Skip to main content
Log in

Enhancing Our Vision of Aerosols: Progress in Scattering Phase Function Measurements

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Calculating atmospheric aerosol radiative forcing is a crucial aspect of climate change research. The aerosol scattering phase function stands out as a vital parameter for radiative forcing computations and holds significant importance in the remote sensing retrievals of aerosols. Despite its significance, research on aerosol scattering phase function measurements has been limited over the years. This review article provides a comprehensive summary of relevant studies on the measurements of aerosol scattering phase functions.

Recent Findings

In recent times, the application of imaging detection techniques in the measurement of aerosol scattering phase functions has emerged, highlighting advantages such as portability and high temporal-angular resolution. In addition, the development of aerosol retrieval algorithms facilitates a broader application of the results obtained from aerosol scattering phase function measurements in estimating aerosol physical properties and satellite retrievals.

Summary

This review introduces the measurement techniques, instruments, and retrieval algorithms associated with aerosol scattering phase functions, encompassing laboratory experiments, in situ field measurements, and remote sensing retrieval. The measurement results and related research on aerosol morphological effects and physical property retrievals have been summarized. Finally, it outlines future research prospects, suggesting improvements in instruments, experimental expansion, and enhanced data analysis and application, providing feasible suggestions for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Seinfeld JH, Pandis SN. Atmospheric chemistry and physics. 2nd ed. Hoboken, New Jersey: John Wiley & Sons; 2006.

    Google Scholar 

  2. Stevens B, Boucher O. Climate science: the aerosol effect. Nature. 2012;490(7418):40–1.

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Levin Z, Cotton WR, editors. Aerosol pollution impact on precipitation: a scientific review. Springer; 2009.

  4. Rosenfeld D, Sherwood S, Wood R, Donner L. Climate effects of aerosol-cloud interactions. Science. 2014;343(6169):379–80.

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Moosmüller H, Chakrabarty RK. Technical Note: Simple analytical relationships between Ångström coefficients of aerosol extinction, scattering, absorption, and single scattering albedo. Atmos Chem Phys. 2011;11(20):10677–80.

    Article  ADS  Google Scholar 

  6. Ueda S, Nakayama T, Taketani F, Adachi K, Matsuki A, Iwamoto Y, et al. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan. Atmos Chem Phys. 2016;16(4):2525–41.

    Article  ADS  CAS  Google Scholar 

  7. Ran L, Deng ZZ, Wang PC, Xia XA. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements. Atmos Environ. 2016;142:132–44.

    Article  ADS  CAS  Google Scholar 

  8. Wex H, Neusüß C, Wendisch M, Stratmann F, Koziar C, Keil A, et al. Particle scattering, backscattering, and absorption coefficients: an in situ closure and sensitivity study. J Geophys Res Atmos. 2002;107(D21):LAC 4-1–18.

    Article  Google Scholar 

  9. Ma N, Zhao CS, Nowak A, Müller T, Pfeifer S, Cheng YF, et al. Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study. Atmos Chem Phys. 2011;11(12):5959–73.

    Article  ADS  CAS  Google Scholar 

  10. • Kuang Y, Zhao CS, Tao JC, Ma N. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect. Atmos Chem Phys. 2015;15(10):5761–72. This article analyzed the influence of angular distribution of aerosol scattering on the estimates of direct aerosol radiative effect.

  11. Wang M, Gordon HR. Retrieval of the columnar aerosol phase function and single-scattering albedo from sky radiance over the ocean:simulations. Appl Opt. 1993;32(24):4598–609.

    Article  ADS  PubMed  CAS  Google Scholar 

  12. Kokhanovsky AA. Aerosol optics. Springer; 2008.

    Google Scholar 

  13. Andrews E, Sheridan PJ, Fiebig M, McComiskey A, Ogren JA, Arnott P, et al. Comparison of methods for deriving aerosol asymmetry parameter. J Geophys Res Atmos. 2006;111(D5):D05S4.

    Article  Google Scholar 

  14. Russell PB, Kinne SA, Bergstrom RW. Aerosol climate effects: local radiative forcing and column closure experiments. J Geophys Res Atmos. 1997;102(D8):9397–407.

    Article  CAS  Google Scholar 

  15. Zhu J, Che H, Xia X, Chen H, Goloub P, Zhang W. Column-integrated aerosol optical and physical properties at a regional background atmosphere in North China Plain. Atmos Environ. 2014;84:54–64.

    Article  ADS  CAS  Google Scholar 

  16. Kaufman YJ. Aerosol optical thickness and atmospheric path radiance. J Geophys Res Atmos. 1993;98(D2):2677–92.

    Article  Google Scholar 

  17. Che H, Qi B, Zhao H, Xia X, Eck TF, Goloub P, et al. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmos Chem Phys. 2018;18(1):405–25.

    Article  ADS  CAS  Google Scholar 

  18. Bian Y, Zhao C, Xu W, Ma N, Tao J, Kuang Y, et al. Method to retrieve the nocturnal aerosol optical depth with a CCD laser aerosol detective system. Opt Lett. 2017;42(22):4607–10.

    Article  ADS  PubMed  Google Scholar 

  19. Heintzenberg J, Charlson RJ, Clarke AD, Liousse C, Ramaswamy V, Shine KP, et al. Measurements and modelling of aerosol single-scattering albedo: progress, problems and prospects. Contrib Atmos Phys. 1997;70(4):249–63.

    Google Scholar 

  20. Andrews E, Ogren JA, Bonasoni P, Marinoni A, Cuevas E, Rodríguez S, et al. Climatology of aerosol radiative properties in the free troposphere. Atmos Res. 2011;102(4):365–93.

    Article  Google Scholar 

  21. Markowicz KM, Ritter C, Lisok J, Makuch P, Stachlewska IS, Cappelletti D, et al. Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iAREA campaigns in Ny-Ålesund. Atmos Environ. 2017;164(Supplement C):431–47.

    Article  ADS  CAS  Google Scholar 

  22. Xu X, Zhao W, Qian X, Wang S, Fang B, Zhang Q, et al. The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo. Atmos Chem Phys. 2018;18(23):16829–44.

    Article  CAS  Google Scholar 

  23. •• Bian Y, Zhao C, Xu W, Zhao G, Tao J, Kuang Y. Development and validation of a CCD-laser aerosol detective system for measuring the ambient aerosol phase function. Atmos Meas Tech. 2017;10(6):2313–22. This article introduced a novel open-path CCD aerosol scattering phase function detection system.

  24. Ansmann A, Althausen D, Wandinger U, Franke K, Müller D, Wagner F, et al. Vertical profiling of the Indian aerosol plume with six-wavelength lidar during INDOEX: a first case study. Geophys Res Lett. 2000;27(7):963–6.

    Article  ADS  CAS  Google Scholar 

  25. Barnes JE, Sharma NCP, Kaplan TB. Atmospheric aerosol profiling with a bistatic imaging lidar system. Appl Opt. 2007;46(15):2922–9.

    Article  ADS  PubMed  Google Scholar 

  26. •• Espinosa WR, Remer LA, Dubovik O, Ziemba L, Beyersdorf A, Orozco D, et al. Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements. Atmos Meas Tech. 2017;10(3):811–24. This article introduced a novel airborne imaging polar nephelometer.

  27. Hulst HCvd. Light scattering by small particles. New York: Dover Publications; 1957.

    Google Scholar 

  28. Andrews DG. An introduction to atmospheric physics. 2nd ed. Cambridge University Press; 2010.

    Book  Google Scholar 

  29. • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: John Wiley & Sons; 2008. This book introduced the fundamental and methodology of Mie scattering simulation.

  30. Ma N, Zhao CS, Müller T, Cheng YF, Liu PF, Deng ZZ, et al. A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions. Atmos Chem Phys. 2012;12(5):2381–97.

    Article  ADS  CAS  Google Scholar 

  31. Liu PF, Zhao CS, Göbel T, Hallbauer E, Nowak A, Ran L, et al. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmos Chem Phys. 2011;11(7):3479–94.

    Article  ADS  Google Scholar 

  32. Zhao G, Li F, Zhao C. Determination of the refractive index of ambient aerosols. Atmos Environ. 2020;240:117800.

    Article  CAS  Google Scholar 

  33. Mishchenko MI, Travis LD, Mackowski DW. T-matrix computations of light scattering by nonspherical particles: a review. J Quant Spectrosc Radiat Transfer. 1996;55(5):535–75.

    Article  ADS  CAS  Google Scholar 

  34. Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A. 1994;11(4):1491–9.

    Article  ADS  Google Scholar 

  35. •• Henyey LG, Greenstein JL. Diffuse radiation in the galaxy. Astrophys J. 1941;93:70–83. This article introduced the HG approximation phase function.

  36. • Cornette WM, Shanks JG. Physically reasonable analytic expression for the single-scattering phase function. Appl Opt. 1992;31(16):3152–60. This article introduced an improved algorithm of the HG approximation phase function.

  37. Qie L, Li Z, Goloub P, Li L, Li D, Li K, et al. Retrieval of the aerosol asymmetry factor from sun-sky radiometer measurements: application to almucantar geometry and accuracy assessment. Appl Opt. 2017;56(36):9932–40.

    Article  ADS  Google Scholar 

  38. Hansen JE. Exact and approximate solutions for multiple scattering by cloudy and hazy planetary atmospheres. J Atmos Sci. 1969;26(3):478–87.

    Article  ADS  Google Scholar 

  39. Zhao G, Zhao C, Kuang Y, Bian Y, Tao J, Shen C, et al. Calculating the aerosol asymmetry factor based on measurements from the humidified nephelometer system. Atmos Chem Phys. 2018;18(12):9049–60.

    Article  ADS  Google Scholar 

  40. • Boucher O. On aerosol direct shortwave forcing and the Henyey–Greenstein phase function. J Atmos Sci. 1998;55(1):128–34. This article evaluated the errors introduced by the HG approximation when estimating aerosol radiative forcing.

  41. Pandey A, Chakrabarty RK. Scattering directionality parameters of fractal black carbon aerosols and comparison with the Henyey-Greenstein approximation. Opt Lett. 2016;41(14):3351–4.

    Article  ADS  PubMed  CAS  Google Scholar 

  42. • Muñoz O, Hovenier JW. Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review. J Quant Spectrosc Radiat Transf. 2011;112(11):1646–57. This article introduced a polar nephelometer based on rotational detection that used in indoor experiment.

  43. •• Barkey B, Paulson SE, Chung A. Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index. Aerosol Sci Technol. 2007;41(8):751–60. This article introduced an algorithm to retrieve the aerosol size distribution and refractive index with polar nephelometer measurements.

  44. Castagner J-L, Bigio IJ. Particle sizing with a fast polar nephelometer. Appl Opt. 2007;46(4):527–32.

    Article  ADS  PubMed  CAS  Google Scholar 

  45. Kaller W. A new polar nephelometer for measurement of atmospheric aerosols. J Quant Spectrosc Radiat Transfer. 2004;87(2):107–17.

    Article  ADS  CAS  Google Scholar 

  46. Liu L, Mishchenko MI, Hovenier JW, Volten H, Muñoz O. Scattering matrix of quartz aerosols: comparison and synthesis of laboratory and Lorenz-Mie results. J Quant Spectrosc Radiat Transfer. 2003;79–80:911–20.

    Article  ADS  Google Scholar 

  47. Muñoz O, Moreno F, Guirado D, Ramos JL, López A, Girela F, et al. Experimental determination of scattering matrices of dust particles at visible wavelengths: the IAA light scattering apparatus. J Quant Spectrosc Radiat Transfer. 2010;111(1):187–96.

    Article  ADS  Google Scholar 

  48. Muñoz O, Volten H, de Haan JF, Vassen W, Hovenier JW. Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633 nm. J Geophys Res Atmos. 2001;106(D19):22833–44.

    Article  Google Scholar 

  49. Volten H, Muñoz O, Rol E, de Haan JF, Vassen W, Hovenier JW, et al. Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J Geophys Res Atmos. 2001;106(D15):17375–401.

    Article  ADS  Google Scholar 

  50. Barkey B, Bailey M, Liou K-N, Hallett J. Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber. Appl Opt. 2002;41(27):5792–6.

    Article  ADS  PubMed  Google Scholar 

  51. • Barkey B, Liou KN. Polar nephelometer for light-scattering measurements of ice crystals. Opt Lett. 2001;26(4):232–4. This article introduced a polar nephelometer based on multi-sensor detection that used in indoor experiment.

  52. • Gayet J-F, Crépel O, Fournol J, Oshchepkov S. A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design. In: Annales geophysicae. Springer; 1997. p. 451–9. This article introduced an airborne polar nephelometer based on multi-sensor detection.

  53. West RA, Doose LR, Eibl AM, Tomasko MG, Mishchenko MI. Laboratory measurements of mineral dust scattering phase function and linear polarization. J Geophys Res Atmos. 1997;102(D14):16871–81.

    Article  CAS  Google Scholar 

  54. Castagner J-L, Bigio IJ. Polar nephelometer based on a rotational confocal imaging setup. Appl Opt. 2006;45(10):2232–9.

    Article  ADS  PubMed  Google Scholar 

  55. • Hu Q, Qiu Z, Hong J, Chen D. A polarized scanning nephelometer for measurement of light scattering of an ensemble-averaged matrix of aerosol particles. J Quant Spectrosc Radiat Transf. 2021;261:107497. This article introduced a polar nephelometer based on rotational detection that used in indoor experiment.

  56. • Curtis DB, Aycibin M, Young MA, Grassian VH, Kleiber PD. Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: application to ammonium sulfate and quartz aerosol particles. Atmos Environ. 2007;41(22):4748–58. This article introduced a polar nephelometer based on imaging detection that used in indoor experiment.

  57. Curtis DB, Meland B, Aycibin M, Arnold NP, Grassian VH, Young MA, et al. A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm. J Geophys Res Atmos. 2008;113(D8):D08210.

    Article  ADS  Google Scholar 

  58. Lew LJN, Ting MV, Preston TC. Determining the size and refractive index of homogeneous spherical aerosol particles using Mie resonance spectroscopy. Appl Opt. 2018;57(16):4601–9.

    Article  ADS  PubMed  CAS  Google Scholar 

  59. • Bain A, Rafferty A, Preston TC. Determining the size and refractive index of single aerosol particles using angular light scattering and Mie resonances. J Quant Spectrosc Radiat Transf. 2018;221:61–70. This article introduced a measurement of the angular distribution of aerosol scattering based on CMOS camera in optical tweezer measurement.

  60. • Cremer JW, Thaler KM, Haisch C, Signorell R. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat Commun. 2016;7(1):10941. This article introduced a measurement of the angular distribution of aerosol scattering based on CMOS camera in optical tweezer measurement.

  61. Cotterell MI, Willoughby RE, Bzdek BR, Orr-Ewing AJ, Reid JP. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles. Atmos Chem Phys. 2017;17(16):9837–51.

    Article  ADS  CAS  Google Scholar 

  62. Cotterell MI, Knight JW, Reid JP, Orr-Ewing AJ. Accurate measurement of the optical properties of single aerosol particles using cavity ring-down spectroscopy. J Phys Chem A. 2022;126(17):2619–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Bian YX, Zhao CS, Ma N, Chen J, Xu WY. A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmos Chem Phys. 2014;14(12):6417–26.

    Article  ADS  CAS  Google Scholar 

  64. Kim H, Barkey B, Paulson SE. Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation. J Geophys Res Atmos. 2010;115(D24):D24212.

    Article  ADS  Google Scholar 

  65. • Nakagawa M, Nakayama T, Sasago H, Ueda S, Venables DS, Matsumi Y. Design and characterization of a novel single-particle polar nephelometer. Aerosol Sci Technol. 2016;50(4):392–404. This article introduced a polar nephelometer based on multi-sensor detection that used in field measurement.

  66. • Ran L, Zhou F, Deng Z, Zhou M, Wang P. A method to obtain scattering phase function based on particle size distribution and refractive index retrieved from Aurora 4000 multi-angle scattering measurements: a numerical study. Atmos Environ. 2023;315:120138. This article introduced a method to obtain scattering phase function based on Aurora 4000 polar nephelometer measurements.

  67. Teri M, Müller T, Gasteiger J, Valentini S, Horvath H, Vecchi R, et al. Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient – an optical closure study evaluating different nephelometer angular truncation and illumination corrections. Atmos Meas Tech. 2022;15(10):3161–87.

    Article  CAS  Google Scholar 

  68. • Horvath H, Alados Arboledas L, Olmo Reyes FJ. Angular scattering of the Sahara dust aerosol. Atmos Chem Phys. 2018;18(23):17735–44. This article introduced a polar nephelometer based on rotational detection that used in field measurement.

  69. • McCrowey CJ, Tinilau SS, Calderon G, Koo J-E, Curtis DB. A portable high-resolution polar nephelometer for measurement of the angular scattering properties of atmospheric aerosol: design and validation. Aerosol Sci Technol. 2013;47(6):592–605. This article introduced a polar nephelometer based on imaging detection that used in field measurement.

  70. •• Manfred KM, Washenfelder RA, Wagner NL, Adler G, Erdesz F, Womack CC, et al. Investigating biomass burning aerosol morphology using a laser imaging nephelometer. Atmos Chem Phys. 2018;18(3):1879–94. This article introduced an airborne polar nephelometer based on imaging detection.

  71. Tao Z, Liu D, Wang Z, Ma X, Zhang Q, Xie C, et al. Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter lidar. Opt Express. 2014;22(1):1127–34.

    Article  ADS  PubMed  Google Scholar 

  72. Barnes JE, Bronner S, Beck R, Parikh NC. Boundary layer scattering measurements with a charge-coupled device camera lidar. Appl Opt. 2003;42(15):2647–52.

    Article  ADS  PubMed  Google Scholar 

  73. BenZvi SY, Connolly BM, Matthews JAJ, Prouza M, Visbal EF, Westerhoff S. Measurement of the aerosol phase function at the Pierre Auger Observatory. Astropart Phys. 2007;28(3):312–20.

    Article  ADS  Google Scholar 

  74. • Grams GW, Blifford IH, Gillette DA, Russell PB. Complex index of refraction of airborne soil particles. J Appl Meteorol Climatol. 1974;13(4):459–71. This article introduced an airborne polar nephelometer based on rotational detection.

  75. Grams G, Dascher A, Wyman C. Laser polar nephelometer for airborne measurements of aerosol optical properties. Opt Eng. 1975;14(1):140185.

    Article  ADS  Google Scholar 

  76. Grams GW. In-situ measurements of scattering phase functions of stratospheric aerosol particles in Alaska during July 1979. Geophys Res Lett. 1981;8(1):13–4.

    Article  ADS  Google Scholar 

  77. Crepel O, Gayet JF, Fournol JF, Oshchepkov S. A new airborne Polar Nephelometer for the measurement of optical and microphysical cloud properties. Part II: preliminary tests. Ann Geophys. 1997;15(4):460–70.

    Article  ADS  Google Scholar 

  78. Gayet J-F, Auriol F, Oshchepkov S, Schröder F, Duroure C, Febvre G, et al. In situ measurements of the scattering phase function of stratocumulus, contrails and cirrus. Geophys Res Lett. 1998;25(7):971–4.

    Article  ADS  Google Scholar 

  79. Oshchepkov S, Isaka H, Gayet J-F, Sinyuk A, Auriol F, Havemann S. Microphysical properties of mixed-phase & ice clouds retrieved from in situ airborne “polar nephelometer” measurements. Geophys Res Lett. 2000;27(2):209–12.

    Article  ADS  Google Scholar 

  80. Auriol F, Gayet J-F, Febvre G, Jourdan O, Labonnote L, Brogniez G. In situ observation of cirrus scattering phase functions with 22° and 46° halos: cloud field study on 19 February 1998. J Atmos Sci. 2001;58(22):3376–90.

    Article  ADS  Google Scholar 

  81. C.-Labonnote L, Brogniez G, Buriez J-C, Doutriaux-Boucher M, Gayet J-F, Macke A. Polarized light scattering by inhomogeneous hexagonal monocrystals: validation with ADEOS-POLDER measurements. J Geophys Res Atmos. 2001;106(D11):12139–53.

    Article  ADS  Google Scholar 

  82. Gayet J-F, Asano S, Yamazaki A, Uchiyama A, Sinyuk A, Jourdan O, et al. Two case studies of winter continental-type water and mixed-phase stratocumuli over the sea 1 Microphysical and optical properties. J Geophys Res Atmos. 2002;107(D21):AAC 11-1–15.

    Article  Google Scholar 

  83. Gayet JF, Mioche G, Shcherbakov V, Gourbeyre C, Busen R, Minikin A. Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment. Atmos Chem Phys. 2011;11(6):2537–44.

    Article  ADS  CAS  Google Scholar 

  84. Jourdan O, Oshchepkov S, Shcherbakov V, Gayet J-F, Isaka H. Assessment of cloud optical parameters in the solar region: retrievals from airborne measurements of scattering phase functions. J Geophys Res Atmos. 2003;108(D18).

  85. •• Dolgos G, Martins JV. Polarized imaging nephelometer for in situ airborne measurements of aerosol light scattering. Opt Express. 2014;22(18):21972–90. This article introduced an airborne polar nephelometer based on imaging detection for the first time.

  86. Espinosa WR, Martins JV, Remer LA, Puthukkudy A, Orozco D, Dolgos G. In situ measurements of angular-dependent light scattering by aerosols over the contiguous United States. Atmos Chem Phys. 2018;18(5):3737–54.

    Article  ADS  CAS  Google Scholar 

  87. Espinosa WR, Martins JV, Remer LA, Dubovik O, Lapyonok T, Fuertes D, et al. Retrievals of aerosol size distribution, spherical fraction, and complex refractive index from airborne in situ angular light scattering and absorption measurements. J Geophys Res Atmos. 2019;124(14):7997–8024.

    Article  ADS  Google Scholar 

  88. • Ahern AT, Erdesz F, Wagner NL, Brock CA, Lyu M, Slovacek K, et al. Laser imaging nephelometer for aircraft deployment. Atmos Meas Tech. 2022;15(5):1093–105. This article introduced a novel airborne polar nephelometer based on imaging detection.

  89. Nyaku E, Loughman R, Bhartia PK, Deshler T, Chen Z, Colarco PR. A comparison of lognormal and gamma size distributions for characterizing the stratospheric aerosol phase function from optical particle counter measurements. Atmos Meas Tech. 2020;13(3):1071–87.

    Article  CAS  Google Scholar 

  90. • Kaufman YJ, Gitelson A, Karnieli A, Ganor E, Fraser RS, Nakajima T, et al. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements. J Geophys Res Atmos. 1994;99(D5):10341–56. This article introduced a retrieval algorithm of aerosol scattering phase function based on sun and sky radiative measurements for the first time.

  91. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, et al. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ. 1998;66(1):1–16.

    Article  ADS  Google Scholar 

  92. •• Dubovik O, King MD. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res Atmos. 2000;105(D16):20673–96. This article introduced the retrieval algorithm of aerosol scattering phase function used in AERONET.

  93. Smirnov A, Holben BN, Dubovik O, Frouin R, Eck TF, Slutsker I. Maritime component in aerosol optical models derived from Aerosol Robotic Network data. J Geophys Res Atmos. 2003;108(D1):AAC-14-1–11.

    Article  Google Scholar 

  94. Kim D-H, Sohn B-J, Nakajima T, Takamura T, Takemura T, Choi B-C, et al. Aerosol optical properties over east Asia determined from ground-based sky radiation measurements. J Geophys Res Atmos. 2004;109(D2).

  95. Che H, Zhang XY, Xia X, Goloub P, Holben B, Zhao H, et al. Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos Chem Phys. 2015;15(13):7619–52.

    Article  ADS  CAS  Google Scholar 

  96. Li ZQ, Xu H, Li KT, Li DH, Xie YS, Li L, et al. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: an overview of Sun-Sky Radiometer Observation Network (SONET) measurements. Bull Am Meteor Soc. 2017;99(4):739–55.

    Article  ADS  Google Scholar 

  97. Li Z, Goloub P, Devaux C, Gu X, Deuzé J-L, Qiao Y, et al. Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements. Remote Sens Environ. 2006;101(4):519–33.

    Article  ADS  Google Scholar 

  98. Bian Y, Liu L, Zheng J, Wu S, Dai G. Classification of cloud phase using combined ground-based polarization lidar and millimeter cloud radar observations over the Tibetan Plateau. IEEE Trans Geosci Remote Sens. 2023;61:1–13.

    Article  Google Scholar 

  99. Bian Y, Zhao C, Xu W, Kuang Y, Tao J, Wei W, et al. A novel method to retrieve the nocturnal boundary layer structure based on CCD laser aerosol detection system measurements. Remote Sens Environ. 2018;211:38–47.

    Article  ADS  Google Scholar 

  100. Wang Z, Tao Z, Liu D, Xie C, Wang Y. New technique for aerosol detection in haze day using side-scattering lidar and its inversion method. Earth Space Sci. 2020;7(1):e2019EA000866.

    Article  ADS  Google Scholar 

  101. Lian S, Bian Y, Zhao G, Li W, Zhao C. Dual CCD detection method to retrieve aerosol extinction coefficient profile. Opt Express. 2019;27(20):A1529–43.

    Article  ADS  PubMed  Google Scholar 

  102. • Gao J, Pan J, Wang J, Cai Y, Zhao Y. Triple charge-coupled device cameras combined backscatter lidar for retrieving PM.25 from aerosol extinction coefficient. Appl Opt. 2020;59(33):10369–79. This article introduced a novel instrument to measure and retrieve the aerosol scattering phase function profile based on imaging detection.

  103. • Kocifaj M, Kundracik F, Bará S, Barentine J, Wallner S. Nighttime atmospheric scattering phase function derived from the scattered light of a laser beam. Geophys Res Lett. 2022;49(10):e2022GL098608. This article introduced a camera-laser system to retrieve the aerosol scattering phase function near the ground based on imaging detection.

  104. Fougnie B, Chimot J, Vázquez-Navarro M, Marbach T, Bojkov B. Aerosol retrieval from space – how does geometry of acquisition impact our ability to characterize aerosol properties. J Quant Spectrosc Radiat Transf. 2020;256:107304.

    Article  CAS  Google Scholar 

  105. Wang J, Liu X, Christopher SA, Reid JS, Reid E, Maring H. The effects of non-sphericity on geostationary satellite retrievals of dust aerosols. Geophys Res Lett. 2003;30(24):2293.

    Article  ADS  Google Scholar 

  106. Zhao TXP, Laszlo I, Dubovik O, Holben BN, Sapper J, Tanré D, et al. A study of the effect of non-spherical dust particles on the AVHRR aerosol optical thickness retrievals. Geophys Res Lett. 2003;30(6):1317.

    Article  ADS  Google Scholar 

  107. Kaufman YJ, Tanré D, Gordon HR, Nakajima T, Lenoble J, Frouin R, et al. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J Geophys Res Atmos. 1997;102(D14):16815–30.

    Article  Google Scholar 

  108. •• Omar AH, Winker DM, Vaughan MA, Hu Y, Trepte CR, Ferrare RA, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J Atmos Ocean Technol. 2009;26(10):1994–2014. This article introduced the aerosol classification algorithm and the related aerosol optical properties used for CALIPSO measurement.

  109. Wu Y, Cordero L, Gross B, Moshary F, Ahmed S. Assessment of CALIPSO attenuated backscatter and aerosol retrievals with a combined ground-based multi-wavelength lidar and sunphotometer measurement. Atmos Environ. 2014;84:44–53.

    Article  ADS  CAS  Google Scholar 

  110. • Kim MH, Omar AH, Tackett JL, Vaughan MA, Winker DM, Trepte CR, et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos Meas Tech. 2018;11(11):6107–35. This article introduced the updated aerosol classification algorithm and the related aerosol optical properties used for CALIPSO measurement.

  111. Kokhanovsky AA, Deuzé JL, Diner DJ, Dubovik O, Ducos F, Emde C, et al. The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos Meas Tech. 2010;3(4):909–32.

    Article  Google Scholar 

  112. • Bian Q, Kreidenweis S, Chiu JC, Miller SD, Xu X, Wang J, et al. Constraining aerosol phase function using dual-view geostationary satellites. J Geophys Res Atmos. 2021;126(20):e2021JD035209. This article introduced a retrieval algorithm of aerosol scattering phase function based on dual-view geostationary satellite measurements.

  113. •• Muñoz O, Moreno F, Guirado D, Dabrowska DD, Volten H, Hovenier JW. The Amsterdam-Granada light scattering database. J Quant Spectrosc Radiat Transf. 2012;113(7):565–74. This article introduced a database containing aerosol optical properties (SPF, etc.) for different aerosol types.

  114. Muñoz O, Volten H, de Haan JF, Vassen W, Hovenier JW. Experimental determination of the phase function and degree of linear polarization of El Chichón and Pinatubo volcanic ashes. J Geophys Res Atmos. 2002;107(D13):ACL 4-1–8.

    Article  Google Scholar 

  115. • Aptowicz KB, Pan Y-L, Martin SD, Fernandez E, Chang RK, Pinnick RG. Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns. J Quant Spectrosc Radiat Transf. 2013;131:13–23. This article analyzed the SPF of spherical and non-spherical particles based on single-particle detection.

  116. Mishchenko MI, Dlugach JM. Adhesion of mineral and soot aerosols can strongly affect their scattering and absorption properties. Opt Lett. 2012;37(4):704–6.

    Article  ADS  PubMed  Google Scholar 

  117. • Bian Y, Xu W, Hu Y, Tao J, Kuang Y, Zhao C. Method to retrieve aerosol extinction profiles and aerosol scattering phase functions with a modified CCD laser atmospheric detection system. Opt Express. 2020;28(5):6631–47. This article introduced a modified CCD-laser system to retrive aerosol scattering phase functions and extinction profiles simultaneously.

  118. • Lienert BR, Porter JN, Sharma SK. Aerosol size distributions from genetic inversion of polar nephelometer data. J Atmos Ocean Technol. 2003;20(10):1403–10. This article introduced a genetic algorithm to retrieve the aerosol PSD based on SPF measurements.

  119. Barkey B, Kim H, Paulson SE. Genetic algorithm retrieval of real refractive index from aerosol distributions that are not lognormal. Aerosol Sci Technol. 2010;44(12):1089–95.

    Article  ADS  CAS  Google Scholar 

  120. Dubovik O, Herman M, Holdak A, Lapyonok T, Tanré D, Deuzé JL, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos Meas Tech. 2011;4(5):975–1018.

    Article  CAS  Google Scholar 

  121. • Dubovik O, Fuertes D, Litvinov P, Lopatin A, Lapyonok T, Doubovik I, et al. A comprehensive description of multi-term LSM for applying multiple a priori constraints in problems of atmospheric remote sensing: GRASP algorithm, concept, and applications. Front Remote Sens. 2021;2:23. This article introduced an overview of the GRASP algorithm.

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 41975043 and 42275070).

Author information

Authors and Affiliations

Authors

Contributions

Y.B. wrote the original draft of the manuscript. C.Z. revised the manuscript and provided supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chunsheng Zhao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Zhao, C. Enhancing Our Vision of Aerosols: Progress in Scattering Phase Function Measurements. Curr Pollution Rep 10, 87–104 (2024). https://doi.org/10.1007/s40726-024-00292-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-024-00292-z

Keywords

Navigation