The Psychological Record

, Volume 66, Issue 3, pp 419–428 | Cite as

Mutual Entailment of Temporal Relations in Younger and Older Adults: Reversing Order Judgments

  • Catherine McGreal
  • John HylandEmail author
  • Denis O’ Hora
  • Michael Hogan
Original Article


For temporal relations, mutually entailed relations are different to those directly trained; we learn that A occurred “before” B and derive that B occurred “after” A. Deriving such relations results in lower accuracy and slower response speeds compared to derived relations identical to those trained. The ability of an individual to derive relations different to those trained is a measure of relational flexibility and predicts performance on standard cognitive tests. In the current study, 23 younger (M = 19 years) and 23 older (M = 61 years) participants observed pairs of stimuli presented consecutively (A … B) and then evaluated statements including the stimuli in the same (A BEFORE B) or reversed order (B AFTER A). Judgements on reversed (“after”) statements resulted in lower accuracy and slower response speeds than those presented in the same order (“before”) for both older and younger groups. Older adults exhibited deficits in relational flexibility compared to younger adults, such as slower progression through experimental phases, particularly in correctly responding to reversed statements. Older participants also demonstrated higher error rates on foil statements and responded more slowly than younger participants. The findings suggest that older adults may benefit from training strategies focused on relational flexibility.


Stimulus relations Age Relational flexibility Mutual entailment 


Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.


  1. Barnes, D., McCullagh, P. D., & Keenan, M. (1989). Equivalence class formation in non-hearing impaired children and hearing impaired children. The Analysis of Verbal Behavior, 8, 19–30.Google Scholar
  2. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: Linear mixed-effects models using Eigen and S4 (R Package Version 1.1-8). Retrieved from
  3. Cassidy, S., Roche, B., & Hayes, S. C. (2011). A relational frame training intervention to raise intelligence quotients: A pilot study. The Psychological Record, 61(2), 173–198.Google Scholar
  4. Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24(4), 403–416. doi: 10.3758/BF03200930.CrossRefGoogle Scholar
  5. Daniels, K., Toth, J., & Jaccoby, L. (2006). The aging of executive functions. In E. Bialystok & F. I. M. Craik (Eds.), Lifespan cognition: Mechanisms of change (pp. 96–111). New York, NY: Oxford University Press.Google Scholar
  6. Devany, J. M., Hayes, S. C., & Nelson, R. O. (1986). Equivalence class formation in language‐able and language‐disabled children. Journal of the Experimental Analysis of Behavior, 46(3), 243–257. doi: 10.1901/jeab.1986.46-243.CrossRefPubMedPubMedCentralGoogle Scholar
  7. DuBrow, S., & Davachi, L. (2014). Temporal memory is shaped by encoding stability and intervening item reactivation. The Journal of Neuroscience, 34(42), 13998–14005. doi: 10.1523/JNEUROSCI.2535-14.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fisher, D. L., & Glaser, R. A. (1996). Molar and latent models of cognitive slowing: Implications for aging, dementia, depression, development, and intelligence. Psychonomic Bulletin & Review, 3(4), 458–480.CrossRefGoogle Scholar
  9. Gore, N. G., Barnes-Holmes, Y., & Murphy, G. (2010). The relationship between intellectual functioning and relational perspective-taking. International Journal of Psychology and Psychological Therapy, 10(1), 1–17.Google Scholar
  10. Hartman, M., & Warren, L. H. (2005). Explaining age differences in temporal working memory. Psychology and Aging, 20(4), 645–656. doi: 10.1037/0882-7974.20.4.645.CrossRefPubMedGoogle Scholar
  11. Hayes, S. C., Barnes-Homes, D., & Roche, B. (2001). Relational frame theory: A post-Skinnerian account of human language and cognition. New York, NY: Kluwer Academic/ Plenum.Google Scholar
  12. Horne, P. J., & Lowe, C. F. (1996). On the origins of naming and other symbolic behavior. Journal of the Experimental Analysis of Behavior, 65(1), 185–241. doi: 10.1901/jeab.1996.65-185.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hyland, J. M., O’Hora, D., Leslie, J. C., & Smyth, S. (2009). The effect of reversal on reproduction of observed temporal sequences. Amsterdam, The Netherlands: Cognitive Science Annual Conference.Google Scholar
  14. Hyland, J. M., O’Hora, D. P., Leslie, J. C., & Smyth, S. (2012). Sequential responding in accordance with temporal relational cues: A comparison of ‘before’ and ‘after’. The Psychological Record, 62, 463–484.Google Scholar
  15. Hyland, J. M., Smyth, S., O’Hora, D. P., & Leslie, J. C. (2014). The effect of before and after instructions on the speed of sequential responding. The Psychological Record, 64, 311–319. doi: 10.1007/s40732-014-0026-y.CrossRefGoogle Scholar
  16. Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman Brief Intelligence Test. Hoboken, NJ: John Wiley and Sons.Google Scholar
  17. Kramer, A. F., Hahn, S., & Gopher, D. (1999). Task coordination and aging: Explorations of executive control processes in the task switching paradigm. Acta Psychologica, 101(2), 339–378. doi: 10.1016/S0001-6918(99)00011-6.CrossRefPubMedGoogle Scholar
  18. Li, K. Z., Lindenberger, U., Freund, A. M., & Baltes, P. B. (2001). Walking while memorizing: Age-related differences in compensatory behavior. Psychological Science, 12(3), 230–237. doi: 10.1111/1467-9280.00341.CrossRefPubMedGoogle Scholar
  19. Li, S. C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., & Baltes, P. B. (2004). Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychological Science, 15, 155–163. doi: 10.1111/j.0956-7976.2004.01503003.CrossRefPubMedGoogle Scholar
  20. Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychological Aging, 9(3), 339–355. doi: 10.1037/0882-7974.9.3.339.CrossRefGoogle Scholar
  21. Lipkens, G., Hayes, S. C., & Hayes, L. J. (1993). Longitudinal study of derived stimulus relations in an infant. Journal of Experimental Child Psychology, 56, 201–239.CrossRefPubMedGoogle Scholar
  22. Logie, R. H., & Morris, R. G. (2014). Working memory and ageing. New York, NY: Psychology Press.Google Scholar
  23. Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: FMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12(Suppl. 2), 130–144. doi: 10.1162/08989290051137459.
  24. McDowd, J. M., & Craik, F. I. (1988). Effects of aging and task difficulty on divided attention performance. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 267–280. doi: 10.1037/0096-1523.14.2.267.PubMedGoogle Scholar
  25. McDowd, J. M., & Shaw, R. J. (2000). Attention and aging: A functional perspective. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (2nd ed., pp. 221–292). Mahwah, NJ: Erlbaum.Google Scholar
  26. McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of box plots. The American Statistician, 32(1), 12–16.Google Scholar
  27. Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1170–1187. doi: 10.1037/0278-7393.26.5.1170.PubMedGoogle Scholar
  28. O’Hora, D., Roche, B., Barnes-Holmes, D., & Smeets, P. M. (2002). Response latencies to multiple derived stimulus relations: Testing two predictions of relational frame theory. The Psychological Record, 52, 51–76.Google Scholar
  29. O’Hora, D., Peláez, M., & Barnes-Holmes, D. (2005). Derived relational responding and performance on verbal subtests of the WAIS-III. The Psychological Record, 55, 155–175.Google Scholar
  30. O’Hora, D., Peláez, M., Barnes-Holmes, D., Rae, G., Robinson, K., & Chaudhary, T. (2008). Temporal relations and intelligence: Correlating relational performance with performance on the WAIS-III. The Psychological Record, 58, 569–584.Google Scholar
  31. O’Toole, C., & Barnes-Holmes, D. (2009). Three chronometric indices of relational responding as predictors of performance on a brief intelligence test: The importance of relational flexibility. The Psychological Record, 59, 119–132.Google Scholar
  32. Park, D., & Schwarz, N. (Eds.). (2000). Cognitive aging: A primer. Philadelphia, PA: Psychology Press.Google Scholar
  33. R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from Scholar
  34. Roberts, J. M., Ly, M., Murray, E., & Yassa, M. A. (2014). Temporal discrimination deficits as a function of lag interference in older adults. Hippocampus, 24(10), 1189–1196.CrossRefPubMedGoogle Scholar
  35. Rodríguez-Villagra, O. A., Göthe, K., Oberauer, K., & Kliegl, R. (2013). Working memory capacity in a go/no-go task: Age differences in interference, processing speed, and attentional control. Developmental Psychology, 49, 1683–1696. doi: 10.1037/a0030883.CrossRefPubMedGoogle Scholar
  36. Rotblatt, L. J., Sumida, C. A., Van Etten, E. J., Turk, E. P., Tolentino, J. C., & Gilbert, P. E. (2015). Differences in temporal order memory among young, middle-aged, and older adults may depend on the level of interference. Frontiers in Aging Neuroscience, 7, 28.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428. doi: 10.1037/0033-295X.103.3.403.CrossRefPubMedGoogle Scholar
  38. Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507–514. doi: 10.1016/j.neurobiolaging.2008.09.023.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schneider, J. M., Gopinath, B., McMahon, C. M., Leeder, S. R., Mitchell, P., & Wang, J. J. (2011). Dual sensory impairment in older age. Journal of Aging and Health, 23(8), 1309–1324. doi: 10.1177/0898264311408418.CrossRefPubMedGoogle Scholar
  40. Sidman, M. (1971). Reading and auditory-visual equivalences. Journal of Speech and Hearing Research, 14, 5–13. doi: 10.1044/jshr.1401.05.CrossRefPubMedGoogle Scholar
  41. Sidman, M. (1994). Equivalence relations and behavior: A research story. Boston, MA: Authors Cooperative.Google Scholar
  42. Singmann, H., Bolker, B., & Westfall, J. (2015). Afex: Analysis of factorial experiments (R Package Version 0.13-145). Retrieved from
  43. Steele, D. L., & Hayes, S. C. (1991). Stimulus equivalence and arbitrarily applicable relational responding. Journal of the Experimental Analysis of Behavior, 56, 519–555. doi: 10.1901/jeab.1991.56-519.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Steingrimsdottir, H. S., & Arntzen, E. (2014). Performance by older adults on identity and arbitrary matching-to-sample tasks. The Psychological Record, 64, 1–13. doi: 10.1007/s40732-014-0053-8.CrossRefGoogle Scholar
  45. Verhaeghen, P., Steitz, D. W., Sliwinski, M. J., & Cerella, J. (2003). Aging and dual-task performance: A meta-analysis. Psychology and Aging, 18(3), 443–460. doi: 10.1037/0882-7974.18.3.443.CrossRefPubMedGoogle Scholar
  46. Viskontas, I. V., Morrison, R. G., Holyoak, K. J., Hummel, J. E., & Knowlton, B. J. (2004). Relational integration, inhibition, and analogical reasoning in older adults. Psychology and Aging, 19, 581–591. doi: 10.1037/0882-7974.19.4.581.CrossRefPubMedGoogle Scholar
  47. Wechsler, D. (1997). Wechsler Adult Intelligence Scale–Third Edition. San Antonio, TX: The Psychological Corporation.Google Scholar
  48. Whelan, R. (2008). Effective analysis of reaction time data. The Psychological Record, 58(3), 475–482.Google Scholar
  49. Wickham, H. (2009). ggplot2: elegant graphics for data analysis. New York: SpringerGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2016

Authors and Affiliations

  • Catherine McGreal
    • 1
  • John Hyland
    • 2
    Email author
  • Denis O’ Hora
    • 1
  • Michael Hogan
    • 1
  1. 1.National University of IrelandGalwayIreland
  2. 2.Dublin Business SchoolDublin 2Ireland

Personalised recommendations