Skip to main content
Log in

Toxicity Research Progress of Nickel Oxide Nanoparticles Exposure in the Environment

  • REVIEW
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Nickel oxide nanoparticles (NiO NPs) have attracted considerable interest in multiple industries because of their distinct properties and wide range of potential applications. However, concerns regarding their potential adverse health effects have prompted extensive research efforts to understand their toxicity and develop appropriate safety guidelines.

Recent Findings

Recent studies have demonstrated that exposure to NiO NPs can induce harm in a variety of animal models, plants, ecological systems, and in vitro cell models. Research on the mechanism of signaling pathways implicated in respiratory system toxicity and hepatotoxicity has shown that NiO NPs can lead to organ damage by triggering downstream signaling through the nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK)/Smad, phosphoinositide 3-kinase (PI3K/AKT), and hedgehog signaling pathways. High-throughput RNA sequencing has been used in toxicity studies to detect important changes in the transcriptome at the mRNA and pathway levels. Additionally, NiO NPs have been found to cause NiO NPs induce neurotoxicity, genotoxicity, and ecotoxicity in plants and earthworms, potentially through mechanisms involving oxidative stress and inflammatory factors.

Summary

This review provides a comprehensive summary of current research progress on the health effects of NiO NPs, focusing on their application, routes of exposure, and potential toxicity mechanisms. The study also evaluates evidence on the impact of NiO NPs on organ systems, including the respiratory, liver, nervous, genotoxic, reproductive and developmental effects. Lastly, the review suggests further research directions to improve understanding of the toxic effects and mechanisms of NiO NPs for safer application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Duan WJ, Lu SH, Wu ZL, Wang YS. Size effects on properties of NiO nanoparticles grown in alkali salts. J Phys Chemistry C. 2012;11649:26043–51. https://doi.org/10.1021/jp308073c.

    Article  CAS  Google Scholar 

  2. Cai GF, Wang X, Cui MQ, Darmawan P, Wang JX, Eh ALS, et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy. 2015;12:258–67. https://doi.org/10.1016/j.nanoen.2014.12.031.

    Article  CAS  Google Scholar 

  3. Kannan K, Radhika D, Nikolova MP, Sadasivuni KK, Mahdizadeh H, Verma U. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg Chem Commun. 2020;113. https://doi.org/10.1016/j.inoche.2019.107755.

  4. Mou JY, Ren Y, Wang J, Wang CX, Zou YB, Lou KX, et al. Nickel oxide nanoparticle synthesis and photocatalytic applications: evolution from conventional methods to novel microfluidic approaches. Microfluid Nanofluid. 2022;264. https://doi.org/10.1007/s10404-022-02534-2.

  5. Salmanpour S, Khalilzadeh MA, Karimi-Maleh H, Zareyeea D. An electrochemical sensitive sensor for determining sulfamethoxazole using a modified electrode based on biosynthesized NiO nanoparticles paste electrode. Int J Electrochem Sci. 2019;1410:9552–61. https://doi.org/10.20964/2019.10.03.

    Article  CAS  Google Scholar 

  6. • Berhe MG, Gebreslassie YT. Biomedical applications of biosynthesized nickel oxide nanoparticles. Int J Nanomed. 2023;18:4229–51. https://doi.org/10.2147/ijn.S410668. This paper described the possibilities for the future development of green NiO NPs as therapeutic agents for a variety of ailments.

    Article  CAS  Google Scholar 

  7. Fouladgar M, Ahmadzadeh S. Application of a nanostructured sensor based on NiO nanoparticles modified carbon paste electrode for determination of methyldopa in the presence of folic acid. Appl Surf Sci. 2016;379:150–5. https://doi.org/10.1016/j.apsusc.2016.04.026.

    Article  CAS  Google Scholar 

  8. Iqbal J, Abbasi BA, Ahmad R, Mahmoodi M, Munir A, Zahra SA, et al. Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (Wall.) and investigation of its multiple in vitro biological potentials. Biomedicines. 2020;85. https://doi.org/10.3390/biomedicines8050117.

  9. Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR. Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules. 2020;101. https://doi.org/10.3390/biom10010089.

  10. U R S, C R RK, M S KM, Betageri VS, M S L, Veerapur R, et al. Biogenic synthesis of NiO nanoparticles using areca catechu leaf extract and their antidiabetic and cytotoxic effects. Molecules. 2021;269. https://doi.org/10.3390/molecules26092448.

  11. Horie M, Nishio K, Fujita K, Kato H, Nakamura A, Kinugasa S, et al. Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release. Chem Res Toxicol. 2009;228:1415–26. https://doi.org/10.1021/tx900171n.

    Article  CAS  Google Scholar 

  12. •• More SL, Kovochich M, Lyons-Darden T, Taylor M, Schulte AM, Madl AK. Review and evaluation of the potential health effects of oxidic nickel nanoparticles. Nanomaterials. 2021;113. https://doi.org/10.3390/nano11030642This paper comprehensively evaluates the research data of the toxicity endpoint of NiO NPs and provides a new perspective for further research.

  13. Hussain MF, Naeem Ashiq M, Gulsher M, Akbar A, Iqbal F. Exposure to variable doses of nickel oxide nanoparticles disturbs serum biochemical parameters and oxidative stress biomarkers from vital organs of albino mice in a sex-specific manner. Biomarkers. 2020;258:719–24. https://doi.org/10.1080/1354750x.2020.1841829.

    Article  CAS  Google Scholar 

  14. Lyons-Darden T, Blum JL, Schooley MW, Ellis M, Durando J, Merrill D, et al. An assessment of the oral and inhalation acute toxicity of nickel oxide nanoparticles in rats. Nanomaterials. 2023;132. https://doi.org/10.3390/nano13020261.

  15. Germande O, Beaufils F, Daffe G, Gonzalez P, Mornet S, Bejko M, et al. Cellular and molecular mechanisms of NiONPs toxicity on eel hepatocytes HEPA-E1: an illustration of the impact of Ni release from mining activity in New Caledonia. Chemosphere. 2022;303. https://doi.org/10.1016/j.chemosphere.2022.135158.

  16. Lu SL, Zhang WC, Zhang R, Liu PW, Wang QX, Shang Y, et al. Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Part Fibre Toxicol. 2015;12. https://doi.org/10.1186/s12989-015-0082-8.

  17. Germande O, Ducret T, Quignard J-F, Deweirdt J, Freund-Michel V, Errera M-H, et al. NiONP-induced oxidative stress and mitochondrial impairment in an in vitro pulmonary vascular cell model mimicking endothelial dysfunction. Antioxidants. 2022;115. https://doi.org/10.3390/antiox11050847.

  18. Adeel M, Ma C, Ullah S, Rizwan M, Hao Y, Chen C, et al. Exposure to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative damage: a life cycle study on Eisenia fetida. Environ Pollut. 2019;254. https://doi.org/10.1016/j.envpol.2019.113032.

  19. Chung I-M, Venkidasamy B, Thiruvengadam M. Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. Plant Physiol Biochem. 2019;139:92–101. https://doi.org/10.1016/j.plaphy.2019.03.010.

    Article  CAS  Google Scholar 

  20. Gu J, Xu Y, Li Q, Pang H. Porous Ni/NiO nanohybrids for electrochemical catalytic glucose oxidation. Chin Chem Lett. 2021;326:2017–20. https://doi.org/10.1016/j.cclet.2020.11.066.

    Article  CAS  Google Scholar 

  21. Liu Z, Zhang C, Liu H, Feng L. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl Catal B: Environ. 2020;276. https://doi.org/10.1016/j.apcatb.2020.119165.

  22. Lightfoot NE, Berriault CJ, Seilkop SK, Conard BR. Nonrespiratory mortality and cancer incidence in a cohort of Canadian nickel workers. Arch Environ Occup H. 2017;724:187–203. https://doi.org/10.1080/19338244.2016.1197879.

    Article  CAS  Google Scholar 

  23. Zheng GN, Xu XJ, Li B, Wu KS, Yekeen TA, Huo X. Association between lung function in school children and exposure to three transition metals from an e-waste recycling area. J Expo Sci Env Epid. 2013;231:67–72. https://doi.org/10.1038/jes.2012.84.

    Article  CAS  Google Scholar 

  24. Bocca B, Leso V, Battistini B, Caimi S, Senofonte M, Fedele M, et al. Human biomonitoring and personal air monitoring. An integrated approach to assess exposure of stainless-steel welders to metal-oxide nanoparticles. Environ Res. 2023;216. https://doi.org/10.1016/j.envres.2022.114736.

  25. Dumala N, Mangalampalli B, Chinde S, Kumari SI, Mahoob M, Rahman MF, et al. Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis. 2017;324:417–27. https://doi.org/10.1093/mutage/gex007.

    Article  CAS  Google Scholar 

  26. Dumala N, Mangalampalli B, Kamal SSK, Grover P. Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats: a histological and biochemical perspective. J Appl Toxicol. 2019;397:1012–29. https://doi.org/10.1002/jat.3790.

    Article  CAS  Google Scholar 

  27. Bai K-J, Chuang K-J, Chen J-K, Hua H-E, Shen Y-L, Liao W-N, et al. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. Nanomed Nanotechnol Biol Med. 2018;147:2329–39. https://doi.org/10.1016/j.nano.2017.10.003.

    Article  CAS  Google Scholar 

  28. Kobayashi T, Oshima Y, Tsubokura Y, Muroi T, Ajimi S, Nakai M, et al. Time-course comparison of pulmonary inflammation induced by intratracheal instillation of four different nickel oxide nanoparticles in male Fischer rats. J Toxicol Pathol. 2021;341:43–55. https://doi.org/10.1293/tox.2020-0066.

    Article  CAS  Google Scholar 

  29. Sutunkova, Solovyeva, Minigalieva, Gurvich, Valamina, Makeyev, et al. Toxic effects of low-level long-term inhalation exposures of rats to nickel oxide nanoparticles. Int J Mol Sci. 2019;207. https://doi.org/10.3390/ijms20071778.

  30. Horie M, Fukui H, Nishio K, Endoh S, Kato H, Fujita K, et al. Evaluation of acute oxidative stress induced by NiO nanoparticles In Vivo and In Vitro. J Occup Health. 2011;532:64–74. https://doi.org/10.1539/joh.L10121.

    Article  Google Scholar 

  31. Lu SL, Duffin R, Poland C, Daly P, Murphy F, Drost E, et al. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect. 2009;1172:241–7. https://doi.org/10.1289/ehp.11811.

    Article  CAS  Google Scholar 

  32. Horie M, Yoshiura Y, Izumi H, Oyabu T, Tomonaga T, Okada T, et al. Comparison of the pulmonary oxidative stress caused by intratracheal instillation and inhalation of NiO nanoparticles when equivalent amounts of NiO are retained in the lung. Antioxidants. 2016;51. https://doi.org/10.3390/antiox5010004.

  33. Zhu A, Chang X, Sun Y, Zou L, Su L, Sun Y, et al. Role of oxidative stress and inflammatory response in subchronic pulmonary toxicity induced by nano nickel oxide in rats. J Nanosci and Nanotechno. 2017;173:1753–61. https://doi.org/10.1166/jnn.2017.12849.

    Article  CAS  Google Scholar 

  34. Germande O, Baudrimont M, Beaufils F, Freund-Michel V, Ducret T, Quignard JF, et al. NiONPs-induced alteration in calcium signaling and mitochondrial function in pulmonary artery endothelial cells involves oxidative stress and TRPV4 channels disruption. Nanotoxicology. 2022;161:29–51. https://doi.org/10.1080/17435390.2022.2030821.

    Article  CAS  Google Scholar 

  35. Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee B-W, Okada T, et al. Comparison of pulmonary inflammatory responses following intratracheal instillation and inhalation of nanoparticles. Nanotoxicology. 2015;105:607–18. https://doi.org/10.3109/17435390.2015.1104740.

    Article  CAS  Google Scholar 

  36. Yang MM, Chang XH, Gao Q, Gong XF, Zheng JF, Liu H, et al. LncRNA MEG3 ameliorates NiO nanoparticles-induced pulmonary inflammatory damage via suppressing the p38 mitogen activated protein kinases pathway. Environ Toxicol. 2022;375:1058–70. https://doi.org/10.1002/tox.23464.

    Article  CAS  Google Scholar 

  37. Nishida C, Izumi H, Tomonaga T, Takeshita J-i, Wang K-Y, Yamasaki K, et al. Predictive biomarkers for the ranking of pulmonary toxicity of nanomaterials. Nanomaterials. 2020;1010. https://doi.org/10.3390/nano10102032.

  38. Capasso L, Camatini M, Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett. 2014;2261:28–34. https://doi.org/10.1016/j.toxlet.2014.01.040.

    Article  CAS  Google Scholar 

  39. Chang XH, Zhu A, Liu FF, Zou LY, Su L, Liu SK, et al. Nickel oxide nanoparticles induced pulmonary fibrosis via TGF-β1 activation in rats. Hum Exp Toxicol. 2016;368:802–12. https://doi.org/10.1177/0960327116666650.

    Article  CAS  Google Scholar 

  40. Chang X, Tian M, Zhang Q, Gao J, Li S, Sun Y. Nano nickel oxide promotes epithelial-mesenchymal transition through transforming growth factor β1/smads signaling pathway in A549 cells. Environ Toxicol. 2020;3512:1308–17. https://doi.org/10.1002/tox.22995.

    Article  CAS  Google Scholar 

  41. Zhan H, Chang X, Wang X, Yang M, Gao Q, Liu H, et al. LncRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF-β1 expression and epithelial-mesenchymal transition process. Environ Toxicol. 2021;366:1099–110. https://doi.org/10.1002/tox.23109.

    Article  CAS  Google Scholar 

  42. Zhan H, Sun X, Wang X, Gao Q, Yang M, Liu H, et al. LncRNA MEG3 involved in NiO NPs-induced pulmonary fibrosis via regulating TGF-β1-mediated PI3K/AKT pathway. Toxicol Sci. 2021;1821:120–31. https://doi.org/10.1093/toxsci/kfab047.

    Article  CAS  Google Scholar 

  43. Zheng J, Wang J, Qin X, Li K, Gao Q, Yang M, et al. LncRNA HOTAIRM1 involved in nano NiO-induced pulmonary fibrosis via regulating PRKCB DNA methylation-mediated JNK/c-Jun pathway. Toxicol Sci. 2022;1901:64–78. https://doi.org/10.1093/toxsci/kfac092.

    Article  CAS  Google Scholar 

  44. •• Zheng J, Wang J, Li K, Qin X, Li S, Chang X, et al. LncRNA AP000487.1 regulates PRKCB DNA methylation‐mediated TLR4/MyD88/NF‐κB pathway in nano NiO‐induced collagen formation in BEAS‐2B cells. Environ Toxicol. 2018;3811:2783–96. https://doi.org/10.1002/tox.23918. This article shows the latest mechanism research on pulmonary fibrosis, showing an in-depth perspective and found the new targets.

    Article  CAS  Google Scholar 

  45. • Liu FF, Cheng X, Wu S, Hu B, Yang C, Deng SF, et al. Nickel oxide nanoparticles induce apoptosis and ferroptosis in airway epithelial cells via ATF3. Environ Toxicol. 2022;375:1093–103. https://doi.org/10.1002/tox.23467. This article investigated the NiO NPs induced apoptosis and ferroptosis, and provide a new perspective on the toxicity study of NiO NPs.

    Article  CAS  Google Scholar 

  46. Duan W-X, He M-D, Mao L, Qian F-H, Li Y-M, Pi H-F, et al. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2015;2862:80–91. https://doi.org/10.1016/j.taap.2015.03.024.

    Article  CAS  Google Scholar 

  47. Kawakami T, Miyajima A, Komoriya K, Kato R, Isama K. Effect of secondary particle size of nickel oxide nanoparticles on cytotoxicity in A549 cells. J Toxicol Sci. 2022;474:151–7.

    Article  Google Scholar 

  48. Mukherjee A, Latvala S, Hedberg J, Di Bucchianico S, Möller L, Odnevall Wallinder I, et al. Nickel release, ROS generation and toxicity of Ni and NiO micro- and nanoparticles. Plos One. 2016;117. https://doi.org/10.1371/journal.pone.0159684.

  49. Tolliver LM, Holl NJ, Hou FYS, Lee HJ, Cambre MH, Huang YW. Differential cytotoxicity induced by transition metal oxide nanoparticles is a function of cell killing and suppression of cell proliferation. Int J Mol Sci. 2020;215. https://doi.org/10.3390/ijms21051731.

  50. Mohamed K, Zine K, Fahima K, Abdelfattah E, Sharifudin SM, Duduku K. NiO nanoparticles induce cytotoxicity mediated through ROS generation and impairing the antioxidant defense in the human lung epithelial cells (A549): preventive effect of Pistacia lentiscus essential oil. Toxicol Rep. 2018;5:480–8. https://doi.org/10.1016/j.toxrep.2018.03.012.

    Article  CAS  Google Scholar 

  51. Di Bucchianico S, Gliga AR, Åkerlund E, Skoglund S, Wallinder IO, Fadeel B, et al. Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells. Part Fibre Toxicol. 2018;151. https://doi.org/10.1186/s12989-018-0268-y.

  52. Gliga AR, Di Bucchianico S, Åkerlund E, Karlsson HL. Transcriptome profiling and toxicity following long-term, low dose exposure of human lung cells to Ni and NiO nanoparticles—comparison with NiCl2. Nanomaterials. 2020;104. https://doi.org/10.3390/nano10040649.

  53. Yu S, Liu F, Wang C, Zhang J, Zhu A, Zou L, et al. Role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles in rats. Mol Med Rep. 2017. https://doi.org/10.3892/mmr.2017.8226.

    Article  Google Scholar 

  54. Samim AR, Singh VK, Vaseem H. Assessment of hazardous impact of nickel oxide nanoparticles on biochemical and histological parameters of gills and liver tissues of Heteropneustes fossilis. J Trace Elem Med Biol. 2022;74. https://doi.org/10.1016/j.jtemb.2022.127059.

  55. Katsnelson BA, Minigaliyeva IA, Panov VG, Privalova LI, Varaksin AN, Gurvich VB, et al. Some patterns of metallic nanoparticles’ combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem Toxicol. 2015;86:351–64. https://doi.org/10.1016/j.fct.2015.11.012.

    Article  CAS  Google Scholar 

  56. Dumala N, Mangalampalli B, Kamal SSK, Grover P. Biochemical alterations induced by nickel oxide nanoparticles in female Wistar albino rats after acute oral exposure. Biomarkers. 2018;231:33–43. https://doi.org/10.1080/1354750x.2017.1360943.

    Article  CAS  Google Scholar 

  57. Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere. 2013;9310:2514–22. https://doi.org/10.1016/j.chemosphere.2013.09.047.

    Article  CAS  Google Scholar 

  58. Ahamed M, Akhtar MJ, Alhadlaq HA. Synergistic toxicity of NiO nanoparticles and benzo[a]pyrene co-exposure in liver cells: role of free oxygen radicals induced oxidative stress. J King Saud Univ - Sci. 2023;356. https://doi.org/10.1016/j.jksus.2023.102750.

  59. Abd-Eltawab Tammam A, A  Khalaf AA, R Zaki A, Mansour Khalifa M, A Ibrahim M, M Mekkawy A, et al. Hesperidin protects rats’ liver and kidney from oxidative damage and physiological disruption induced by nickel oxide nanoparticles. Front Physiol. 2022;13. https://doi.org/10.3389/fphys.2022.912625.

  60. Adiguzel C, Karaboduk H, Apaydin FG, Kalender S, Kalender Y. Comparison of nickel oxide nano and microparticles toxicity in rat liver: molecular, biochemical, and histopathological study. Toxicol Res. 2023;125:741–50. https://doi.org/10.1093/toxres/tfad062.

    Article  Google Scholar 

  61. Liu F, Chang X, Tian M, Zhu A, Zou L, Han A, et al. Nano NiO induced liver toxicity via activating the NF-κB signaling pathway in rats. Toxicol Res. 2017;62:242–50. https://doi.org/10.1039/c6tx00444j.

    Article  Google Scholar 

  62. Zhang Q, Chang XH, Wang HB, Liu YL, Wang XX, Wu MM, et al. TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. Environ Toxicol. 2020;354:419–29. https://doi.org/10.1002/tox.22878.

    Article  CAS  Google Scholar 

  63. Zhang Q, Chang X, Wang X, Zhan H, Gao Q, Yang M, et al. A metabolomic-based study on disturbance of bile acids metabolism induced by intratracheal instillation of nickel oxide nanoparticles in rats. Toxicol Res. 2021;103:579–91. https://doi.org/10.1093/toxres/tfab039.

    Article  Google Scholar 

  64. Saquib Q, Xia P, Siddiqui MA, Zhang J, Xie Y, Faisal M, et al. High-throughput transcriptomics: an insight on the pathways affected in HepG2 cells exposed to nickel oxide nanoparticles. Chemosphere. 2020;244. https://doi.org/10.1016/j.chemosphere.2019.125488.

  65. Saquib Q, Siddiqui MA, Ahmad J, Ansari SM, Faisal M, Wahab R, et al. Nickel oxide nanoparticles induced transcriptomic alterations in HEPG2 cells. In: Saquib Q, Faisal M, AlKhedhairy AA and Alatar AA, (eds.). Cell Mol Toxicol Nano. 2018;163–74.

  66. Marzban A, Seyedalipour B, Mianabady M, Taravati A, Hoseini SM. Biochemical, toxicological, and histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol Trace Elem Res. 2020;1962:528–36. https://doi.org/10.1007/s12011-019-01941-x.

    Article  CAS  Google Scholar 

  67. •• Wang Z, Bi Y, Li K, Song Z, Pan C, Zhang S, et al. Nickel oxide nanoparticles induce developmental neurotoxicity in zebrafish by triggering both apoptosis and ferroptosis. Environ Sci Nano. 2023;102:640–55. https://doi.org/10.1039/d2en00757fThis paper elucidates the potential cellular and molecular mechanisms underlying NiO NPs induced neurotoxicity, with implications for our understandings as well as pharmacotherapies of the physiologically damaging effects of other environmental nano-pollutants.

    Article  CAS  Google Scholar 

  68. Abudayyak M, Guzel E, Özhan G. Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem Int. 2017;108:7–14. https://doi.org/10.1016/j.neuint.2017.01.017.

    Article  CAS  Google Scholar 

  69. Hosseinali SH, Boushehri ZP, Rasti B, Mirpour M, Shahpasand K, Falahati M. Biophysical, molecular dynamics and cellular studies on the interaction of nickel oxide nanoparticles with tau proteins and neuron-like cells. Int J Biol Macromol. 2019;125:778–84. https://doi.org/10.1016/j.ijbiomac.2018.12.062.

    Article  CAS  Google Scholar 

  70. Li X, Li Q, Zhang Y, Bai Y, Cao Y, Yang Y, et al. Nickel oxide nanoparticles increase α-synuclein amyloid formation and relevant overexpression of inflammatory mediators in microglia as a marker of Parkinson's disease. Arab J Chem. 2021;1410. https://doi.org/10.1016/j.arabjc.2021.103380.

  71. Åkerlund E, Islam MS, McCarrick S, Alfaro-Moreno E, Karlsson HL. Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles. Nanotoxicology. 2019;138:1060–72. https://doi.org/10.1080/17435390.2019.1640908.

    Article  CAS  Google Scholar 

  72. Åkerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S, Derr R, et al. Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. Environ Mol Mutag. 2017;593:211–22. https://doi.org/10.1002/em.22163.

    Article  CAS  Google Scholar 

  73. De Carli RF, Chaves DDS, Cardozo TR, de Souza AP, Seeber A, Flores WH, et al. Evaluation of the genotoxic properties of nickel oxide nanoparticles in vitro and in vivo. Mutation Research/Genetic Toxicol Environ Mutagenesis. 2018;836:47–53. https://doi.org/10.1016/j.mrgentox.2018.06.003.

    Article  CAS  Google Scholar 

  74. Gamasaee NA, Muhammad HA, Tadayon E, Ale-Ebrahim M, Mirpour M, Sharifi M, et al. The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes. J Biomol Struct Dyn. 2019;3812:3676–86. https://doi.org/10.1080/07391102.2019.1662850.

    Article  CAS  Google Scholar 

  75. Kheirallah DAM, El-Samad LM, Abdel-Moneim AM. DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ. 2021;753. https://doi.org/10.1016/j.scitotenv.2020.141743.

  76. Lan Z, Yang WX. Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier. Nanomedicine. 2012;74:579–96. https://doi.org/10.2217/nnm.12.20.

    Article  CAS  Google Scholar 

  77. Singh M, Verma Y, Rana SVS. Attributes of oxidative stress in the reproductive toxicity of nickel oxide nanoparticles in male rats. Environ Sci Pollut Res. 2021;294:5703–17. https://doi.org/10.1007/s11356-021-15657-w.

    Article  CAS  Google Scholar 

  78. Ahamed M, Javed Akhtar M, Alhadlaq HA. Natural antioxidant curcumin attenuates NiO nanoparticle-induced cytotoxicity in mouse spermatogonia cells: a mechanistic study. J King Saud Univ Sci. 2023;354. https://doi.org/10.1016/j.jksus.2023.102624.

  79. Lateef R, Ahmad I, Ali Mahdi A, Rajanahalli P, Javed Akhtar M, Ahamed M. Solanesol alleviates metal oxide nanoparticles generated toxicity in human placental BeWo cells. J King Saud Univ Sci. 2023;3510. https://doi.org/10.1016/j.jksus.2023.102982.

  80. Peng G, He Y, Zhao M, Yu T, Qin Y, Lin S. Differential effects of metal oxide nanoparticles on zebrafish embryos and developing larvae. Environ Sci Nano. 2018;55:1200–7. https://doi.org/10.1039/c8en00190a.

    Article  CAS  Google Scholar 

  81. Xiao J, Huang J, Wang M, Huang M, Wang Y. The fate and long-term toxic effects of NiO nanoparticles at environmental concentration in constructed wetland: enzyme activity, microbial property, metabolic pathway and functional genes. J Hazard Mater. 2021;413. https://doi.org/10.1016/j.jhazmat.2021.125295.

  82. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J. Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater. 2013;250–251:318–32. https://doi.org/10.1016/j.jhazmat.2013.01.063.

    Article  CAS  Google Scholar 

  83. • Manna I, Sahoo S, Bandyopadhyay M. Dynamic changes in global methylation and plant cell death mechanism in response to NiO nanoparticles. Planta. 2023;2575. https://doi.org/10.1007/s00425-023-04127-xThis article showed a first comprehensive work on the potential of engineered nickel oxide nanoparticles affecting the epigenome and modulating global methylation leading to retention of transgenerational footprints.

  84. Manna I, Bandyopadhyay M. The impact of engineered nickel oxide nanoparticles on ascorbate glutathione cycle in Allium cepa L. Physiol Mol Biol Plants. 2023. https://doi.org/10.1007/s12298-023-01314-8.

    Article  Google Scholar 

  85. Ates M, Demir V, Arslan Z, Camas M, Celik F. Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater. Water, Air, Soil Pollut. 2016;2273. https://doi.org/10.1007/s11270-016-2771-9

  86. Gürkan SE. Impact of Nickel Oxide Nanoparticles (NiO) on oxidative stress biomarkers and hemocyte counts of Mytilus galloprovincialis. Biol Trace Elem Res. 2022;2007:3429–41. https://doi.org/10.1007/s12011-022-03189-4.

    Article  CAS  Google Scholar 

  87. Liu ZJ, Wang YJ, Pan DM, Chen Z, Pan XH, Wang YH, et al. The cytotoxicity of NiO nanoparticle with borate capping. J Nanosci and Nanotechnol. 2011;1111:10142–8. https://doi.org/10.1166/jnn.2011.4978.

    Article  CAS  Google Scholar 

  88. • Alsaleh NB, Assiri MA, Aljarbou AM, Almutairi MM, As Sobeai HM, Alshamrani AA, et al. Adverse responses following exposure to subtoxic concentrations of zinc oxide and nickle oxide nanoparticles in the Raw 264.7 cells. Toxics. 2023;118. https://doi.org/10.3390/toxics11080674This article fills in the research on potential adverse reactions under low toxicity and sub-toxicity and emphasizes the importance of establishing sensitive endpoints of exposure and toxicity beyond conventional toxicological testing.

  89. Siddiqui MA, Ahamed M, Ahmad J, Majeed Khan MA, Musarrat J, Al-Khedhairy AA, et al. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol. 2012;503–4:641–7. https://doi.org/10.1016/j.fct.2012.01.017.

    Article  CAS  Google Scholar 

  90. Cambre MH, Holl NJ, Wang B, Harper L, Lee H-J, Chusuei CC, et al. Cytotoxicity of NiO and Ni(OH)2 nanoparticles is mediated by oxidative stress-induced cell death and suppression of cell proliferation. Int J Molr Scis. 2020;217. https://doi.org/10.3390/ijms21072355.

  91. Abudayyak M, GÜZel E, ÖZhan G. Cytotoxic, genotoxic, and apoptotic effects of nickel oxide nanoparticles in intestinal epithelial cells. Turk J Pharm Sci. 2020;174:446–51. https://doi.org/10.4274/tjps.galenos.2019.76376.

    Article  CAS  Google Scholar 

  92. Abudayyak M, Guzel E, Özhan G. Nickel oxide nanoparticles induce oxidative DNA damage and apoptosis in kidney cell line (NRK-52E). Biol Trace Elem Res. 2016;1781:98–104. https://doi.org/10.1007/s12011-016-0892-z.

    Article  CAS  Google Scholar 

  93. Bala R, Pareek B, Umar A, Arora S, Singh D, Chaudhary A, et al. In-vitro cytotoxicity of nickel oxide nanoparticles against L-6 cell-lines: MMP, MTT and ROS studies. Environ Res. 2022;215. https://doi.org/10.1016/j.envres.2022.114257.

  94. Sousa CA, Soares HMVM, Soares EV. Nickel oxide (NiO) nanoparticles disturb physiology and induce cell death in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2018;1026:2827–38. https://doi.org/10.1007/s00253-018-8802-2.

    Article  CAS  Google Scholar 

  95. Tomonaga T, Izumi H, Oyabu T, Lee BW, Kubo M, Shimada M, et al. Assessment of cytokine-induced neutrophil chemoattractants as biomarkers for prediction of pulmonary toxicity of nanomaterials. Nanomaterials. 2020;108. https://doi.org/10.3390/nano10081563.

Download references

Author information

Authors and Affiliations

Authors

Contributions

C and Z wrote the main manuscript text and prepared figures and tables. D and Q reviewed the manuscript.

Corresponding authors

Correspondence to Donggang Guo or Quanxi Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent 

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Zhang, Z., Guo, D. et al. Toxicity Research Progress of Nickel Oxide Nanoparticles Exposure in the Environment. Curr Pollution Rep (2024). https://doi.org/10.1007/s40726-024-00306-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40726-024-00306-w

Keywords

Navigation