Validation of a Novel Delay Discounting of Text Messaging Questionnaire

Abstract

Using cellular phones for text messaging has become a ubiquitous mode of communication in today’s American culture. Text messaging has become a primary source of relationship development and maintenance for many Americans, especially youth. Researchers have begun classifying excessive reliance on text messaging as an addictive behavior, which may lead to risky activities such as texting while driving. This study interprets texting dependence within a behavioral economics framework of addictive behavior and proposes a novel Delay Discounting of Texting Questionnaire (DDTQ). The DDTQ involves a hypothetical scenario wherein the respondent chooses between paying for an immediate text now and waiting to receive a free text message in the future. We validated the DDTQ using a relatively diverse crowdsourced sample from Amazon Mechanical Turk. The DDTQ demonstrated expected degrees of systematic discounting and yielded higher rates of delay discounting with reward values in a within-subjects evaluation of the magnitude effect. Finally, the DDTQ successfully discriminated different profiles of possible text-messaging dependence. Collectively, these findings suggest the DDTQ is a viable task for use in studying the behavioral economics of possible text-messaging dependence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    We ran the exponential (Yi, Landes, & Bickel, 2009), simple hyperbolic (Mazur, 1987), and hyperboloid (Green & Myerson, 2004) discounting models for individuals who did not display exclusive responding and compared fits using Akaike’s information criteria (AIC). For both the $0.50 and $5.00 conditions, AIC results indicated preference in the following order: exponential > simple hyperbolic > hyperboloid. We note that this is an abnormal finding; however, the task involves both losses ($0.50 or $5.00 payment) and gains (ability to read text message immediately), which preclude direct theoretical comparisons to other discounting studies. The cross-commodity nature of money and text messaging further obfuscates conceptualization within standard accounts of delay discounting. Nevertheless, we are not the first to report findings suggesting that a simple exponential function outperforms theoretically derived models of delay discounting (e.g., Bickel, Yi, Landes, Hill, & Baxter, 2011). Future research should seek to disentangle these features to better account for theory; such a theoretical venture, however, was outside the scope of this study.

  2. 2.

    The astute reader will note, however, that this magnitude effect is observed with rewarding outcomes, not losses (see Estle et al., 2006; McKerchar, Pickford, & Robertson, 2013; Mitchell & Wilson, 2010). Our DDTQ may be considered a cross-commodity task combining both gains (texting immediacy) and losses (monetary payments), rending extrapolation of existing literature to the DDTQ rather difficult. Future research should isolate such variables to better understand the basic decision-making processes underlying delay discounting of text messaging.

References

  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.

    Google Scholar 

  2. Atchley, P., & Warden, A. C. (2012). The need of young adults to text now: Using delay discounting to assess informational choice. Journal of Applied Research in Memory and Cognition, 1, 229–234. doi:10.1016/j.jarmac.2012.09.001.

    Article  Google Scholar 

  3. Atchley, P., Hadlock, C., & Lane, S. (2012). Stuck in the 70s: The role of social norms in distracted driving. Accident Analysis & Prevention, 40, 279–284. doi:10.1016/j.aap.2012.01.026.

    Article  Google Scholar 

  4. Bickel, W. K., Pitcock, J. A., Yi, R., & Angtuaco, E. J. (2009). Congruence of BOLD response across intertemporal choice conditions: Fictive and real money gains and losses. The Journal of Neuroscience, 29, 8839–8846. doi:10.1523/JNEUROSCI.5319-08.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bickel, W. K., Jarmolowicz, D. P., Mueller, E. T., & Gatchalian, K. M. (2011a). The behavioral economics and neuroeconomics of reinforcer pathologies: Implications for etiology and treatment of addiction. Current Psychiatry Report, 13, 406–415. doi:10.1007/s11920-011-0215-1.

    Article  Google Scholar 

  6. Bickel, W. K., Yi, R., Landes, R. D., Hill, P. F., & Baxter, C. (2011b). Remember the future: Working memory training decreases delay discounting among stimulant addicts. Biological Psychiatry, 69, 260–265. doi:10.1016/j.biopsych.2010.08.017.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bickel, W. K., Jarmolowicz, D. P., MacKillop, J., Epstein, L. H., Carr, K., Mueller, E. T., Waltz, T. J., & Shaffer, H. J. (2012). The behavioral economics of reinforcement pathologies: Novel approaches to addictive disorders. In APA addiction syndrome handbook, Vol. 2: Recovery, prevention, and other issues (pp. 333–363). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  8. Bickel, W. K., Johnson, M. W., Koffarnus, M. N., MacKillop, J., & Murphy, J. G. (2014). The behavioral economics of substance use disorders: Reinforcement pathologies and their repair. Annual Review of Clinical Psychology, 10, 641–677. doi:10.1146/annurev-clinpsy-032813-153724.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Billieux, J., van der Linden, M., D’Acremont, M., Ceschi, G., & Zermatten, A. (2007). Does impulsivity relate to perceived dependence on and actual use of the mobile phone? Applied Cognitive Psychology, 21, 527–537. doi:10.1002/acp.1289.

    Article  Google Scholar 

  10. Dai, Z., Grace, R. C., & Kemp, S. (2009). Reward contrast in delay and probability discounting. Learning & Behavior, 37, 281–288. doi:10.3758/LB.37.3.281.

    Article  Google Scholar 

  11. Estle, S. J., Green, L., Myerson, J., & Holt, D. D. (2006). Differential effects of amount on temporal and probability discounting of gains and losses. Memory and Cognition, 34, 914–928.

    Article  PubMed  Google Scholar 

  12. Green, R. M., & Lawyer, S. R. (2014). Steep delay and probability discoutning of potentially real versus hypothetical cigarettes (but not money) among smokers. Behavioural Processes, 108, 50–56. doi:10.1016/j.beproc.2014.09.008.

    Article  PubMed  Google Scholar 

  13. Green, L., & Myerson, J. (2004). A discounting framework for choice with delayed and probabilistic rewards. Psychological Bulletin, 130, 769–792. doi:10.1037/0033-2909.130.5.769.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Green, L., Myerson, J., & Ostaszewski, P. (1999). Amount of reward has opposite effects on the discounting of delayed and probabilistic outcomes. Journal of Experimental Psychology Learning Memory and Cognition, 25, 418–427.

    Article  Google Scholar 

  15. Green, L., Myerson, J., Holt, D. D., Slevin, J. R., & Estle, S. J. (2004). Discounting of delayed food rewards in pigeons and rats: Is there a magnitude effect? Journal of the Experimental Analysis of Behavior, 81, 39–50. doi:10.1901/jeab.2004.81-39.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Herrmann, E. S., Hand, D. J., Johnson, M. W., Badger, G. J., & Heil, S. H. (2014). Examining delay discounting of condom-protected sex among opioid-dependent women and non-drug-using control women. Drug and Alcohol Dependence, 144, 53–60. doi:10.1016/j.drugalcdep.2014.07.026.

    Article  PubMed  Google Scholar 

  17. Igarashi, T., Motoyoshi, T., Takai, J., & Yoshida, T. (2005, April). The text messaging addiction scale: Factor structure, reliability, and validity. Paper presented at the sixth biennial conference of the Asian Association of Social Psychology, Wellington, New Zealand.

  18. Igarashi, T., Motoyoshi, T., Takai, J., & Yoshida, T. (2008). No mobile, no life: Self-perception and text message dependency among Japanese high school students. Computers in Human Behavior, 24, 2311–2324. doi:10.1016/j.chb.2007.12.001.

    Article  Google Scholar 

  19. Jarmolowicz, D. P., Reed, D. D., & Bickel, W. K. (2015). Neuroeconomics: Implications for understanding and treating addictive behavior. In S. W. Feldstein Ewing, K. Witkiewitz, & F. M. Filbey (Eds.), Neuroimaging and psychosocial addiction treatment: An integrative guide for researchers and clinicians (pp. 141–157). Houndmills, England: Palgrave Macmillan.

    Google Scholar 

  20. Johnson, M. W., & Bickel, W. K. (2002). Within-subject comparison of real and hypothetical money rewards in delay discounting. Journal of the Experimental Analyses of Behavior, 77, 129–146. doi:10.1901/jeab.2002.77-129.

    Article  Google Scholar 

  21. Johnson, M. W., & Bickel, W. K. (2008). An algorithm for identifying nonsystematic delay-discounting data. Experimental and Clinical Psychopharmacology, 16, 264–274. doi:10.1037/1064-1297.16.3.264.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnson, M. W., & Bruner, N. R. (2012). The sexual discounting task: HIV risk behavior and the discounting of delayed sexual rewards in cocaine dependence. Drug and Alcohol Dependence, 123, 15–21. doi:10.1016/j.drugalcdep.2011.09.032.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Johnson, M. W., & Bruner, N. R. (2013). Test–retest reliability and gender differences in the sexual discounting task among cocaine-dependent individuals. Experimental and Clinical Psychopharmacology, 21, 277–286. doi:10.1037/a0033071.

    Article  PubMed  Google Scholar 

  24. Johnson, M. W., Johnson, P. S., Herrmann, E. S., & Sweeney, M. M. (2015). Delay and probability discounting of sexual and monetary outcomes in individuals with cocaine use disorders and matched controls. PLoS ONE, 10, e0128641. doi:10.1371/journal.pone.0128641.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kaplan, B. A., Reed, D. D., & McKerchar, T. L. (2014). Using a visual analogue scale to assess delay, social, and probability discounting of an environmental loss. The Psychological Record, 64, 261–269. doi:10.1007/s40732-014-0041-z.

    Article  Google Scholar 

  26. Koffarnus, M. N., Jarmolowicz, D. P., Mueller, E. T., & Bickel, W. K. (2013). Changing delay discounting in the light of the competing neurobehavioral decision systems theory: A review. Journal of the Experimental Analysis of Behavior, 99, 32–57. doi:10.1002/jeab.2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lagorio, C. H., & Madden, G. J. (2005). Delay discounting of real and hypothetical rewards: III. Steady-state assessments, forced-choice trials, and all real rewards. Behavioural Processes, 69, 173–187. doi:10.1016/j.beproc.2005.02.003.

    Article  PubMed  Google Scholar 

  28. Lenhart, A., Smith, A., Anderson, M., Duggan, M., & Perrin, A. (2015). Teens, technology and friendships. Pew Research Center, Retrieved from http://www.pewinternet.org/2015/08/06/teens-technology-and-friendships/.

    Google Scholar 

  29. MacKillop, J., Amlung, M. T., Few, L. R., Ray, L. A., Sweet, L. H., & Munafò, M. R. (2011). Delayed reward discounting and addictive behavior: A meta-analysis. Psychopharmacology, 216, 305–321. doi:10.1007/s00213-011-2229-0.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Madden, G. J., & Bickel, W. K. (2010). Impulsivity: The behavioral and neurological science of discounting. Washington, DC: American Psychological Association.

    Book  Google Scholar 

  31. Madden, G. J., Begotka, A. M., Raiff, B. R., & Kastern, L. L. (2003). Delay discounting of real and hypothetical rewards. Experimental and Clinical Psychopharmacology, 11, 139–145. doi:10.1037/1064-1297.11.2.139.

    Article  PubMed  Google Scholar 

  32. Madden, G. J., Raiff, B. R., Lagorio, C. H., Begotka, A. M., Mueller, A. M., Hehli, D. J., & Wegener, A. A. (2004). Delay discounting of potentially real and hypothetical rewards: II. Between-and within-subject comparisons. Experimental and Clinical Psychopharmacology, 12, 251–261. doi:10.1037/1064-1297.12.4.251.

    Article  PubMed  Google Scholar 

  33. Matusiewicz, A. K., Carter, A. E., Landes, R. D., & Yi, R. (2013). Statistical equivalence and test–retest reliability of delay and probability discounting using real and hypothetical rewards. Behavioural Processes, 100, 116–122. doi:10.1016/j.beproc.2013.07.019.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mazur, J. E. (1987). An adjusting procedure for studying delayed reinforcement. In M. L. Commons, J. E. Mazur, J. A. Nevin, & H. Rachlin (Eds.), Quantitative analyses of behavior: Vol. V. The effect of delay and intervening events on reinforcement value (pp. 55–73). Hillsdale, NJ: Erlbaum.

  35. McKerchar, T. L., Green, L., Myerson, J., Pickford, T. S., Hill, J. C., & Stout, S. C. (2009). A comparison of four models of delay discounting in humans. Behavioural Processes, 81, 256–259. doi:10.1016/j.beproc.2008.12.017.

    Article  PubMed  PubMed Central  Google Scholar 

  36. McKerchar, T. L., Pickford, S., & Robertson, S. E. (2013). Hyperboloid discounting of delayed outcomes: Magnitude effects and the gain-loss asymmetry. The Psychological Record, 63, 441–451. doi:10.11133/j.tpr.2013.63.3.003.

    Article  Google Scholar 

  37. Mitchell, S. H., & Wilson, V. B. (2010). The subjective value of delayed and probabilistic outcomes: Outcome size matters for gains but not for losses. Behavioural Processes, 83, 36–40. doi:10.1016/j.beproc.2009.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Myerson, J., & Green, L. (1995). Discounting of delayed rewards: Models of individual choice. Journal of the Experimental Analysis of Behavior, 64, 263–276. doi:10.1901/jeab.1995.64-263.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Myerson, J., Green, L., & Warusawitharana, M. (2001). Area under the curve as a measure of discounting. Journal of the Experimental Analysis of Behavior, 76, 235–243. doi:10.1901/jeab.2001.76-235.

    Article  PubMed  PubMed Central  Google Scholar 

  40. National Highway Traffic Safety Administration. (2011). Policy statement and compiled facts on distracted driving. Available from http://www.nhtsa.gov

  41. National Highway Traffic Safety Administration. (2013, April). Distracted driving 2011 (Publication No. DOT HS 811 737). Retrieved from http://www-nrd.nhtsa.dot.gov/Pubs/811737.pdf

  42. Paolacci, G., & Chandler, J. (2014). Inside the Turk: Understanding Mechanical Turk as a participant pool. Current Directions in Psychological Science, 23, 184–188. doi:10.1177/0963721414531598.

    Article  Google Scholar 

  43. Pew Internet Project. (2014). Mobile technology fact sheet. Available from http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/

  44. Pew Research Center. (April, 2015). The smartphone difference. Available at http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/

  45. Reed, D. D., Kaplan, B. A., & Brewer, A. T. (2012). A tutorial on the use of Excel 2010 and Excel for Mac 2011 for conducting delay-discounting analyses. Journal of Applied Behavior Analysis, 45, 375–386. doi:10.1901/jaba.2012.45-375.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yi, R., Landes, R. D., & Bickel, W. K. (2009). Novel models of intertemporal valuation: Past and future outcomes. Journal of Neuroscience, Psychology, and Economics, 2, 102–111. doi:10.1037/a0017571.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Derek D. Reed.

Ethics declarations

Conflict of Interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reed, D.D., Becirevic, A., Atchley, P. et al. Validation of a Novel Delay Discounting of Text Messaging Questionnaire. Psychol Rec 66, 253–261 (2016). https://doi.org/10.1007/s40732-016-0167-2

Download citation

Keywords

  • Text message
  • Technology
  • Cellular phone
  • Delay discounting
  • Behavioral economics
  • Amazon Mechanical Turk