Skip to main content

Postdiscrimination Gradients With Familiar and Unfamiliar Faces

Abstract

Discrimination training is often used to improve accuracy in stimulus recognition. However, intradimensional discrimination training with a single positive exemplar and a single negative exemplar may reduce accuracy during a generalization test. More specifically, discrimination training can cause a shift in responding from the positive exemplar to stimuli unlike the negative exemplar. Previous studies have shown that the length of discrimination training affects the degree to which a shift occurs. We sought to determine whether pre-experimental exposure (“familiarity”) to the stimuli would have a similar effect. Twenty participants were trained and tested with two different sets of facial images. Each set of images consisted of stimuli that ranged from the naturally asymmetrical version of the face to a symmetrical version of the face. In one condition, the images were based on the participant’s own face; in the second condition, the images were based on the face of a stranger. In both cases, the median face served as the positive exemplar. In half of the conditions the naturally asymmetrical face served as the negative exemplar, and in the other half, the symmetrical face served as the negative exemplar. Images based on a stranger’s face produced greater generalization than images based on the participant’s own face. A significant gradient shift occurred only with familiar faces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Ban, P. K., & Minke, K. A. (1984). The use of generalization gradients for the study of mediational processes. The Journal of General Psychology, 110, 115–128.

    Article  Google Scholar 

  • Baron, A. (1973). Postdiscrimination gradients of human subjects on a tone continuum. Journal of Experimental Psychology, 101, 337–342.

    PubMed  Article  Google Scholar 

  • Blough, P. M. (1972). Wavelength generalization and discrimination in the pigeon. Perception & Psychophysics, 12, 342–348.

    Article  Google Scholar 

  • Cash, T. F., Santos, M. T., & Williams, E. F. (2005). Coping with body-image threats and challenges: Validation of the Body Image Coping Strategies Inventory. Journal of Psychosomatic Research, 58, 191–199.

    Article  Google Scholar 

  • Cheng, K. (2002). Generalisation: Mechanistic and functional explanations. Animal Cognition, 5, 33–40.

    PubMed  Article  Google Scholar 

  • Cheng, K., Spetch, M. L., Kelly, D. M., & Bingman, V. P. (2006). Small-scale spatial cognition in pigeons. Behavioural Processes, 72, 115–127.

    PubMed  Article  Google Scholar 

  • Derenne, A. (2006). Effects of S+, S- separation on gradient shifts in humans. The Journal of General Psychology, 133, 163–173.

    PubMed  Article  Google Scholar 

  • Derenne, A. (2010). Shifts in postdiscrimination gradients within a stimulus dimension based on bilateral facial symmetry. Journal of the Experimental Analysis of Behavior, 93, 485–494.

    PubMed Central  PubMed  Article  Google Scholar 

  • Derenne, A., & Breitstein, R. M. (2006). Gradient shifts with naturally occurring human face stimuli. The Psychological Record, 56, 365–370.

    Google Scholar 

  • Dunsmoor, J. E., Mitroff, S. R., & LaBar, K. S. (2009). Generalization of conditioned fear along a dimension of increasing fear intensity. Learning & Memory, 16, 460–469.

    Article  Google Scholar 

  • Dunsmoor, J. E., Prince, S. E., Murty, V. P., Kragel, P. A., & LaBar, K. S. (2011). Neurobehavioral mechanisms of human fear generalization. NeuroImage, 55, 1878–1888.

    PubMed Central  PubMed  Article  Google Scholar 

  • Galizio, M., & Baron, A. (1976). Label training and auditory generalization. Learning and Motivation, 7, 591–602.

    Article  Google Scholar 

  • Gamberale, G., & Tullberg, B. S. (1996). Evidence for peak-shift in predator generalization among aposematic prey. Proceedings of the Royal Society of London B: Biological Sciences, 263, 1329–1334.

    Article  Google Scholar 

  • Gamberale-Stille, G., & Tullberg, B. S. (1999). Experienced chicks show biased avoidance of stronger signals: An experiment with natural colour variation in live aposematic prey. Evolutionary Ecology, 13, 579–589.

    Article  Google Scholar 

  • Ghirlanda, S. (2002). Intensity generalization: physiology and modeling of a neglected topic. Journal of Theoretical Biology, 214, 389–404.

    PubMed  Article  Google Scholar 

  • Ghirlanda, S., & Enquist, M. (1999). The geometry of stimulus control. Animal Behaviour, 58, 695–706.

    PubMed  Article  Google Scholar 

  • Ghirlanda, S., & Enquist, M. (2003). A century of generalization. Animal Behaviour, 66, 15–36.

    Article  Google Scholar 

  • Guttman, N., & Kalish, H. I. (1956). Discriminability and stimulus generalization. Journal of Experimental Psychology, 51, 79–88.

    PubMed  Article  Google Scholar 

  • Hanson, H. M. (1959). Effects of discrimination training on stimulus generalization. Journal of Experimental Psychology, 58, 321–334.

    PubMed  Article  Google Scholar 

  • Harris, J. A. (2006). Elemental representations of stimuli in associative learning. Psychological Review, 113, 584–605.

    PubMed  Article  Google Scholar 

  • Honig, W. K., & Urcuioli, P. J. (1981). The legacy of Guttman and Kalish (1956): 25 years of research on stimulus generalization. Journal of the Experimental Analysis of Behavior, 36, 405–445.

    PubMed Central  PubMed  Article  Google Scholar 

  • Martindale, C. (2006). Peak shift, behavioral contrast, and phonological evolution with explanations of the Great English Vowel Shift and Grimm’s Law. Journal of Cultural and Evolutionary Psychology, 4, 5–26.

    Article  Google Scholar 

  • McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental model of associative learning: I. Latent inhibition and perceptual learning. Animal Learning and Behavior, 28, 211–246.

    Article  Google Scholar 

  • McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and elemental representation II: Generalization and discrimination. Animal Learning and Behavior, 30, 177–200.

    PubMed  Article  Google Scholar 

  • Purtle, R. B. (1973). Peak shift: A review. Psychological Bulletin, 112, 408–421.

    Article  Google Scholar 

  • Ramachandran, V. S., & Hirstein, W. (1999). The science of art: A neurological theory of aesthetic experience. Journal of Consciousness Studies, 6, 15–51.

    Google Scholar 

  • Riley, D. A. (1968). Discrimination learning. Boston: Allyn & Bacon.

    Google Scholar 

  • Saksida, L. M. (1999). Effects of similarity and experience on discrimination learning: A nonassociative connectionist model of perceptual learning. Journal of Experimental Psychology: Animal Behavior Processes, 25, 308–323.

    PubMed  Google Scholar 

  • Schneider, S. M., & Lickliter, R. (2010). Operant generalization in quail neonates after intradimensional training: Distinguishing positive and negative reinforcement. Behavioural Processes, 83, 1–7.

    PubMed Central  PubMed  Article  Google Scholar 

  • Spetch, M., Cheng, K., & Clifford, C. (2004). Peak shift but not range effects in recognition of faces. Learning and Motivation, 35, 221–241.

    Article  Google Scholar 

  • ten Cate, C., Verzijden, M. N., & Etman, E. (2006). Sexual imprinting can induce sexual preferences for exaggerated parental traits. Current Biology, 16, 1128–1132.

    PubMed  Article  Google Scholar 

  • Terrace, H. S. (1964). Wavelength generalization after discrimination learning with and without errors. Science, 144, 78–80.

    PubMed  Article  Google Scholar 

  • Thomas, D. R., Mood, K., Morrison, S., & Wiertelak, E. (1991). Peak shift revisited: A test of alternative interpretations. Journal of Experimental Psychology: Animal Behavior Processes, 17, 130–140.

    PubMed  Google Scholar 

  • Weary, D. M., Guilford, T. C., & Weisman, R. G. (1993). A product of discriminative learning may lead to female preferences for elaborate males. Evolution, 47, 333–336.

    Article  Google Scholar 

  • Wisniewski, M. G., Church, B. A., & Mercado, E. (2010). Temporal dynamics of generalization and representational distortion. Psychonomic Bulletin & Review, 17, 809–814.

    Article  Google Scholar 

  • Yachi, S., & Higashi, M. (1998). The evolution of warning signals. Nature, 394, 882–884.

    Article  Google Scholar 

  • Yachi, S., & Higashi, M. (1999). Modeling associative learning with generalization for a case of warning signals. Ecological Research, 14, 243–248.

  • Zimmer, R. (2003). Abstraction in art. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 358, 1285–1291.

    Article  Google Scholar 

Download references

Author Note

Thanks are extended to Billea Ahlgrim, Lauren Henry, Stephanie Joppa, Jessica Kahnke, Cory Klein, Elizabeth Klosterman, and Amanda Quinn for their assistance with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Derenne.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Derenne, A., Loshek, E.A. & Bohrer, B. Postdiscrimination Gradients With Familiar and Unfamiliar Faces. Psychol Rec 65, 77–82 (2015). https://doi.org/10.1007/s40732-014-0091-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40732-014-0091-2

Keywords

  • Bilateral facial symmetry
  • Discrimination training
  • Stimulus generalization
  • Peak shift
  • Human