

Abstract

Despite the growing opioid epidemic in the US, few studies have identified theoretically based risk factors for non-medical prescription opioid (NMPO) use among young adults. The goal of the current study was to evaluate the behavioral economic hypotheses that NMPO use would be associated with lower levels of reinforcement from substance-free activities and future time orientation. Participants were 71 undergraduate students (62% women, 52.1% Caucasian, 35.2% African American) who either reported past-year NMPO use or demographically similar control participants with no past-year drug use. Participants provided information on alcohol and drug use, completed three measures of substance-free reinforcement (time allocation to exercise and academic activities, hedonic response to substance-free pleasant images, and self-report anhedonia), and a measure of future orientation, at baseline, 6-month, and 12-month follow-up. Consistent with nationwide trends, most NMPO users also reported use of marijuana (94%) and alcohol (80%). Compared to no drug use, NMPO use was associated with lower time allocation to academic activities, lower hedonic response to pleasant images, greater self-reported anhedonia, and lower future orientation across the 12-month study period. Among NMPO users, greater positive hedonic response to substance-free pleasant images predicted less alcohol use at 12-month follow-up, and greater baseline future orientation predicted less marijuana and NMPO use at 12-month follow-up. These findings provide partial support for behavioral economic models that link substance misuse to diminished levels of substance-free reinforcement and lower consideration of the future.

Keywords

Substance-free reward Behavioral economics Non-medical use of prescription opioids 

Notes

Compliance with Ethical Standards

Funding

1. The University of Memphis Department of Psychology provided funding for this study.

2. The senior author (Murphy) received grant support from NIAAA for the duration this project: 3R01AA020829

3. The first author received NIAAA grant support while completing this manuscript: 1 F31 AA024381-01

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adams, J., & Nettle, D. (2009). Time perspective, personality and smoking, body mass, and physical activity: An empirical study. British Journal of Health Psychology, 14(1), 83–105.CrossRefPubMedGoogle Scholar
  2. Arria, A. M., O'Grady, K. E., Caldeira, K. M., Vincent, K. B., & Wish, E. D. (2008). Nonmedical use of prescription stimulants and analgesics: Associations with social and academic behaviors among college students. Journal of Drug Issues, 38(4), 1045–1060.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atkins, D. C., Baldwin, S. A., Zheng, C., Gallop, R. J., & Neighbors, C. (2013). A tutorial on count regression and zero-altered count models for longitudinal substance use data. Psychology of Addictive Behaviors, 27(1), 166.CrossRefPubMedGoogle Scholar
  4. Audrain‐McGovern, J., Rodriguez, D., Rodgers, K., & Cuevas, J. (2011). Declining alternative reinforcers link depression to young adult smoking. Addiction, 106(1), 178–187.CrossRefPubMedGoogle Scholar
  5. Bandyopadhyay, D., DeSantis, S. M., Korte, J. E., & Brady, K. T. (2011). Some considerations for excess zeroes in substance abuse research. The American Journal of Drug and Alcohol Abuse, 37(5), 376–382.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bardo, M., Klebaur, J., Valone, J., & Deaton, C. (2001). Environmental enrichment decreases intravenous self-administration of amphetamine in female and male rats. Psychopharmacology, 155(3), 278–284.CrossRefPubMedGoogle Scholar
  7. Bickel, W. K., Johnson, M. W., Koffarnus, M. N., MacKillop, J., & Murphy, J. G. (2014). The behavioral economics of substance use disorders: Reinforcement pathologies and their repair. Annual Review of Clinical Psychology, 10, 641–677. doi: 10.1146/annurev-clinpsy-032813-153724.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bickel, W. K., Miller, M. L., Yi, R., Kowal, B. P., Lindquist, D. M., & Pitcock, J. A. (2007). Behavioral and neuroeconomics of drug addiction: Competing neural systems and temporal discounting processes. Drug and Alcohol Dependence, 90, S85–S91.CrossRefPubMedGoogle Scholar
  9. Blanco, C., Alderson, D., Ogburn, E., Grant, B. F., Nunes, E. V., Hatzenbuehler, M. L., & Hasin, D. S. (2007). Changes in the prevalence of non-medical prescription drug use and drug use disorders in the united states: 1991–1992 and 2001–2002. Drug and Alcohol Dependence, 90(2), 252–260.CrossRefPubMedGoogle Scholar
  10. Brandt, S. A., Taverna, E. C., & Hallock, R. M. (2014). A survey of nonmedical use of tranquilizers, stimulants, and pain relievers among college students: Patterns of use among users and factors related to abstinence in non-users. Drug and Alcohol Dependence, 143, 272–276.CrossRefPubMedGoogle Scholar
  11. Carroll, M. E., Anker, J. J., & Perry, J. L. (2009). Modeling risk factors for nicotine and other drug abuse in the preclinical laboratory. Drug and Alcohol Dependence, 104, S70–S78.CrossRefPubMedGoogle Scholar
  12. Catalano, R. F., White, H. R., Fleming, C. B., & Haggerty, K. P. (2011). Is nonmedical prescription opiate use a unique form of illicit drug use? Addictive Behaviors, 36(1), 79–86.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Center for Disease Control and Prevention. (2016). CDC WONDER. Retrieved from https://wonder.cdc.gov/
  14. Collins, R. L., Parks, G. A., & Marlatt, G. A. (1985). Social determinants of alcohol consumption: The effects of social interaction and model status on the self-administration of alcohol. Journal of Consulting and Clinical Psychology, 53(2), 189–200. doi: 10.1037/0022-006X.53.2.189.CrossRefPubMedGoogle Scholar
  15. Correia, C. J., Benson, T. A., & Carey, K. B. (2005). Decreased substance use following increases in alternative behaviors: A preliminary investigation. Addictive Behaviors, 30(1), 19–27.CrossRefPubMedGoogle Scholar
  16. Correia, C. J., Simons, J., Carey, K. B., & Borsari, B. E. (1998). Predicting drug use: Application of behavioral theories of choice. Addictive Behaviors, 23(5), 705–709.CrossRefPubMedGoogle Scholar
  17. Cosgrove, K. P., Hunter, R. G., & Carroll, M. E. (2002). Wheel-running attenuates intravenous cocaine self-administration in rats: Sex differences. Pharmacology Biochemistry and Behavior, 73(3), 663–672. doi: 10.1016/S0091-3057(02)00853-5.CrossRefGoogle Scholar
  18. Dunn, M. S., & Wang, M. Q. (2003). Effects of physical activity on substance use among college students. American Journal of Health Studies, 18(2/3), 126.Google Scholar
  19. First, M., Gibbon, M., Spitzer, R., & Williams, J. (1996). Structured clinical interview for DSM-IV axis I disorders, research edition (SCID-I/NP, version 2.0).Google Scholar
  20. Franken, I. H., Rassin, E., & Muris, P. (2007). The assessment of anhedonia in clinical and non-clinical populations: Further validation of the Snaith–Hamilton pleasure scale (SHAPS). Journal of Affective Disorders, 99(1), 83–89.CrossRefPubMedGoogle Scholar
  21. Heinz, A. J., Lilje, T. C., Kassel, J. D., & de Wit, H. (2012). Quantifying reinforcement value and demand for psychoactive substances in humans. Current Drug Abuse Reviews, 5(4), 257–272.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Herrnstein, R. J. (1970). On the law of effect. Journal of the Experimental Analysis of Behavior, 13(2), 243–266.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Higgins, S. T., Heil, S. H., & Lussier, J. P. (2004). Clinical implications of reinforcement as a determinant of substance use disorders. Annual Review of Psychology, 55, 431–461. doi: 10.1146/annurev.psych.55.090902.142033.CrossRefPubMedGoogle Scholar
  24. Janiri, L., Martinotti, G., Dario, T., Reina, D., Paparello, F., Pozzi, G., … De Risio, S. (2005). Anhedonia and substance-related symptoms in detoxified substance-dependent subjects: A correlation study. Neuropsychobiology, 52(1), 37-44.Google Scholar
  25. Johnston, L. D., O’Malley, P. M., Bachman, J. G., Schulenberg, J. E., & Miech, R. A. (2015). Monitoring the future national survey results on drug use, 1975–2014: Volume 2, college students and adults ages 19–55. Ann Arbor: Institute for Social Research, The University of Michigan.Google Scholar
  26. Jones, C. M., Logan, J., Gladden, R. M., & Bohm, M. K. (2015). Vital signs: Demographic and substance use trends among heroin users - united states, 2002-2013. MMWR. Morbidity and Mortality Weekly Report, 64(26), 719–725.PubMedGoogle Scholar
  27. Keith, D. R., Hart, C. L., McNeil, M. P., Silver, R., & Goodwin, R. D. (2015). Frequent marijuana use, binge drinking and mental health problems among undergraduates. The American Journal on Addictions, 24(6), 499–506.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koob, G. F. (2006). The neurobiology of addiction: A neuroadaptational view relevant for diagnosis. Addiction, 101(s1), 23–30.CrossRefPubMedGoogle Scholar
  29. Kuh, G. D., Cruce, T. M., Shoup, R., Kinzie, J., & Gonyea, R. M. (2008). Unmasking the effects of student engagement on first-year college grades and persistence. Journal of Higher Education, 79(5), 540–563.CrossRefGoogle Scholar
  30. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. Google Scholar
  31. Leventhal, A. M., Chasson, G. S., Tapia, E., Miller, E. K., & Pettit, J. W. (2006). Measuring hedonic capacity in depression: A psychometric analysis of three anhedonia scales. Journal of Clinical Psychology, 62(12), 1545–1558.CrossRefPubMedGoogle Scholar
  32. Longo, D. L., Compton, W. M., Jones, C. M., & Baldwin, G. T. (2016). Relationship between nonmedical prescription-opioid use and heroin use. New England Journal of Medicine, 374(2), 154–163.CrossRefGoogle Scholar
  33. Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the depression anxiety stress scales (DASS) with the beck depression and anxiety inventories. Behaviour Research and Therapy, 33(3), 335–343.CrossRefPubMedGoogle Scholar
  34. Lubman, D. I., Yucel, M., Kettle, J. W., Scaffidi, A., MacKenzie, T., Simmons, J. G., & Allen, N. B. (2009). Responsiveness to drug cues and natural rewards in opiate addiction: Associations with later heroin use. Archives of General Psychiatry, 66(2), 205.CrossRefPubMedGoogle Scholar
  35. Lynch, W. J., Peterson, A. B., Sanchez, V., Abel, J., & Smith, M. A. (2013). Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neuroscience & Biobehavioral Reviews, 37(8), 1622–1644.CrossRefGoogle Scholar
  36. MacKillop, J., Amlung, M. T., Few, L. R., Ray, L. A., Sweet, L. H., & Munafò, M. R. (2011). Delayed reward discounting and addictive behavior: A meta-analysis. Psychopharmacology, 216(3), 305–321.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mahmoud, J. S. R., Hall, L. A., & Staten, R. (2010). The psychometric properties of the 21-Item Depression Anxiety and Stress Scale (DASS-21) among a sample of young adults. Southern Online Journal of Nursing Research, 10(4), 21–34.Google Scholar
  38. McCabe, S. E., West, B. T., Teter, C. J., & Boyd, C. J. (2014). Trends in medical use, diversion, and nonmedical use of prescription medications among college students from 2003 to 2013: Connecting the dots. Addictive Behaviors, 39(7), 1176–1182.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Meshesha, L. Z., Dennhardt, A. A., & Murphy, J. G. (2015). Polysubstance use is associated with deficits in substance-free reinforcement in college students. Journal of Studies on Alcohol and Drugs, 76(1).Google Scholar
  40. Moeller, S. J., Beebe-Wang, N., Woicik, P. A., Konova, A. B., Maloney, T., & Goldstein, R. Z. (2012). Choice to view cocaine images predicts concurrent and prospective drug use in cocaine addiction. Drug and Alcohol Dependence.Google Scholar
  41. Moore, M. J., & Werch, C. (2008). Relationship between vigorous exercise frequency and substance use among first-year drinking college students. Journal of American College Health, 56(6), 686–690.CrossRefPubMedGoogle Scholar
  42. Murphy, J. G., Dennhardt, A. A., Skidmore, J. R., Borsari, B., Barnett, N. P., Colby, S. M., & Martens, M. P. (2012). A randomized controlled trial of a behavioral economic supplement to brief motivational interventions for college drinking. Journal of Consulting and Clinical Psychology, 80(5), 876.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Musselman, J. R., & Rutledge, P. C. (2010). The incongruous alcohol-activity association: Physical activity and alcohol consumption in college students. Psychology of Sport and Exercise, 11(6), 609–618.CrossRefGoogle Scholar
  44. Muthén, L., & Muthén, B. O. (1998–2012). Mplus user’s guide (7th ed). Los Angeles: Muthén & MuthénGoogle Scholar
  45. Petrocelli, J. V. (2003). Factor validation of the consideration of future consequences scale: Evidence for a short version. The Journal of Social Psychology, 143(4), 405–413.CrossRefPubMedGoogle Scholar
  46. Rachlin, H. (1997). Four teleological theories of addiction. Psychonomic Bulletin & Review, 4(4), 462–473. doi: 10.3758/BF03214335.CrossRefGoogle Scholar
  47. Reynolds, B. (2006). A review of delay-discounting research with humans: Relations to drug use and gambling. Behavioural Pharmacology, 17(8), 651–667. doi: 10.1097/FBP.0b013e3280115f99.CrossRefPubMedGoogle Scholar
  48. Sell, L., Morris, J., Bearn, J., Frackowiak, R., Friston, K., & Dolan, R. (1999). Activation of reward circuitry in human opiate addicts. European Journal of Neuroscience, 11(3), 1042–1048.CrossRefPubMedGoogle Scholar
  49. Shillington, A. M., & Clapp, J. D. (2006). Heavy alcohol use compared to alcohol and marijuana use: Do college students experience a difference in substance use problems? Journal of Drug Education, 36(1), 91–103. doi: 10.2190/8PRJ-P8AJ-MXU3-H1MW.CrossRefPubMedGoogle Scholar
  50. Smith, M. A., & Lynch, W. J. (2012). Exercise as a potential treatment for drug abuse: Evidence from preclinical studies. Frontiers in Psychiatry, 2, 82.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Snaith, R., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., & Trigwell, P. (1995). A scale for the assessment of hedonic tone the snaith-hamilton pleasure scale. The British Journal of Psychiatry, 167(1), 99–103.CrossRefPubMedGoogle Scholar
  52. Snider, S. E., LaConte, S. M., & Bickel, W. K. (2016). Episodic future thinking: Expansion of the temporal window in individuals with alcohol dependence. Alcoholism: Clinical and Experimental Research, 40(7), 1558–1566.CrossRefGoogle Scholar
  53. SPSS. (2011). IBM SPSS statistics for windows, version 20.0. New York: IBM Corp.Google Scholar
  54. Stoutenberg, M., Rethorst, C. D., Lawson, O., & Read, J. P. (2016). Exercise training–A beneficial intervention in the treatment of alcohol use disorders? Drug and Alcohol Dependence, 160, 2–11.CrossRefPubMedGoogle Scholar
  55. Strathman, A., Gleicher, F., Boninger, D. S., & Edwards, C. S. (1994). The consideration of future consequences: Weighing immediate and distant outcomes of behavior. Journal of Personality and Social Psychology, 66(4), 742.CrossRefGoogle Scholar
  56. Suerken, C. K., Reboussin, B. A., Egan, K. L., Sutfin, E. L., Wagoner, K. G., Spangler, J., & Wolfson, M. (2016). Marijuana use trajectories and academic outcomes among college students. Drug and Alcohol Dependence, 162, 137–145.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tabachnick, B., & Fidell, L. (2012). Using multivariate statistics (6th ed.). Boston, MA: Allyn & Bacon.Google Scholar
  58. Tucker, J. A., Murphy, J. G., & Kertesz, S. G. (2010). Substance use disorders. In M. M. Anthony, & D. H. Barlow (Eds.), Handbook of assessment and treatment planning (2nd ed.) Guilford Press.Google Scholar
  59. Tucker, J. A., Vuchinich, R. E., Black, B. C., & Rippens, P. D. (2006). Significance of a behavioral economic index of reward value in predicting drinking problem resolution. Journal of Consulting and Clinical Psychology, 74(2), 317.CrossRefPubMedGoogle Scholar
  60. Tucker, J. A., Vuchinich, R. E., & Rippens, P. D. (2002). Predicting natural resolution of alcohol-related problems: A prospective behavioral economic analysis. Experimental and Clinical Psychopharmacology, 10(3), 248.CrossRefPubMedGoogle Scholar
  61. van Hell, H. H., Vink, M., Ossewaarde, L., Jager, G., Kahn, R. S., & Ramsey, N. F. (2010). Chronic effects of cannabis use on the human reward system: An fMRI study. European Neuropsychopharmacology, 20(3), 153–163.CrossRefPubMedGoogle Scholar
  62. Volkow, N., & Baler, R. (2014). Addiction science: Uncovering neurobiological complexity. Neuropharmacology, 76, 235–249.CrossRefPubMedGoogle Scholar
  63. Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., Telang, F., & Baler, R. (2010). Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit. Bioessays, 32(9), 748–755.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Vuchinich, R. E., & Tucker, J. A. (1988). Contributions from behavioral theories of choice to an analysis of alcohol abuse. Journal of Abnormal Psychology, 97(2), 181.CrossRefPubMedGoogle Scholar
  65. Wewers, M. E., & Lowe, N. K. (1990). A critical review of visual analogue scales in the measurement of clinical phenomena. Research in Nursing & Health, 13(4), 227–236.CrossRefGoogle Scholar
  66. White House (2011). Epidemic: Responding to America’s prescription drug abuse crisis. Office of the National Drug Control Policy. Accessed 20 May 2012.Google Scholar
  67. Zijlstra, F., Veltman, D. J., Booij, J., van den Brink, W., & Franken, I. H. (2009). Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug and Alcohol Dependence, 99(1), 183–192.CrossRefPubMedGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2017

Authors and Affiliations

  • Lidia Z. Meshesha
    • 1
    Email author
  • Alison M. Pickover
    • 1
  • Jenni B. Teeters
    • 1
  • James G. Murphy
    • 1
  1. 1.Department of PsychologyThe University of MemphisMemphisUSA

Personalised recommendations