Skip to main content
Log in

Biodegradation of Neonicotinoids: Current Trends and Future Prospects

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neonicotinoids are synthetic insecticides, and among all agrochemicals, they rank second in consumption. The unparalleled use of neonicotinoids in various sectors including agriculture has currently reintroduced them as emerging pollutants/hazards due to their endocrine-disrupting nature. High water solubility, low volatility, and persistent nature have resulted in their accumulation in the environment. Thus, investigating efficient and sustainable methods for the remediation of contaminated environments due to this pollutant is imperative.

Recent Findings.

Bioremediation provides a cost-effective and environment-friendly option over conventional physicochemical techniques that produce toxic byproducts. The microbial route for degradation has the potential to completely mineralize neonicotinoids by virtue of their adaptive and diverse metabolic machinery. Potent microbes such as Ensifer, Phanerochaete, Bacillus, Ochrobactrum, Trametes, Rhodococcus, Sphingobacterium, and Pseudomonas have been isolated and screened for their immense degradation potential, and the metabolites, degradative enzymes, and transformation pathways have been elucidated. The incorporation of modern tools/techniques such as metabolic engineering, microbial biotechnology, omics-based database approaches or systems biology, artificial intelligence, and machine learning can fasten and give better bioremediation results.

Summary

This study has aimed to summarize the processes employed to date to degrade neonicotinoids and present a comprehensive report reflecting past efforts, advances, and future prospects. Therefore, this report will be beneficial in strengthening the understanding of the extent of efforts made for neonicotinoid degradation and how conventional approaches such as bioaugmentation, biostimulation, and biofiltration can be accelerated by advanced technologies viz., omics and machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Foong SY, Chan YH, Loy AC, et al. The nexus between biofuels and pesticides in agroforestry: pathways toward United Nations sustainable development goals. Environ Res. 2022;214:113751. https://doi.org/10.1016/j.envres.2022.113751.

  2. Tudi M, Daniel Ruan H, Wang L, et al. Agriculture development, pesticide application and its impact on the environment. Int J Environ Ees Public Health. 2021;18(3):1112. https://doi.org/10.3390/ijerph18031112.

    Article  CAS  Google Scholar 

  3. Geiger F, Bengtsson J, Berendse F, et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol. 2010;11(2):97–105. https://doi.org/10.1016/j.baae.2009.12.001.

    Article  CAS  Google Scholar 

  4. Sarker A, Nandi R, Kim JE, Islam T. Remediation of chemical pesticides from contaminated sites through potential microorganisms and their functional enzymes: prospects and challenges. Environ Technol Innov. 2021;23:101777. https://doi.org/10.1016/j.eti.2021.101777.

  5. Hurali S, Vinoda RB, Mahantashivayogayya H, Pramesh D, Gowdar SB. Evaluation of new generation granular insecticides against major lepidopteran pests of rice Oryza sativa L. Int J Chem Stud. 2020;8(1):1047–51. https://doi.org/10.22271/chemi.2020.v8.i1n.8387.

  6. Ying Z, Guo B, Zhang G, et al. The characteristics and potential risks of neonicotinoid residues in soils of different types of land use in Hangzhou. Ecotoxicol Environ Saf. 2022;245:114091. https://doi.org/10.1016/j.ecoenv.2022.114091.

  7. Abraham J, Gajendiran A. Biodegradation of fipronil and its metabolite fipronil sulfone by Streptomyces rochei strain AJAG7 and its use in bioremediation of contaminated soil. Pestic Biochem Phys. 2019;55:90–100. https://doi.org/10.1016/j.pestbp.2019.01.011.

    Article  CAS  Google Scholar 

  8. Ahmad S, Cui D, Zhong G, Liu J. Microbial technologies employed for biodegradation of neonicotinoids in the agroecosystem. Front Microbiol. 2021;3510. https://doi.org/10.3389/fmicb.2021.759439.

  9. Ihara M, Matsuda K. Neonicotinoids: molecular mechanisms of action, insights into resistance and impact on pollinators. Curr Opin Insect Sci. 2018;30:86–92. https://doi.org/10.1016/j.cois.2018.09.009.

    Article  Google Scholar 

  10. Rodríguez-Castillo G, Molina-Rodríguez M, Cambronero-Heinrichs JC, et al. Simultaneous removal of neonicotinoid insecticides by a microbial degrading consortium: detoxification at reactor scale. Chemosphere. 2019;235:1097–106. https://doi.org/10.1016/j.chemosphere.2019.07.004.

    Article  CAS  Google Scholar 

  11. Anjos CS, Lima RN, Porto AL. An overview of neonicotinoids: biotransformation and biodegradation by microbiological processes. Environ Sci Pollut Res. 2021;28(28):37082–109. https://doi.org/10.1007/s11356-021-13531-3.

    Article  Google Scholar 

  12. Pang S, Lin Z, Zhang W, et al. Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Front Microbiol. 2020;11:868. https://doi.org/10.3389/fmicb.2020.00868.

    Article  Google Scholar 

  13. Thompson DA, Lehmler HJ, Kolpin DW, et al. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environ Sci Process Impacts. 2022;22(6):1315–46. https://doi.org/10.1039/c9em00586b.

    Article  CAS  Google Scholar 

  14. Simon-Delso N, Amaral-Rogers V, Belzunces LP, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res. 2015;22(1):5–34. https://doi.org/10.1007/s11356-014-3470-y.

    Article  CAS  Google Scholar 

  15. Hussain S, Hartley CJ, Shettigar M, Pandey G. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems. FEMS Microbiol Lett. 2016;363(23). https://doi.org/10.1093/femsle/fnw252.

  16. Zamule SM, Dupre CE, Mendola ML, et al. Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. Ecotoxicol Environ Saf. 2021;209:111814. https://doi.org/10.1016/j.ecoenv.2020.111814.

  17. Farahy O, Laghfiri M, Bourioug M, Aleya L. Overview of pesticide use in Moroccan apple orchards and its effects on the environment. Curr Opin Environ Sci Health. 2021;19: 100223. https://doi.org/10.1016/j.coesh.2020.10.011.

  18. Bonmatin JM, Giorio C, Girolami V, et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res. 2015;22(1):35–67. https://doi.org/10.1007/s11356-014-3332-7.

    Article  CAS  Google Scholar 

  19. Goulson D. An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol. 2013;50(4):977–87. https://doi.org/10.1111/1365-2664.12111.

    Article  Google Scholar 

  20. Li H, Qiu Y, Yao T, et al. Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1): degradation ability, microbial community, and Medicago sativa phytotoxicity. J Hazard Mater. 2020;389:121834. https://doi.org/10.1016/j.jhazmat.2019.121834.

  21. Whitehorn PR, O’connor S, Wackers FL, Goulson D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 2012;336(6079):351–2. https://doi.org/10.1126/science.1215025.

    Article  CAS  Google Scholar 

  22. Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere. 2018;192:59–65. https://doi.org/10.1016/j.chemosphere.2017.10.149.

    Article  CAS  Google Scholar 

  23. Mörtl M, Vehovszky Á, Klátyik S, et al. Neonicotinoids: spreading, translocation and aquatic toxicity. Int J Environ Res Public Health. 2020;17(6):2006. https://doi.org/10.3390/ijerph17062006.

    Article  CAS  Google Scholar 

  24. Zhang X, Huang Y, Chen WJ, et al. Environmental occurrence, toxicity concerns, and biodegradation of neonicotinoid insecticides. Environ Res. 2023;218:114953. https://doi.org/10.1016/j.envres.2022.114953.

  25. Craddock HA, Huang D, Turner PC, et al. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. J Environ Health. 2019;18(1):1–6. https://doi.org/10.1186/s12940-018-0441-7.

    Article  Google Scholar 

  26. European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment for bees for the active substance imidacloprid considering all uses other than seed treatments and granules. EFSA J. 2015;13(8):4211. https://doi.org/10.2903/j.efsa.2015.4211.

    Article  CAS  Google Scholar 

  27. Bhattacherjee AK, Garg N, Shukla PK, et al. Bacterial bioremediation of imidacloprid in mango orchard soil by Pseudomonas mosselii strain NG1. Int J Curr Microbiol Appl Sci. 2020;9(10):1150–9. https://doi.org/10.20546/ijcmas.2020.910.138.

  28. Odukkathil G, Vasudevan N. Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol. 2013;12(4):421–44. https://doi.org/10.1007/s11157-013-9320-4.

    Article  CAS  Google Scholar 

  29. Tinsley D, Wharfe J, Campbell D, et al. The use of direct toxicity assessment in the assessment and control of complex effluents in the UK: a demonstration programme. Ecotoxicology. 2004;13(5):423–36. https://doi.org/10.1023/B:ECTX.0000035293.45360.f6.

    Article  CAS  Google Scholar 

  30. Fenner K, Canonica S, Wackett LP, Elsner M. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science. 2013;341(6147):752–8. https://doi.org/10.1126/science.1236281.

    Article  CAS  Google Scholar 

  31. Jaffar S, Ahmad S, Lu Y. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front Microbiol. 2022;13:979383. https://doi.org/10.3389/fmicb.2022.979383.

  32. Li C, Zhu H, Li C, et al. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 2021;354:129552. https://doi.org/10.1016/j.foodchem.2021.129552.

  33. Garcia DC, Mohr BP, Dovgan JT, et al. Elucidating the potential of crude cell extracts for producing pyruvate from glucose. Synth Biol. 2018;3(1):ysy006. https://doi.org/10.1093/synbio/ysy006.

  34. Huang Y, Zeng Y, Yu Z, et al. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems–a potential broad application on bioremediation. Bioresour Technol. 2013;148:311–6. https://doi.org/10.1016/j.biortech.2013.08.155.

    Article  CAS  Google Scholar 

  35. Chen T, Dai YJ, Ding JF, et al. N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788. Biodegradation. 2008;19(5):651–8. https://doi.org/10.1007/s10532-007-9170-2.

  36. Tang H, Li J, Hu H, Xu P. A newly isolated strain of Stenotrophomonas sp. hydrolyzes acetamiprid, a synthetic insecticide. Process Biochem. 2012;47(12):1820–25. https://doi.org/10.1016/j.procbio.2012.06.008.

  37. Wang G, Chen X, Yue W, et al. Microbial degradation of acetamiprid by Ochrobactrum sp. D-12 isolated from contaminated soil. PLoS One. 2013a;8(12):82603. https://doi.org/10.1371/journal.pone.0082603.

  38. Wang G, Yue W, Liu Y, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil. Bioresour technol. 2013b;138:359–68. https://doi.org/10.1016/j.biortech.2013.03.193.

  39. Wang G, Zhao Y, Gao H, et al. Co-metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. AAP-7 isolated from a long-term acetamiprid-polluted soil. Bioresour Technol. 2013c;150:259–65. https://doi.org/10.1016/j.biortech.2013.10.008.

  40. Kanjilal T, Bhattacharjee C, Datta S. Bio-degradation of acetamiprid from wetland wastewater using indigenous Micrococcus luteus strain SC 1204: optimization, evaluation of kinetic parameter and toxicity. J Water Process Eng. 2015;6:21–31. https://doi.org/10.1016/j.jwpe.2015.03.002.

    Article  Google Scholar 

  41. Phugare SS, Jadhav JP. Biodegradation of acetamiprid by isolated bacterial strain Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm (Bombax mori). Clean–Soil Air Water. 2015;43(2):296–304. https://doi.org/10.1002/clen.201200563.

  42. Sun SL, Yang WL, Guo JJ, et al. Biodegradation of the neonicotinoid insecticide acetamiprid in surface water by the bacterium Variovorax boronicumulans CGMCC 4969 and its enzymatic mechanism. RSC Adv. 2017;7(41):25387–97. https://doi.org/10.1039/C7RA01501A.

    Article  CAS  Google Scholar 

  43. Dai YJ, Ji WW, Chen T, et al. Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2. J Agric Food chem. 2010;58(4):2419–25. https://doi.org/10.1021/jf903787s.

    Article  CAS  Google Scholar 

  44. Zhao YJ, Dai YJ, Yu CG, et al. Hydroxylation of thiacloprid by bacterium Stenotrophomonas maltophilia CGMCC1. 1788. Biodegradation. 2009;20(6):761–68. https://doi.org/10.1007/s10532-009-9264-0.

  45. Zhang HJ, Zhou QW, Zhou GC, et al. Biotransformation of the neonicotinoid insecticide thiacloprid by the bacterium Variovorax boronicumulans strain J1 and mediation of the major metabolic pathway by nitrile hydratase. J Agric Food Chem. 2012;60(1):153–9. https://doi.org/10.1021/jf203232u.

    Article  CAS  Google Scholar 

  46. Ge F, Zhou LY, Wang Y, et al. Hydrolysis of the neonicotinoid insecticide thiacloprid by the N2-fixing bacterium Ensifer meliloti CGMCC 7333. Int Biodeterior Biodegrad. 2014;93:10–7. https://doi.org/10.1016/j.ibiod.2014.05.001.

    Article  CAS  Google Scholar 

  47. Gopal M, Dutta D, Jha SK, et al. Biodegradation of imidacloprid and metribuzin by Burkholderia cepacia strain CH9. Pestic Res J. 2011;23(1):36–40.

    CAS  Google Scholar 

  48. Phugare SS, Kalyani DC, Gaikwad YB, Jadhav JP. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chem Eng J. 2013;230:27–35. https://doi.org/10.1016/j.cej.2013.06.042.

    Article  CAS  Google Scholar 

  49. Ma Y, Zhai S, Mao SY, et al. Co-metabolic transformation of the neonicotinoid insecticide imidacloprid by the new soil isolate Pseudoxanthomonas indica CGMCC 6648. J Environ Sci Health B. 2014;49(9):661–70. https://doi.org/10.1080/03601234.2014.922766.

    Article  CAS  Google Scholar 

  50. Sharma S, Singh B, Gupta VK. Biodegradation of imidacloprid by consortium of two soil isolated Bacillus sp. Bull Environ Contam Toxicol. 2014;93(5):637–42. https://doi.org/10.1007/s00128-014-1386-3.

    Article  CAS  Google Scholar 

  51. Akoijam R, Singh B. Biodegradation of imidacloprid in sandy loam soil by Bacillus aerophilus. Int J Environ Anal Chem. 2015;95(8):730–43. https://doi.org/10.1080/03067319.2015.1055470.

    Article  CAS  Google Scholar 

  52. Gupta M, Mathur S, Sharma TK, et al. A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J Hazard Mater. 2016;301:250–8. https://doi.org/10.1016/j.jhazmat.2015.08.055.

  53. Kandil MM, Trigo C, Koskinen WC, Sadowsky MJ. Isolation and characterization of a novel imidacloprid-degrading Mycobacterium sp. strain MK6 from an Egyptian soil. J Agric Food Chem. 2015;63(19):4721–27. https://doi.org/10.1021/acs.jafc.5b00754.

  54. Sabourmoghaddam N, Zakaria MP, Omar D. Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands. J Saudi Soc Agric Sci. 2015;14(2):182–8. https://doi.org/10.1016/j.jssas.2014.03.002.

    Article  Google Scholar 

  55. Liu Z, Dai Y, Huang G, et al. Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Manag Sci. 2011;67(10):1245–52. https://doi.org/10.1002/ps.2174.

    Article  CAS  Google Scholar 

  56. Dai ZL, Yang WL, Fan ZX, et al. Actinomycetes Rhodococcus ruber CGMCC 17550 degrades neonicotinoid insecticide nitenpyram via a novel hydroxylation pathway and remediates nitenpyram in surface water. Chemosphere. 2021;270:128670. https://doi.org/10.1016/j.chemosphere.2020.128670.

  57. Hegde DR, Manoharan T, Sridar R. Identification and characterization of bacterial isolates and their role in the degradation of neonicotinoid insecticide thiamethoxam. J Pure Appl Microbiol. 2017;11(1):393–400. https://doi.org/10.22207/JPAM.11.1.51.

  58. Cai Z, Ma J, Wang J, et al. Aerobic biodegradation kinetics and pathway of the novel cis-nitromethylene neonicotinoid insecticide paichongding in yellow loam and Huangshi soils. Appl Soil Ecol. 2016;98:150–8. https://doi.org/10.1016/j.apsoil.2015.10.009.

    Article  Google Scholar 

  59. Wang J, Chen J, Zhu W, et al. Isolation of the novel chiral insecticide paichongding (IPP) degrading strains and biodegradation pathways of RR/SS-IPP and SR/RS-IPP in an aqueous system. J Agric Food Chem. 2016;64(40):7431–7. https://doi.org/10.1021/acs.jafc.6b02862.

    Article  CAS  Google Scholar 

  60. Anhalt JC, Moorman TB, Koskinen WC. Biodegradation of imidacloprid by an isolated soil microorganism. J Environ Sci Health B. 2007;42(5):509–14. https://doi.org/10.1080/03601230701391401.

    Article  CAS  Google Scholar 

  61. Elumalai P, Yi X, Cai T, et al. Photo-biodegradation of imidacloprid under blue light-emitting diodes with bacteria and co-metabolic regulation. Environ Res. 2021;201:111541. https://doi.org/10.1016/j.envres.2021.111541.

  62. Gao Y, Liu M, Zhao X, et al. Paracoccus and Achromobacter bacteria contribute to rapid biodegradation of imidacloprid in soils. Ecotoxicol Environ Saf. 2021;225:112785. https://doi.org/10.1016/j.ecoenv.2021.112785.

  63. Gautam P, Dubey SK. Biodegradation of imidacloprid: molecular and kinetic analysis. Bioresour Technol. 2022;350:126915. https://doi.org/10.1016/j.biortech.2022.126915.

  64. Liu Z, Dai Y, Huan Y, et al. Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia. Appl Microbiol and Biotechnol. 2013;97(14):6537–47. https://doi.org/10.1007/s00253-012-4444-y.

    Article  CAS  Google Scholar 

  65. Pandey G, Dorrian SJ, Russell RJ, Oakeshott JG. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem Biophys Res Commun. 2009;380(3):710–14. https://doi.org/10.1016/j.bbrc.2009.01.156.

  66. Shettigar M, Pearce S, Pandey R, et al. Cloning of a novel 6-chloronicotinic acid chlorohydrolase from the newly isolated 6-chloronicotinic acid mineralizing Bradyrhizobiaceae strain SG-6C. PLoS One. 2012;7(11):e51162. https://doi.org/10.1371/journal.pone.0051162.

  67. Tiwari S, Tripathi P, Mohan D, Singh RS. Imidacloprid biodegradation using novel bacteria Tepidibacillus decaturensis strain ST1 in batch and in situ microcosm study. Environ Sci Pollut Res. 2022;19:1–1. https://doi.org/10.1007/s11356-022-24779-8.

    Article  CAS  Google Scholar 

  68. Gautam P, Pandey AK, Dubey SK. Multi-omics approach reveals elevated potential of bacteria for biodegradation of imidacloprid. Environmen Res. 2023a;221:115271. https://doi.org/10.1016/j.envres.2023.115271.

  69. Cheng X, Chen KX, Jiang ND, et al. Nitroreduction of imidacloprid by the actinomycete Gordonia alkanivorans and the stability and acute toxicity of the nitroso metabolite. Chemosphere. 2022a;291,132885. https://doi.org/10.1016/j.chemosphere.2021.132885.

  70. Borah S, Hazarika DJ, Baruah M, et al. Imidacloprid degrading efficiency of Pseudomonas plecoglossicida MBSB-12 isolated from pesticide contaminated tea garden soil of Assam. World J Microbiol Biotechnol. 2023;39(2):59. https://doi.org/10.1007/s11274-022-03507-x.

    Article  CAS  Google Scholar 

  71. Sivakumar G, Mohan M, Subaharan K, et al. Gut bacteria mediated insecticide resistance in cotton leafhopper Amrasca biguttula biguttula. Curr Sci. 2022;122(8):958. https://doi.org/10.18520/cs/v122/i8/958-964.

  72. Soh LS, Veera SG. Bacterial symbionts influence host susceptibility to fenitrothion and imidacloprid in the obligate hematophagous bed bug. Cimex hemipterus Sci Rep. 2022;12(1):1–6. https://doi.org/10.1038/s41598-022-09015-0.

    Article  CAS  Google Scholar 

  73. Encarnação T, Santos D, Ferreira S, et al. Removal of imidacloprid from water by microalgae Nannochloropsis sp. and its determination by a validated RP-HPLC method. Bull Environ Contam Toxicol. 2021;107(1):131–9. https://doi.org/10.1007/s00128-021-03228-1.

  74. Hu K, Barbieri MV, López-García E, et al. Fungal degradation of selected medium to highly polar pesticides by Trametes versicolor: kinetics, biodegradation pathways, and ecotoxicity of treated waters. Anal Bioanal Chem. 2022;414(1):439–49. https://doi.org/10.1007/s00216-021-03267-x.

    Article  CAS  Google Scholar 

  75. Mori T, Ohno H, Ichinose H, et al. White-rot fungus Phanerochaete chrysosporium metabolizes chloropyridinyl-type neonicotinoid insecticides by an N-dealkylation reaction catalyzed by two cytochrome P450s. J Hazard Mater. 2021;402:123831. https://doi.org/10.1016/j.jhazmat.2020.123831.

  76. Wang H, Xiao J, Yang L, et al. Efficient removal of imidacloprid by freshwater microalgae Scenedesmus Sp. Txh: effects and the biodegradation pathway. 2022a. https://doi.org/10.2139/ssrn.3972667.

  77. Deng Z, Zhu J, Yang L, et al. Microalgae fuel cells enhanced biodegradation of imidacloprid by Chlorella sp. Biochem Eng J. 2022a; 179:108327. https://doi.org/10.1016/j.bej.2021.108327.

  78. Shang C, Chen A, Cao R, et al. Response of microbial community to the remediation of neonicotinoid insecticide imidacloprid contaminated wetland soil by Phanerochaete chrysosporium. Chemosphere. 2023;311:136975. https://doi.org/10.1016/j.chemosphere.2022.136975.

  79. Xie Q, Xue C, Chen A, et al. Phanerochaete chrysosporium-driven quinone redox cycling promotes degradation of imidacloprid. Int Biodeterior Biodegradation. 2020;151:104965. https://doi.org/10.1016/j.ibiod.2020.104965.

  80. Erguven GO, Yildirim N. The evaluation of imidacloprid remediation in soil media by two bacterial strains. Curr Microbiol. 2019;76(12):1461–6. https://doi.org/10.1007/s00284-019-01774-w.

    Article  CAS  Google Scholar 

  81. Erguven GO, Demirci U. Using Ochrobactrum thiophenivorans and Sphingomonas melonis for bioremediation of imidacloprid. Environ Technol Innov. 2021;21:101236. https://doi.org/10.1016/j.eti.2020.101236.

  82. Cheng Y, Deng Z, Wang H, et al. Efficient removal of imidacloprid and nutrients by microalgae-bacteria consortium in municipal wastewater: effects, mechanism, and importance of light. J Chem Technol Biotechnol. 2022b;97(10):2747–55. https://doi.org/10.1002/jctb.7142.

    Article  CAS  Google Scholar 

  83. Cheng Y, Wang J, Quan L, et al. Construction of microalgae-bacteria consortium to remove typical neonicotinoids imidacloprid and thiacloprid from municipal wastewater: difference of algae performance, removal effect and product toxicity. Biochem Eng J. 2022c;187:108634. https://doi.org/10.1016/j.bej.2022.108634.

  84. Sun S, Fan Z, Zhao Y, et al. A novel nutrient deprivation-induced neonicotinoid insecticide acetamiprid degradation by Ensifer adhaerens CGMCC 6315. J Agric Food Chem. 2018;67(1):63–71. https://doi.org/10.1021/acs.jafc.8b06154.

    Article  CAS  Google Scholar 

  85. Guo L, Fang WW, Guo LL, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by actinomycetes Streptomyces canus CGMCC 13662 and characterization of the novel nitrile hydratase involved. J Agric Food Chem. 2019;67(21):5922–31. https://doi.org/10.1021/acs.jafc.8b06513.

    Article  CAS  Google Scholar 

  86. Yang H, Wang X, Zheng J, et al. Biodegradation of acetamiprid by Pigmentiphaga sp. D-2 and the degradation pathway. Int Biodeterior Biodegrad. 2013;85:95–102. https://doi.org/10.1016/j.ibiod.2013.03.038.

  87. Gomaa IM, Saad MM, Mahmoud HA, Abo-Koura HA. Biodegradation of acetamiprid by both free and immobilized Lysinobacillus macrolides strain MSR-H10 in soil. Int J Sci Res Sustain Dev. 2020;3:1–8.

    Google Scholar 

  88. Guo L, Yang W, Cheng X, et al. Degradation of neonicotinoid insecticide acetamiprid by two different nitrile hydratases of Pseudaminobacter salicylatoxidans CGMCC 1.17248. Int Biodeterior Biodegrad. 2021;157:105141. https://doi.org/10.1016/j.ibiod.2020.105141.

  89. Xu B, Xue R, Zhou J, et al. Characterization of acetamiprid biodegradation by the microbial consortium ACE-3 enriched from contaminated soil. Front Microbiol. 2020;11:1429. https://doi.org/10.3389/fmicb.2020.01429.

    Article  Google Scholar 

  90. Mori T, Wang J, Tanaka Y, et al. Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. J Hazard Mater. 2017;321:586–90. https://doi.org/10.1016/j.jhazmat.2016.09.049.

  91. Wang J, Hirai H, Kawagishi H. Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbial Biotechnol. 2012;93(2):831–5. https://doi.org/10.1007/s00253-011-3435-8.

    Article  CAS  Google Scholar 

  92. Shi Z, Dong W, Xin F, et al. Characteristics and metabolic pathway of acetamiprid biodegradation by Fusarium sp. strain CS-3 isolated from soil. Biodegradation. 2018;29(6):593–603. https://doi.org/10.1007/s10532-018-9855-8.

  93. Yang H, Hu S, Wang X, et al. Pigmentiphaga sp. strain D-2 uses a novel amidase to initiate the catabolism of the neonicotinoid insecticide acetamiprid. Appl Environ Microbiol. 2020;86(6):02425–19. https://doi.org/10.1128/AEM.02425-19.

  94. Klarich KL, Pflug NC, DeWald EM, et al. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environ Sci Technol Lett. 2017;4(5):168–73. https://doi.org/10.1021/acs.estlett.7b00081.

    Article  CAS  Google Scholar 

  95. Sultana T, Murray C, Kleywegt S, Metcalfe CD. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario. Canada Chemosphere. 2018;202:506–13. https://doi.org/10.1016/j.chemosphere.2018.02.108.

    Article  CAS  Google Scholar 

  96. Zhou GC, Wang Y, Zhai S, et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23. Appl Microbiol Biotechnol. 2013;97(9):4065–74. https://doi.org/10.1007/s00253-012-4638-3.

    Article  CAS  Google Scholar 

  97. Zhou GC, Wang Y, Ma Y, et al. The metabolism of neonicotinoid insecticide thiamethoxam by soil enrichment cultures, and the bacterial diversity and plant growth-promoting properties of the cultured isolates. J Environ Sci Health B. 2014;49(6):381–90. https://doi.org/10.1080/03601234.2014.894761.

    Article  CAS  Google Scholar 

  98. Rana S, Jindal V, Mandal K, et al. Thiamethoxam degradation by Pseudomonas and Bacillus strains isolated from agricultural soils. Environ Monit Assess. 2015;187(5):1–9. https://doi.org/10.1007/s10661-015-4532-4.

    Article  CAS  Google Scholar 

  99. Wang J, Ohno H, Ide Y, et al. Identification of the cytochrome P450 involved in the degradation of neonicotinoid insecticide acetamiprid in Phanerochaete chrysosporium. J Hazard Mater. 2019;371:494–8. https://doi.org/10.1016/j.jhazmat.2019.03.042.

    Article  CAS  Google Scholar 

  100. Xiang X, Yi X, Zheng W, et al. Enhanced biodegradation of thiamethoxam with a novel polyvinyl alcohol (PVA)/sodium alginate (SA)/biochar immobilized Chryseobacterium sp H5. J Hazard Mater. 2023;443:130247. https://doi.org/10.1016/j.jhazmat.2022.130247.

  101. Chen A, Li W, Zhang X, et al. Biodegradation and detoxification of neonicotinoid insecticide thiamethoxam by white-rot fungus Phanerochaete chrysosporium. J Hazard Mater. 2021;417:126017. https://doi.org/10.1016/j.jhazmat.2021.126017.

  102. Sun SL, Lu TQ, Yang WL, et al. Characterization of a versatile nitrile hydratase of the neonicotinoid thiacloprid-degrading bacterium Ensifer meliloti CGMCC 7333. RSC Adv. 2016;6(19):15501–8. https://doi.org/10.1039/c5ra27966f.

    Article  CAS  Google Scholar 

  103. Zhao YX, Jiang HY, Cheng X, et al. Neonicotinoid thiacloprid transformation by the N2-fixing bacterium Microvirga flocculans CGMCC 1.16731 and toxicity of the amide metabolite. Int Biodeterior Biodegrad. 2019;145:104806. https://doi.org/10.1016/j.ibiod.2019.104806.

  104. Sun S, Fan Z, Zhao J, et al. Copper stimulates neonicotinoid insecticide thiacloprid degradation by Ensifer adhaerens TMX-23. J Appl Microbiol. 2021;131(6):2838–48. https://doi.org/10.1111/jam.15172.

    Article  CAS  Google Scholar 

  105. Cai XY, Xu M, et al. Removal of dinotefuran, thiacloprid, and imidaclothiz neonicotinoids in water using a novel Pseudomonas monteilii FC02–duckweed (Lemna aequinoctialis) partnership. Front Microbiol. 2022;13.

  106. Muerdter CP, LeFevre GH. Synergistic Lemna duckweed and microbial transformation of imidacloprid and thiacloprid neonicotinoids. Environ Sci Technol Lett. 2019;6(12):761–7. https://doi.org/10.1021/acs.estlett.9b00638.

    Article  CAS  Google Scholar 

  107. Ichinose H, Cytochrome P. 450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem. 2013;60(1):71–81. https://doi.org/10.1002/bab.1061.

    Article  CAS  Google Scholar 

  108. Parte SG, Kharat AS. Aerobic degradation of clothianidin to 2-chloro-methyl thiazole and methyl 3-(thiazole-yl) methyl guanidine produced by Pseudomonas stutzerismk. J Environ Public Health. 2019;1–12. https://doi.org/10.1155/2019/4807913.

  109. Wang X, Xue L, Chang S, et al. Bioremediation and metabolism of clothianidin by mixed bacterial consortia enriched from contaminated soils in Chinese greenhouse. Process Biochem. 2019;78:114–22. https://doi.org/10.1016/j.procbio.2018.12.031.

    Article  CAS  Google Scholar 

  110. Dangi AK, Sharma B, Hill RT, Shukla P. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol. 2019;39(1):79–98. https://doi.org/10.1080/07388551.2018.1500997.

    Article  CAS  Google Scholar 

  111. Bilal M, Iqbal HM, Barceló D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Sci Total Environ. 2019;695:133896. https://doi.org/10.1016/j.scitotenv.2019.133896.

  112. Jaiswal S, Singh DK, Shukla P. Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol. 2019;10:87. https://doi.org/10.3389/fmicb.2019.00087.

    Article  Google Scholar 

  113. Gao D, Du L, Yang J, et al. A critical review of the application of white rot fungus to environmental pollution control. Critic Rev Biotechnol. 2010;30(1):70–7. https://doi.org/10.3109/07388550903427272.

    Article  CAS  Google Scholar 

  114. Nai C, Meyer V. From axenic to mixed cultures: technological advances accelerating a paradigm shift in microbiology. Trends Microbiol. 2018;26(6):538–54. https://doi.org/10.1016/j.tim.2017.11.004.

    Article  CAS  Google Scholar 

  115. Kong W, Meldgin DR, Collins JJ, Lu T. Designing microbial consortia with defined social interactions. Nat Chem Biol. 2018;14(8):821–9. https://doi.org/10.1038/s41589-018-0091-7.

    Article  CAS  Google Scholar 

  116. Bhatt P, Bhatt K, Sharma A, et al. Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol. 2021;41(3):317–38. https://doi.org/10.1080/07388551.2020.1853032.

    Article  Google Scholar 

  117. Duncker KE, Holmes ZA, You L. Engineered microbial consortia: strategies and applications. Microb Cell Factories. 2021;20(1):1–3. https://doi.org/10.1186/s12934-021-01699-9.

    Article  CAS  Google Scholar 

  118. Saha P, Bhaskara Rao KV. Immobilization as a powerful bioremediation tool for abatement of dye pollution: a review. Environ Rev. 2021;29(2):277–99. https://doi.org/10.1139/er-2020-0074.

    Article  CAS  Google Scholar 

  119. Berillo D, Al-Jwaid A, Caplin J. Polymeric materials used for immobilisation of bacteria for the bioremediation of contaminants in water. Polym. 2021;13(7):1073. https://doi.org/10.3390/polym13071073.

    Article  CAS  Google Scholar 

  120. Zhao YX, Wang L, Chen KX, et al. Biodegradation of flonicamid by Ensifer adhaerens CGMCC 6315 and enzymatic characterization of the nitrile hydratases involved. Microb Cell Factories. 2021;20(1):1–3. https://doi.org/10.1186/s12934-021-01620-4.

    Article  CAS  Google Scholar 

  121. Huang X, Lu G. Bioremediation of chemical pesticides polluted soil. Front Microbiol. 2021;12:682343. https://doi.org/10.3389/fmicb.2021.682343.

  122. Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004.

    Article  CAS  Google Scholar 

  123. Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage. 2018;210:10–22. https://doi.org/10.1016/j.jenvman.2017.12.075.

    Article  CAS  Google Scholar 

  124. Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep. 2019;36(9):1313–32. https://doi.org/10.1039/C9NP00025A.

    Article  CAS  Google Scholar 

  125. Wu P, Zhang X, Niu T, et al. The imidacloprid remediation, soil fertility enhancement and microbial community change in soil by Rhodopseudomonas capsulata using effluent as carbon source. Environ Pollut. 2020;267:114254. https://doi.org/10.1016/j.envpol.2020.114254.

  126. He X, Wubie AJ, Diao Q, et al. Biodegradation of neonicotinoid insecticide, imidacloprid by restriction enzyme mediated integration (REMI) generated Trichoderma mutants. Chemosphere. 2014;112:526–30. https://doi.org/10.1016/j.chemosphere.2014.01.023.

    Article  CAS  Google Scholar 

  127. Ko YS, Kim JW, Lee JA, et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev. 2020;49(14):4615–36. https://doi.org/10.1039/D0CS00155D.

    Article  CAS  Google Scholar 

  128. Wang J, Tanaka Y, Ohno H, et al. Biotransformation and detoxification of the neonicotinoid insecticides nitenpyram and dinotefuran by Phanerochaete sordida YK-624. Environ Pollut. 2019;252:856–62. https://doi.org/10.1016/j.envpol.2019.06.022.

    Article  CAS  Google Scholar 

  129. Gonçalves CR, da Silva Delabona P. Bioremediation of pesticides in Brazil: a brief overview. Adv Environ Sci. 2022;1:100220. https://doi.org/10.1016/j.envadv.2022.100220.

  130. Wu L, Zhou S, Wang G, et al. Nanozyme applications: a glimpse of insight in food safety. Front Bioeng Biotechnol. 2021;703. https://doi.org/10.3389/fbioe.2021.727886.

  131. Rodríguez A, Castrejón-Godínez ML, Salazar-Bustamante E, et al. Omics approaches to pesticide biodegradation. Curr Microbiol. 2020;77:545–63. https://doi.org/10.1007/s00284-020-01916-5.

    Article  CAS  Google Scholar 

  132. Wang J, Liu Y, Yin R, et al. RNA-Seq analysis of Phanerochaete sordida YK-624 degrades neonicotinoid pesticide acetamiprid. Environ Technol. 2022b;20:1–8. https://doi.org/10.1080/09593330.2022.2026488.

    Article  CAS  Google Scholar 

  133. Gautam P, Pandey AK, Gupta A, Dubey SK. Microcosm-omics centric investigation reveals elevated bacterial degradation of imidacloprid. Environ Pollut. 2023b;324:121402. https://doi.org/10.1016/j.envpol.2023.121402.

  134. Malla MA, Dubey A, Raj A, et al. Emerging frontiers in microbe mediated pesticide remediation: unveiling role of omics and In silico approaches in engineered environment. Environ Pollut. 2022;118851. https://doi.org/10.1016/j.envpol.2022.118851.

  135. Wijeratne LO, Kiv DR, Aker AR, et al. Using machine learning for the calibration of airborne particulate sensors. Sensors. 2020;20(1):99. https://doi.org/10.3390/s20010099.

    Article  Google Scholar 

  136. Ma B, Chen H, Xu M, et al. Quantitative structure–activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size. Environ Pollut. 2010;158(8):2773–7. https://doi.org/10.1016/j.envpol.2010.04.011.

    Article  CAS  Google Scholar 

  137. Shen C, Pan X, Wu X, et al. Computer-aided toxicity prediction and potential risk assessment of two novel neonicotinoids, paichongding and cycloxaprid, to hydrobionts. Sci Total Environ. 2023;861: 160605.

    Article  CAS  Google Scholar 

  138. Shen C, Pan X, Wu X, et al. Predicting and assessing the toxicity and ecological risk of seven widely used neonicotinoid insecticides and their aerobic transformation products to aquatic organisms. Sci Total Environ. 2022;847:157670. https://doi.org/10.1016/j.scitotenv.2022.157670.

  139. Singh AK, Bilal M, Iqbal HM, Raj A. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: recent progress and future outlook. Sci Total Environ. 2021;770:144561. https://doi.org/10.1016/j.scitotenv.2020.144561.

  140. Deng Z, Ren Z, Sun S, et al. Theoretical design and process control of neonicotinoids insecticides suitable for synergistic degradation with the rubisco enzyme from rhizobia and carbon-fixing bacteria in soil. Environ Sci Pollut Res. 2022b;29:12355–76. https://doi.org/10.1007/s11356-021-16531-5.

    Article  CAS  Google Scholar 

  141. De P, Kar S, Ambure P, et al. Prediction reliability of QSAR models: an overview of various validation tools. Arch Toxicol. 2022;96(5):1279–95. https://doi.org/10.1007/s00204-022-03252-y.

    Article  CAS  Google Scholar 

  142. Niu G, Yi X, Chen C, et al. A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment. J Clean Prod. 2020;265:121787. https://doi.org/10.1016/j.jclepro.2020.121787.

  143. Huang K, Zhang H. Classification and regression machine learning models for predicting aerobic ready and inherent biodegradation of organic chemicals in water. Environ Sci Technol. 2022;56(17):12755–64. https://doi.org/10.1021/acs.est.2c01764.

    Article  CAS  Google Scholar 

  144. Putra RI, Maulana AL, Saputro AG. Study on building machine learning model to predict biodegradable-ready materials. InAIP conference proceedings. 2019;2088(1):060003). AIP Publishing LLC. https://doi.org/10.1063/1.5095351.

Download references

Acknowledgements

P. Gautam gratefully acknowledges University Grants Commission, Government of India, New Delhi, for funding support in the form of a Junior and Senior Research Fellowship (NTA Ref. No.191620148016). SKD is thankful to Banaras Hindu University (BHU), Varanasi, India, for financial assistance under Institutions of Eminence (IoE) Scheme No. 6031.

Author information

Authors and Affiliations

Authors

Contributions

PG: writing original manuscript; SKD: conceptualization, editing, and supervision as a Ph. D. mentor.

Corresponding author

Correspondence to Suresh Kumar Dubey.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, P., Dubey, S.K. Biodegradation of Neonicotinoids: Current Trends and Future Prospects. Curr Pollution Rep 9, 410–432 (2023). https://doi.org/10.1007/s40726-023-00265-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00265-8

Keywords

Navigation