The Psychological Record

, Volume 67, Issue 1, pp 27–41 | Cite as

Categorical Discrimination of Sequential Stimuli: All SΔ Are Not Created Equal

  • Elizabeth G. E. KyonkaEmail author
  • Nathaniel Rice
  • Alexander A. Ward
Original Article


Pigeons were exposed to a novel variation of a stimulus discrimination task previously used with rats as a slot machine analog. We sought to replicate and extend characterizations of structural characteristics of responding, determine relations between those characteristics and identify predictors of individual differences in performance. Pecking during a “collect” phase produced food if and only if the keylight was red for the entire sample phase. In other trial types, the keylight was green, or started red and turned green after one or two pecks. The opportunity to respond was available for 5 s in all collect phases, permitting multiple responses per trial. Pigeons were less likely to peck in collect phases when sample stimuli were not all red, and when they did peck, it was at a lower rate. However, consistent with reactions to near wins in other slot machine tasks, there was more responding in collect phases that followed sample phases when the red keylight turned green after two pecks. Among initial response characteristics, response rate in trials that resembled near wins was the best predictor of terminal responding. Supporting their characterization as measures of stimulus control, collect proportions were negatively correlated with response times in the sample phase. Supporting their characterization as measures of conditioned reinforcing value, latency and response rate in collect phases were positively correlated, but neither was systematically correlated with proportion or sample phase response times. Ultimately, isolating measures of stimulus control and conditioned reinforcement may help determine the mechanisms responsible for near-win effects.


Categorical coherence Conditioned reinforcement Gambling Near-miss effect Slot machine analog Stimulus discrimination Key peck Pigeons 


Compliance with Ethical Standards


Funding for this research was provided by the Department of Psychology at West Virginia University.

Conflict of Interest

Elizabeth Kyonka declares that she has no conflict of interest. Nathaniel Rice declares that he has no conflict of interest. Alexander Ward declares that he has no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.


  1. Astley, S. L., & Wasserman, E. A. (1992). Categorical discrimination and generalization in pigeons: All negative stimuli are not created equal. Journal of Experimental Psychology: Animal Behavior Processes, 18, 193–207. doi: 10.1037/0097-7403.18.2.193.Google Scholar
  2. Belisle, J., & Dixon, M. R. (2016). Near misses in slot machine gambling developed through generalization of total wins. Journal of Gambling Studies, 32, 689–706. doi: 10.1007/s10899-015-9554-x.CrossRefPubMedGoogle Scholar
  3. Blough, D. S. (1975). Steady state data and a quantitative model of operant generalization and discrimination. Journal of Experimental Psychology: Animal Behavior Processes, 1, 3–21. doi: 10.1037/0097-7403.1.1.3.Google Scholar
  4. Bowe, C. A., & Green, L. (1988). Pigeons and rats observe signals of when but not where food will occur. Animal Learning & Behavior, 16, 217–223. doi: 10.3758/BF03209068.CrossRefGoogle Scholar
  5. Carter, B. L., & Tiffany, S. T. (1999). Meta-analysis of cue-reactivity in addiction research. Addiction, 94, 327–340. doi: 10.1046/j.1360-0443.1999.9433273.x.CrossRefPubMedGoogle Scholar
  6. Côté, D., Caron, A., Aubert, J., Desrochers, V., & Ladouceur, R. (2003). Near wins prolong gambling on a video lottery terminal. Journal of Gambling Studies, 19, 433–438. doi: 10.1023/A:1026384011003.CrossRefPubMedGoogle Scholar
  7. Davison, M., & Nevin, J. A. (1999). Stimuli, reinforcers, and behavior: An integration. Journal of the Experimental Analysis of Behavior, 71, 439–482. doi: 10.1901/jeab.1999.71-439.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dixon, M. J., MacLaren, V., Jarick, M., Fugelsang, J. A., & Harrigan, K. A. (2013). The frustrating effects of just missing the jackpot: Slot machine near-misses trigger large skin conductance responses, but no post-reinforcement pauses. Journal of Gambling Studies, 29, 661–674.CrossRefPubMedGoogle Scholar
  9. Dixon, M., & Schreiber, J. (2004). Near-miss effects on response latencies and win estimations of slot machine players. The Psychological Record, 54, 335–348.Google Scholar
  10. Dymond, S., Lawrence, N. S., Dunkley, B. T., Yuen, K. L., Hinton, E. C., Dixon, M. R., Cox, W. M., Hoon, A. E., Munnelly, A., Muthukumaraswamy, S. D., & Singh, K. D. (2014). Almost winning: Induced MEG theta power in insula and orbitofrontal cortex increases during gambling near-misses and is associated with BOLD signal and gambling severity. NeuroImage, 91, 210–219. doi: 10.1016/j.neuroimage.2014.01.019.CrossRefPubMedGoogle Scholar
  11. Fetterman, J. G. (1993). Numerosity discrimination: Both time and number matter. Journal of Experimental Psychology: Animal Behavior Processes, 19, 149–164. doi: 10.1037/0097-7403.19.2.149.PubMedGoogle Scholar
  12. Fox, A. E., & Kyonka, E. G. E. (2015). Timing in response‐initiated fixed intervals. Journal of the Experimental Analysis of Behavior, 103, 375–392. doi: 10.1002/jeab.120.CrossRefPubMedGoogle Scholar
  13. Goudriaan, A. E., Yücel, M., & van Holst, R. J. (2014). Getting a grip on problem gambling: What can neuroscience tell us? Frontiers in Behavioral Neuroscience, 8, 141. doi: 10.3389/fnbeh.2014.00141.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Guttman, N., & Kalish, H. I. (1956). Discriminability and stimulus generalization. Journal of Experimental Psychology, 51, 79–88. doi: 10.1037/h0046219.CrossRefPubMedGoogle Scholar
  15. Habib, R., & Dixon, M. R. (2010). Neurobehavioral evidence for the ‘near-miss’ effect in pathological gamblers. Journal of the Experimental Analysis of Behavior, 93, 313–328. doi: 10.1901/jeab.2010.93-313.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Harrigan, K. A. (2007). Slot machine structural characteristics: Creating near misses using high award symbol ratios. International Journal of Mental Health Addiction, 6, 353–368.CrossRefGoogle Scholar
  17. Herrnstein, R. J., & de Villiers, P. A. (1980). Fish as natural category for people and pigeons. In G. Bower (Ed.), The psychology of learning and motivation (pp. 59–95). San Diego, CA: Academic Press.Google Scholar
  18. Honig, W. K., & Stewart, K. E. (1989). Discrimination of relative numerosity by pigeons. Animal Learning & Behavior, 17, 134–146. doi: 10.3758/BF03207628.CrossRefGoogle Scholar
  19. Kassinove, J. I., & Schare, M. L. (2001). Effects of the “near miss” and the “big win” on persistence at slot machine gambling. Psychology of Addictive Behaviors, 15, 155–158. doi: 10.1037//0893-164X.15.2.155.CrossRefPubMedGoogle Scholar
  20. Laude, J. R., Beckmann, J. S., Daniels, C. W., & Zentall, T. R. (2014a). Impulsivity affects suboptimal gambling-like choice by pigeons. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 2–11. doi: 10.1037/xan0000001.Google Scholar
  21. Laude, J. R., Stagner, J. P., & Zentall, T. R. (2014b). Suboptimal choice by pigeons may result from the diminishing effect of nonreinforcement. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 12–21. doi: 10.1037/xan0000010.Google Scholar
  22. Lazareva, O. F., Soto, F. A., & Wasserman, E. A. (2010). Effect of between-category similarity on basic level superiority in pigeons. Behavioural Processes, 85, 236–245. doi: 10.1016/j.beproc.2010.06.014.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lind, J., Enquist, M., & Ghirlanda, S. (2015). Animal memory: A review of delayed matching-to-sample data. Behavioural Processes, 117, 52–58. doi: 10.1016/j.beproc.2014.11.019.CrossRefPubMedGoogle Scholar
  24. Madden, G. J., Ewan, E. E., & Lagorio, C. H. (2007). Toward an animal model of gambling: Delay discounting and the allure of unpredictable outcomes. Journal of Gambling Studies, 23, 63–83.CrossRefPubMedGoogle Scholar
  25. Mentzoni, R. A., Laberg, J. C., Brunborg, G. S., Molde, H., & Pallesen, S. (2012). Tempo in electronic gaming machines affects behavior among at-risk gamblers. Journal of Behavioral Addictions, 1, 135–139. doi: 10.1556/JBA.1.2012.004.CrossRefPubMedGoogle Scholar
  26. Molet, M., Miller, H. C., Laude, J. R., Kirk, C., Manning, B., & Zentall, T. R. (2012). Decision making by humans in a behavioral task: Do humans, like pigeons, show suboptimal choice? Learning & Behavior, 40, 439–447. doi: 10.3758/s13420-012-0065-7.CrossRefGoogle Scholar
  27. Nastally, B. L., & Dixon, M. R. (2012). The effect of a brief acceptance and commitment therapy intervention on the near-miss effect in problem gamblers. The Psychological Record, 62, 677–690.Google Scholar
  28. Orford, J., Wardle, H., & Griffiths, M. (2013). What proportion of gambling is problem gambling? Estimates from the 2010 British Gambling Prevalence Survey. International Gambling Studies, 13, 4–18. doi: 10.1080/14459795.2012.689001.CrossRefGoogle Scholar
  29. Peters, H., Hunt, M., & Harper, D. (2010). An animal model of slot machine gambling: The effect of structural characteristics on response latency and persistence. Journal of Gambling Studies, 26, 521–531. doi: 10.1007/s10899-010-9183-3.CrossRefPubMedGoogle Scholar
  30. Rafa, D., Kregiel, J., Popik, P., & Rygula, R. (2016). Effects of optimism on gambling in the rat slot machine task. Behavioural Brain Research, 300, 97–105. doi: 10.1016/j.bbr.2015.12.013.CrossRefPubMedGoogle Scholar
  31. Reid, R. L. (1986). The psychology of the near miss. Journal of Gambling Behavior, 2, 32–39. doi: 10.1007/BF01019932.CrossRefGoogle Scholar
  32. Reynolds, G. S., & Catania, A. C. (1962). Temporal discrimination in pigeons. Science, 135, 314–315. doi: 10.1126/science.135.3500.314.CrossRefPubMedGoogle Scholar
  33. Roberts, W. A., & Boisvert, M. J. (1998). Using the peak procedure to measure timing and counting processes in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 24, 416–430. doi: 10.1037/0097-7403.24.4.416.Google Scholar
  34. Roberts, W. A., & Mazmanian, D. S. (1988). Concept learning at different levels of abstraction by pigeons, monkeys, and people. Journal of Experimental Psychology: Animal Behavior Processes, 14, 247–260. doi: 10.1037/0097-7403.14.3.247.Google Scholar
  35. Roberts, W. A., & Mitchell, S. (1994). Can a pigeon simultaneously process temporal and numerical information? Journal of Experimental Psychology: Animal Behavior Processes, 20, 66–78. doi: 10.1037/0097-7403.20.1.66.Google Scholar
  36. Sands, S. F., Lincoln, C. E., & Wright, A. A. (1982). Pictorial similarity judgments and the organization of visual memory in the rhesus monkey. Journal of Experimental Psychology: General, 111, 369–389. doi: 10.1037/0096-3445.111.4.369.CrossRefGoogle Scholar
  37. Scarf, D., Miles, K., Sloan, A., Goulter, N., Hegan, M., Seid-Fatemi, A., … Colombo, M. (2011). Brain cells in the avian ‘prefrontal cortex’ code for features of slot-machine-like gambling. PLoS ONE, 6:e14589. doi: 10.1371/journal.pone.0014589.
  38. Skinner, B. F. (1953). Science and human behavior. Oxford, England: Macmillan.Google Scholar
  39. Sodano, R., & Wulfert, E. (2010). Cue reactivity in active pathological, abstinent pathological, and regular gamblers. Journal of Gambling Studies, 26, 53–65. doi: 10.1007/s10899-009-9146-8.CrossRefPubMedGoogle Scholar
  40. Stagner, J. P., Case, J. P., Sticklen, M. F., Duncan, A. K., & Zentall, T. R. (2015). Do pigeons prefer alternatives that include near-hit outcomes? Journal of Experimental Psychology: Animal Learning and Cognition, 41, 247–254. doi: 10.1037/xan0000069.Google Scholar
  41. Stagner, J. P., & Zentall, T. R. (2010). Suboptimal choice behavior by pigeons. Psychonomic Bulletin & Review, 17, 412–416. doi: 10.3758/PBR.17.3.412.CrossRefGoogle Scholar
  42. Strickland, L. H., & Grote, F. W. (1967). Temporal presentation of winning symbols and slot-machine playing. Journal of Experimental Psychology, 74, 10–13. doi: 10.1037/h0024511.CrossRefPubMedGoogle Scholar
  43. Tan, L., & Grace, R. C. (2010). Discrimination and representation of relative numerosity in a bisection task by pigeons. Learning & Behavior, 38, 408–417. doi: 10.3758/LB.38.4.408.CrossRefGoogle Scholar
  44. van Holst, R. J., van Holstein, M., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2012). Response inhibition during cue reactivity in problem gamblers: An fMRI study. Plos One, 7, e30909. doi: 10.1371/journal.pone.0030909.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ward, R. D., Gallistel, C., & Balsam, P. D. (2013). It's the information! Behavioural Processes, 95, 3–7. doi: 10.1016/j.beproc.2013.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Weatherly, J. N., & Derenne, A. (2007). Rats playing a slot machine: A preliminary attempt at an animal gambling model. Analysis of Gambling Behavior, 1, 79–89.Google Scholar
  47. Winstanley, C. A., Cocker, P. J., & Rogers, R. D. (2011). Dopamine modulates reward expectancy during performance of a slot machine task in rats: Evidence for a “near-miss” effect. Neuropsychopharmacology, 36, 913–925. doi: 10.1038/npp.2010.230.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Witts, B. N., Ghezzi, P. M., & Manson, M. (2015). Simultaneously observing concurrently-available schedules as a means to study the near miss event in simulated slot machine gambling. The Psychological Record, 65, 115–129. doi: 10.1007/s40732-014-0095-y.CrossRefGoogle Scholar
  49. Wulfert, E., Maxson, J., & Jardin, B. (2009). Cue-specific reactivity in experienced gamblers. Psychology of Addictive Behaviors, 23, 731–735. doi: 10.1037/a0017134.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2016

Authors and Affiliations

  • Elizabeth G. E. Kyonka
    • 1
    • 2
    Email author
  • Nathaniel Rice
    • 2
    • 3
  • Alexander A. Ward
    • 2
    • 4
  1. 1.Psychology, University of New EnglandArmidaleAustralia
  2. 2.Psychology, West Virginia UniversityMorgantownUSA
  3. 3.US Army Medical Research Institute of Chemical Defense (USAMRICD)FrederickUSA
  4. 4.Psychology, Rowan UniversityGlassboroUSA

Personalised recommendations