Skip to main content

Advertisement

Log in

Critical Review of Engineered Nanoparticles: Environmental Concentrations and Toxicity

  • Biology and Pollution (R Boopathy and Y Hong, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The increasing use of engineered nanoparticles (ENPs) has led to growing concerns about their environmental impacts. It has become a focus for researchers to explore their detection, quantification, as well as their fate and transport, and hence their ecotoxicity. A review of recent findings sets a basis for current knowledge of ENP levels in the surface water environment and provides a perspective to understand their toxicity.

Recent Findings

Among the various mechanisms of toxicity that have been evidenced by recent research, an important mechanism that is shared by multiple ENPs is the generation of reactive oxygen species (ROS) and subsequent oxidative stress. Another common toxic effect is cell membrane damage from physical encounters or ENPs adsorbing onto the membrane. The ecotoxicity of ENPs is dependent on many factors; however, the ENP’s physiochemical characteristics and functional behavior are two main groups. Additionally, the chemical composition and charge of ENPs are greatly influencing their toxicity.

Summary

A critical overview of updated knowledge on the regulatory standards, environmental detection, and aquatic fate and ecotoxicity of ENPs with a special focus on the most environmentally affluent nanosized titanium dioxide (n-TiO2), cerium dioxide (n-CeO2), zinc oxide (n-ZnO), silicon dioxide (SiO2), silver (n-Ag), and carbon nanotubes (CNTs) is presented in this article. Among the ENPs reviewed, n-Ag and n-TiO2 are more studied and the most ecotoxic; n-Ag dissociates into cations (Ag +) causing significant harm to organisms and cells, while light and pH notably influence the toxicity of n-TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fu Y, et al. The effect of pH on the sorption of gold nanoparticles on illite. Acta Geochimica. 2020;39:172–80.

    Article  CAS  Google Scholar 

  2. Fréchette-Viens L, Hadioui M, Wilkinson KJ. Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta. 2019;200:156–62.

    Article  Google Scholar 

  3. Wu Y, et al. A key moment for TiO 2: Prenatal exposure to TiO 2 nanoparticles may inhibit the development of offspring. Ecotoxicol Environ Safety. 2020.

  4. Hendren CO, et al. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol. 2011;45(7):2562–9.

    Article  CAS  Google Scholar 

  5. Bathi JR, et al. Behavior of engineered nanoparticles in aquatic environmental samples: Current status and challenges. Sci Total Environ. 2021;793: 148560.

    Article  CAS  Google Scholar 

  6. • Suman TY, Li WG, Pei DS. Chapter 5 - Toxicity of metal oxide nanoparticles, in Nanotoxicity, S. Rajendran, et al., Editors.  2020:107–23 Elsevier. This chapter describes the toxicity of metal-oxide nanoparticles in key species, and explains the mechanisms of toxicity for each.

  7. Allan J, et al. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul Toxicol Pharmacol. 2021;122: 104885.

    Article  CAS  Google Scholar 

  8. Garner KL, Suh S, Keller AA. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model. Environ Sci Technol. 2017;51(10):5541–51.

    Article  CAS  Google Scholar 

  9. Williams RJ, et al. Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion in Environmental Sustainability. 2019;36:105–15.

    Article  Google Scholar 

  10. Toropova AP, Toropov AA. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment. Sci Total Environ. 2022;823: 153747.

    Article  CAS  Google Scholar 

  11. WHO. Guidelines on protecting workers from potential risks of manufactured nanomaterials. 2017.

  12. Research on Nanomaterials. 2021 [cited 2021; Available from: https://www.epa.gov/chemical-research/research-nanomaterials.

  13. •• Cypriyana PJ, et al. Overview on the toxicity of nanoparticles, it’s mechanism, models used in toxicity studies and disposal methods—A review. Biocataly Agricult Biotechnol. 2021;36(102117). This review discussed how the induction of ROS is initiated by different mechanisms depending on various factors, emphasizing the many and varying factors and combinations of such that leads to a complex phenomenon of toxicity.

  14. Wu D, et al. Effects of titanium dioxide nanoparticles on Microcystis aeruginosa and microcystins production and release. J Hazard Mater. 2019;377:1–7.

    Article  CAS  Google Scholar 

  15. Simonet BM, Valcárcel M. Monitoring nanoparticles in the environment. Anal Bioanal Chem. 2008;393(1):17.

    Article  Google Scholar 

  16. Hassellöv M, et al. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 2008;17(5):344–61.

    Article  Google Scholar 

  17. De la Calle I, Menta M, Séby F. Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: A review. Spectrochim Acta, Part B. 2016;125:66–96.

    Article  Google Scholar 

  18. Mansor M, et al. Application of Single-Particle ICP-MS to Determine the Mass Distribution and Number Concentrations of Environmental Nanoparticles and Colloids. Environ Sci Technol Lett. 2021;8(7):589–95.

    Article  CAS  Google Scholar 

  19. • Giese B, et al. Risks, Release and concentrations of engineered nanomaterial in the environment. Sci Rep. 2018;8(1):1565. This article conveys the difficulty that exists when trying to measure environmental concentrations of ENPs; since existing concentrations are extremely low, the current technology is not reliable at reading such measurements so predictive modeling tends to be used.

  20. Vance ME, et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6:1769–80.

    Article  CAS  Google Scholar 

  21. Patil MP, Kim GD. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf B Biointerfaces. 2018;172:487–95.

    Article  CAS  Google Scholar 

  22. Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles:Mechanism, application and toxicity. J Clean Prod. 2020;272(7).

  23. Hlongwane GN, et al. Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. Sci Total Environ. 2019;656:808–33.

    Article  CAS  Google Scholar 

  24. Ganguly K, et al. Silver nanoparticles for wastewater treatment. 2021:385–401.

  25. Gallego-Urrea JA, Tuoriniemi J, Hassellöv M. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem. 2011;30(3):473–83.

    Article  CAS  Google Scholar 

  26. von der Kammer F, et al. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem. 2012;31(1):32–49.

    Article  Google Scholar 

  27. Liu J-F, et al. Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal Chem. 2009;81(15):6496–502.

    Article  CAS  Google Scholar 

  28. Waissi-Leinonen GC, et al. Fullerenes(nC60) affect the growth and development of the sediment-dwelling invertebrate Chironomus riparius larvae. Environ Pollut. 2015;206:17–23.

    Article  CAS  Google Scholar 

  29. Ma Y, et al. Xylem and phloem based transport of CeO 2 Nanoparticles in hydroponic cucumber plants. Environ Sci Technol. 2017;51(9):5215–21.

    Article  CAS  Google Scholar 

  30. Yang Y, et al. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. Sci Total Environ. 2016;563–564:996–1007.

    Article  Google Scholar 

  31. Donovan AR, et al. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere. 2016;144:148–53.

    Article  CAS  Google Scholar 

  32. Kińska K, et al. Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis albausing single particle ICP-MS. Science fo the Total Environment. 2018;615:1078–85.

    Article  Google Scholar 

  33. Yang Y, et al. Separation and determination of silver nanoparticle in environmental water and the UV-induced photochemical transformations study of AgNPs by cloud point extraction combined ICP-MS. Talanta. 2016;161:342–9.

    Article  CAS  Google Scholar 

  34. Samaddar P, Sen K. Cloud point extraction: A sustainable method of elemental preconcentration and speciation. J Ind Eng Chem. 2014;20(4):1209–19.

    Article  CAS  Google Scholar 

  35. Suhendra E, et al. A review on the environmental fate models for predicting the distribution of engineered nanomaterials in surface waters. Int J Mol Sci. 2020;21(12).

  36. Proulx K, Hadioui M, Wilkinson KJ. Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS. Anal Bioanal Chem. 2016;408(19):5147–55.

    Article  CAS  Google Scholar 

  37. Syafiuddin A, et al. Silver Nanoparticles in the Water Environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective. Sci Rep. 2018;8(1):986.

    Article  Google Scholar 

  38. Wimmer A, et al. Sampling and pre-treatment effects on the quantification of (nano)silver and selected trace elements in surface water - Application in a Dutch case study. Sci Total Environ. 2019;663:154–61.

    Article  CAS  Google Scholar 

  39. Markus AA, et al. Determination of metal-based nanoparticles in the river Dommel in the Netherlands via ultrafiltration HR-ICP-MS and SEM. Sci Total Environ. 2018;631–632:485–95.

    Article  Google Scholar 

  40. Wang Y, Nowack B. Environmental risk assessment of engineered nano-SiO. Environ Toxicol Chem. 2018;37(5):1387–95.

    Article  CAS  Google Scholar 

  41. Choi S, et al. A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO. Sci Total Environ. 2018;625:1321–9.

    Article  CAS  Google Scholar 

  42. Rand LN, et al. Quantifying Nanoparticle Associated Ti, Ce, Au, and Pd Occurrence in 35 U.S. Surface Waters. ACS ES&T Water. 2021;1(10):2242–50.

  43. Sanchís J, et al. Nanoparticle tracking analysis characterisation and parts-per-quadrillion determination of fullerenes in river samples from Barcelona catchment area. Anal Bioanal Chem. 2015;407(15):4261–75.

    Article  Google Scholar 

  44. Subhan MA, Subhan T. Chapter 5 - Safety and global regulations for application of nanomaterials, in Nanomaterials Recycling. M. Rai and T.A. Nguyen, Editors. 2022:Elsevier p 83–107.

  45. Faghih Akhlaghi M, Daeihamed M, Jafari SM. Chapter 7 - Regulatory principles on food nano-particles legislated by North and South American countries, in Safety and Regulatory Issues of Nanoencapsulated Food Ingredients. S.M. Jafari, Editor. Acad Press. 2021:239–50.

  46. FDA’s Approach to Regulation of Nanotechnology Products. 2018. [cited 2021; Available from: https://www.fda.gov/science-research/nanotechnology-programs-fda/fdas-approach-regulation-nanotechnology-products.

  47. European Chemicals Agency. 2020. [cited 2022 Feb 12]; Available from: https://echa.europa.eu.

  48. Biswas JK, Sarkar D. Nanopollution in the Aquatic Environment and Ecotoxicity: No Nano Issue! Current Pollution Reports. 2019;5(1):4–7.

    Article  Google Scholar 

  49. Caballero-Guzman A, Nowack B. A critical review of engineered nanomaterial release data: Are current data useful for material flow modeling? Environ Pollut. 2016;213:502–17.

    Article  CAS  Google Scholar 

  50. Meesters JA, et al. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. Environ Sci Technol. 2014;48(10):5726–36.

    Article  CAS  Google Scholar 

  51. Pulido-Reyes G, et al. Bio-nano interface and environment: A critical review. Environ Toxicol Chem. 2017;36(12):3181–93.

    Article  CAS  Google Scholar 

  52. Pradhan N, et al. Antiamyloidogenic Chemical/Biochemical-Based Designed Nanoparticle as Artificial Chaperone for Efficient Inhibition of Protein Aggregation. Biomacromol. 2018;19(6):1721–31.

    Article  CAS  Google Scholar 

  53. Lowry GV, et al. Transformations of nanomaterials in the environment. Environ Sci Technol. 2012;46(13):6893–9.

    Article  CAS  Google Scholar 

  54. Wang Y, et al. Probabilistic modeling of the flows and environmental risks of nano-silica. Sci Total Environ. 2016;545–546:67–76.

    Article  Google Scholar 

  55. Abdel-Latif HMR, et al. Environmental transformation of n-TiO. Ecotoxicol Environ Saf. 2020;200: 110776.

    Article  CAS  Google Scholar 

  56. •• Turan NB, et al. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Saf Environ Prot. 2019;130:238–49. This review described factors affecting ENPs’ toxicity in aquatic environments by categorizing the factors into three main groups: (1) ENPs’ physiochemical traits, (2) interaction with co-pollutants found in the aqueous media, (3) functional behavior of ENPs.

  57. Ritchie JD, Perdue EM. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta. 2003;67:85–96.

    Article  CAS  Google Scholar 

  58. Bai X, et al. Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries. ACS Nano. 2020;14(1):289–302.

    Article  CAS  Google Scholar 

  59. Liu Z, Malinowski CR, Sepúlveda MS. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. Chemosphere. 2022;291(Pt 2): 132941.

    Article  CAS  Google Scholar 

  60. Ferry JL, et al. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol. 2009;4(7):441–4.

    Article  CAS  Google Scholar 

  61. Lopez-Chaves C, et al. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine. 2018;14(1):1–12.

  62. Niazi JH, Gu MB. Toxicity of metallic nanoparticles in microorganisms a review.  Springer Netherlands. 2009:193–206.

  63. Cai R, et al. Corona of Thorns: The Surface Chemistry-Mediated Protein Corona Perturbs the Recognition and Immune Response of Macrophages. ACS Appl Mater Interfaces. 2020;12(2):1997–2008.

    Article  CAS  Google Scholar 

  64. Cai X, et al. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. Small. 2020;16(36): e1907663.

    Article  Google Scholar 

  65. Misra SK, et al. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ. 2012;438:225–32.

    Article  CAS  Google Scholar 

  66. Setyawati MI, Zhao Z, Ng KW. Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. Small. 2020;16(36): e2001246.

    Article  Google Scholar 

  67. Dukhin SS, Labib ME. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes. Adv Colloid Interface Sci. 2013;199–200:23–43.

    Article  Google Scholar 

  68. Oberdörster G, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8.

    Article  Google Scholar 

  69. Radomski A, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146(6):882–93.

    Article  CAS  Google Scholar 

  70. Madl AK, et al. Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol. 2014;76:447–65.

    Article  CAS  Google Scholar 

  71. Lucchini RG, et al. Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology. 2012;33(4):838–41.

    Article  CAS  Google Scholar 

  72. Zhu MT, et al. Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci. 2009;107(2):342–51.

    Article  CAS  Google Scholar 

  73. Barua S, Mitragotri S. Challenges associated with Penetration of Nanoparticles across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. Nano Today. 2014;9(2):223–43.

    Article  CAS  Google Scholar 

  74. Magdolenova Z, et al. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8(3):233–78.

  75. Mahaye N, et al. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. Mutat Res Rev Mutat Res. 2017;773:134–60.

    Article  CAS  Google Scholar 

  76. Gottschalk F, et al. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol. 2009;43(24):9216–22.

    Article  CAS  Google Scholar 

  77. Yi Z, et al. How to distinguish natural versus engineered nanomaterials: insights from the analysis of TiO2 and CeO2 in soils. Environ Chem Lett. 2020;18(1):215–27.

    Article  CAS  Google Scholar 

  78. McKee MS, Filser J. Impacts of metal-based engineered nanomaterials on soil communities. 2016:3.

  79. Maurer-Jones MA, et al. Toxicity of engineered nanoparticles in the environment. Anal Chem. 2013;85(6):3036–49.

    Article  CAS  Google Scholar 

  80. Ma C, et al. Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol. 2015;49(12):7109–22.

    Article  CAS  Google Scholar 

  81. Zhu Y, et al. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere. 2019;237: 124403.

    Article  CAS  Google Scholar 

  82. van Hoof L, et al. Food from the ocean; towards a research agenda for sustainable use of our oceans’ natural resources. Mar Policy. 2019;105:44–51.

    Article  Google Scholar 

  83. Roma J, et al. Engineered metal nanoparticles in the marine environment: A review of the effects on marine fauna. Mar Environ Res. 2020;161: 105110.

    Article  CAS  Google Scholar 

  84. Kleiven M, et al. Route of exposure has a major impact on uptake of silver nanoparticles in Atlantic salmon (Salmo salar). Environ Toxicol Chem. 2018;37(11):2895–903.

    Article  CAS  Google Scholar 

  85. Baun A, et al. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology. 2008;17(5):387–95.

    Article  CAS  Google Scholar 

  86. Djearamane S, et al. A Review on bio-distribution and toxicity of silver, titanium dioxide and zinc oxide nanoparticles in aquatic environment. Pollut Res. 2016;35(4):701–12.

    Google Scholar 

  87. • Arvidsson R, Hansen SF, Baun A. Influence of natural organic matter on the aquatic ecotoxicity of engineered nanoparticles: Recommendations for environmental risk assessment. NanoImpact. 2020;20(100263). This article explored how NOM in an aquatic environment is typically adsorbed to the NPs influencing their toxicity while many studies confirmed that NOM decreases the toxicity of metal and metal-oxide ENPs.

  88. Chen J, et al. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res. 2011;45(5):1995–2001.

    Article  CAS  Google Scholar 

  89. Li M, et al. Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol. 2011;45(2):755–61.

    Article  CAS  Google Scholar 

  90. Liu Y, et al. Interpreting the effects of natural organic matter on antimicrobial activity of Ag. Water Res. 2018;145:12–20.

    Article  CAS  Google Scholar 

  91. Gao J, et al. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere. 2012;89(1):96–101.

    Article  CAS  Google Scholar 

  92. He M, et al. Influence of Interaction Between α-Fe. Bull Environ Contam Toxicol. 2017;99(6):719–27.

    Article  Google Scholar 

  93. Lawrence JR, et al. Complex organic corona formation on carbon nanotubes reduces microbial toxicity by suppressing reactive oxygen species production. Environ Sci Nano. 2016;3:181–9.

    Article  CAS  Google Scholar 

  94. Angel BM, et al. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere. 2013;93(2):359–65.

    Article  CAS  Google Scholar 

  95. Cáceres-Vélez PR, et al. Humic acid attenuation of silver nanoparticle toxicity by ion complexation and the formation of a Ag. J Hazard Mater. 2018;353:173–81.

    Article  Google Scholar 

  96. Kteeba SM, et al. Exposure to ZnO nanoparticles alters neuronal and vascular development in zebrafish: Acute and transgenerational effects mitigated with dissolved organic matter. Environ Pollut. 2018;242(Pt A):433–48.

    Article  CAS  Google Scholar 

  97. Noventa S, et al. Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos. Nanotoxicology. 2018;12(1):63–78.

    Article  CAS  Google Scholar 

  98. Huang X, et al. Hemocyte responses of the thick shell mussel Mytilus coruscus exposed to nano-TiO. Aquat Toxicol. 2016;180:1–10.

    Article  CAS  Google Scholar 

  99. Shi W, et al. Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO. Sci Rep. 2019;9(1):3516.

    Article  Google Scholar 

  100. Sendra M, et al. Toxicity of TiO, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environ Pollut. 2017;227:39–48.

    Article  CAS  Google Scholar 

  101. Libralato G, et al. Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis (Lmk). Mar Environ Res. 2013;92:71–8.

    Article  CAS  Google Scholar 

  102. Vasyukova A, et al. Toxic Effect of metal-based nanomaterials on representatives of marine ecosystems: A review. Nanobiotechnology Reports. 2021;16:138–54.

    Article  Google Scholar 

  103. Kaveh R, et al. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol. 2013;47(18):10637–44.

    Article  CAS  Google Scholar 

  104. García-Sánchez S, Bernales I, Cristobal S. Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics. 2015;16:341.

    Article  Google Scholar 

  105. Johari SA, et al. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO. Chemosphere. 2018;209:156–62.

    Article  CAS  Google Scholar 

  106. Salari JH, Kalbassi MR, Johari SA. Chronic effect of waterborne colloidal silver nanoparticles on plasma biochemistry and hematology of rainbow trout (Oncorhynchus mykiss). Iran J Health Environ. 2012:5.

  107. Ringwood AH, et al. The effects of silver nanoparticles on oyster embryos. Mar Environ Res. 2010;69(Suppl):S49-51.

    Article  CAS  Google Scholar 

  108. Vijayaraj V, et al. Transfer and Ecotoxicity of Titanium Dioxide Nanoparticles in Terrestrial and Aquatic Ecosystems: A Microcosm Study. Environ Sci Technol. 2018;52(21):12757–64.

    Article  CAS  Google Scholar 

  109. Hu J, et al. Effect of TiO. J Environ Sci (China). 2018;66:208–15.

    Article  CAS  Google Scholar 

  110. Heinlaan M, et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008;71(7):1308–16.

    Article  CAS  Google Scholar 

  111. Matouke MM, Elewa DT, Abdullahi K. Binary effect of titanium dioxide nanoparticles (nTio. Aquat Toxicol. 2018;198:40–8.

    Article  CAS  Google Scholar 

  112. Aravantinou AF, et al. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf. 2015;114:109–16.

    Article  CAS  Google Scholar 

  113. Manzo S, et al. Embryotoxicity and spermiotoxicity of nanosized ZnO for Mediterranean sea urchin Paracentrotus lividus. J Hazard Mater. 2013;254–255:1–9.

    Article  Google Scholar 

  114. Suman TY, Radhika Rajasree SR, Kirubagaran R. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf. 2015;113:23–30.

  115. Buffet PE, et al. Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicol Environ Saf. 2012;84:191–8.

    Article  CAS  Google Scholar 

  116. Trevisan R, et al. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquat Toxicol. 2014;153:27–38.

    Article  CAS  Google Scholar 

  117. Kim Y, et al. Physiological and Behavioral Effects of SiO. Micromachines (Basel). 2021;12(9).

  118. Paatero I, et al. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes. Sci Rep. 2017;7(1):8423.

    Article  Google Scholar 

  119. Book F, et al. Ecotoxicity screening of seven different types of commercial silica nanoparticles using cellular and organismic assays: importance of surface and size. NanoImpact. 2019;13:100–11.

    Article  Google Scholar 

  120. Serag MF, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5(1):493–9.

    Article  CAS  Google Scholar 

  121. Sekar G, et al. Multiple spectroscopic studies on the interaction of BSA with pristine CNTs and their toxicity against Donax faba. J Lumin. 2016;170:141–9.

    Article  CAS  Google Scholar 

  122. Park EJ, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 2009;184(1):18–25.

    Article  CAS  Google Scholar 

  123. Birbaum K, et al. No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol. 2010;44(22):8718–23.

    Article  CAS  Google Scholar 

  124. Guseva Canu I, et al. Weight of epidemiological evidence for titanium dioxide risk assessment: current state and further needs. J Expo Sci Environ Epidemiol. 2020;30(3):430–5.

    Article  CAS  Google Scholar 

  125. Jugan ML, et al. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology. 2012;6(5):501–13.

    Article  CAS  Google Scholar 

  126. Hu M, et al. CO. Sci Rep. 2017;7:40015.

    Article  CAS  Google Scholar 

  127. Kong H, et al. Nano-TiO. Chemosphere. 2019;237: 124561.

    Article  CAS  Google Scholar 

  128. Shang Y, et al. Specific dynamic action of mussels exposed to TiO. Chemosphere. 2020;241: 125104.

    Article  CAS  Google Scholar 

  129. Dedman CJ, et al. Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes. Environ Sci Nano. 2021;8(5):1236–55.

    Article  CAS  Google Scholar 

  130. Tortella GR, et al. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 2020;390: 121974.

    Article  CAS  Google Scholar 

  131. He X, Deng H, Hwang HM. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2019;27(1):1–21.

    Article  Google Scholar 

  132. Akter M, et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res. 2018;9:1–16.

    Article  CAS  Google Scholar 

  133. Liao C, Li Y, Tjong SC. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci. 2019:20(2).

  134. Loza K, Epple M. Silver nanoparticles in complex media: an easy procedure to discriminate between metallic silver nanoparticles, reprecipitated silver chloride, and dissolved silver species. RSC Adv. 2018;8(43):24386–91.

    Article  CAS  Google Scholar 

  135. Liu Y, et al. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials. 2011;32(32):8291–303.

    Article  CAS  Google Scholar 

  136. Geary SM, Morris AS, Salem AK. Assessing the effect of engineered nanomaterials on the environment and human health. J Allergy Clin Immunol. 2016;138(2):405–8.

    Article  Google Scholar 

  137. Boros, BV, Ostafe V. Evaluation of ecotoxicology assessment methods of nanomaterials and their effects. Nanomaterials (Basel). 2020;10(4).

  138. Anderson BS, et al. Relative toxicity of bifenthrin to Hyalella azteca in 10 day versus 28 day exposures. Integr Environ Assess Manag. 2015;11(2):319–28.

    Article  CAS  Google Scholar 

  139. Oviedo-Gómez DG, et al. Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca. Environ Toxicol Pharmacol. 2010;29(1):39–43.

    Article  Google Scholar 

  140. Wang N, et al. Acute and chronic toxicity of aluminum to a unionid mussel (Lampsilis siliquoidea) and an amphipod (Hyalella azteca) in water-only exposures. Environ Toxicol Chem. 2018;37(1):61–9.

    Article  Google Scholar 

  141. Hartz KEH, et al. Survey of bioaccessible pyrethroid insecticides and sediment toxicity in urban streams of the northeast United States. Environ Pollut. 2019:254.

  142. Berry WJ, et al. Predicting toxicity of sediments spiked with silver. Environ Toxicolog Chem. 1999:40–48.

  143. Burton, A.G., Sediment Toxicity Assessment. Chelsea. MI: Lewis Publishers Inc; 1992.

    Google Scholar 

  144. Wu F, Harper BJ, Harper SL. Differential dissolution and toxicity of surface functionalized silver nanoparticles in small-scale microcosms: impacts of community complexity. Environ Sci Nano. 2017;4:359–72.

    Article  CAS  Google Scholar 

  145. Xu JY, Zhang H. Long-term effects of sliver nanoparticles on the abundance and activity of soil microbiome. J Environ Sci (China). 2018;69:3–4.

    Article  CAS  Google Scholar 

  146. Asadishad B, et al. Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ Sci Nano. 2017;4(4):907–18.

    Article  CAS  Google Scholar 

  147. Samrot AV, et al. Evaluation of nanotoxicity of Araucaria heterophylla gum derived green synthesized silver nanoparticles on Eudrilus eugeniae and Danio rerio. J Clus Sci. 2019:1017–24.

  148. Wang J, Wang WX. Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma). Environ Sci Technol. 2014;48(14):8152–61.

    Article  CAS  Google Scholar 

  149. Shetti NP, et al. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens Bioelectron. 2019;141: 111417.

    Article  CAS  Google Scholar 

  150. Tang KS. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci. 2019:239.

  151. Weldegebrieal GK. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorg Chem Commun. 2020:120.

  152. Mahamuni-Badiger PP, et al. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater Sci Eng C Mater Biol Appl. 2020;108: 110319.

    Article  CAS  Google Scholar 

  153. El-saied HA, Ibrahim AM. Effective fabrication and characterization of eco-friendly nano chitosan capped zinc oxide nanoparticles for effective marine fouling inhibition. J Environ Chem Eng. 2020;8(4):103949.

  154. Mwaanga P, et al. Investigating the toxicity of Cu, CuO and ZnO nanoparticles on earthworms in urban soils. Journal of Pollution Effects and Control. 2017;195(3):32–6.

    Google Scholar 

  155. Huang Z, et al. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir. 2008;24(8):4140–4.

    Article  CAS  Google Scholar 

  156. Shao W, et al. Carbon nanotubes for use in medicine: Potentials and limitations. IntechOpen. 2013;13:285–311.

  157. Farcal L, et al. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy. PLoS ONE. 2015;10(5): e0127174.

    Article  Google Scholar 

  158. Ivask A, et al. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology. 2014;8(Suppl 1):57–71.

    Article  CAS  Google Scholar 

  159. Xia T, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–34.

    Article  CAS  Google Scholar 

  160. Ramasamy M, et al. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells. Int J Nanomedicine. 2014;9:3707–18.

    CAS  Google Scholar 

  161. Selvarajan V, Obuobi S, Ee PLR. Silica Nanoparticles-A Versatile Tool for the Treatment of Bacterial Infections. Front Chem. 2020;8:602.

    Article  CAS  Google Scholar 

  162. Yang X, et al. Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning. Nat Commun. 2019;10(1):1620.

    Article  Google Scholar 

  163. Chemical Economics Handbook: Silicates and Silicas. 2021.

  164. Wang Z, et al. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ Sci Nano. 2016;3(2):240.

    Article  Google Scholar 

  165. Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology. 2012;294(2–3):61–79.

    Article  Google Scholar 

  166. Breznan D, et al. Differential cytotoxic and inflammatory potency of amorphous silicon dioxide nanoparticles of similar size in multiple cell lines. Nanotoxicology. 2017;11(2):223–35.

    Article  CAS  Google Scholar 

  167. Leung CC, Yu IT, Chen W. Silicosis. Lancet. 2012;379(9830):2008–18.

    Article  CAS  Google Scholar 

  168. Arts JH, et al. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol. 2007;45(10):1856–67.

    Article  CAS  Google Scholar 

  169. Turci F, et al. Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity and surface disorder. Part Fibre Toxicol. 2016;13(1):32.

    Article  Google Scholar 

  170. Murugadoss S, et al. Toxicology of silica nanoparticles: an update. Arch Toxicol. 2017;91(9):2967–3010.

    Article  CAS  Google Scholar 

  171. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013: 942916.

    Article  Google Scholar 

  172. Book F, Backhaus T. Aquatic ecotoxicity of manufactured silica nanoparticles: A systematic review and meta-analysis. Sci Total Environ. 2022;806(Pt 4): 150893.

    Article  CAS  Google Scholar 

  173. Tarn D, et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. 2013;46(3):792–801.

    Article  CAS  Google Scholar 

  174. Ambrosone A, et al. Impact of Amorphous SiO2 Nanoparticles on a Living Organism: Morphological, Behavioral, and Molecular Biology Implications. Front Bioeng Biotechnol. 2014;2:37.

    Article  Google Scholar 

  175. Ale A, et al. Ecotoxicity of silica nanoparticles in aquatic organisms: An updated review. Environ Toxicol Pharmacol. 2021;87: 103689.

    Article  CAS  Google Scholar 

  176. Vo NT, et al. Cytotoxicity evaluation of silica nanoparticles using fish cell lines. In Vitro Cell Dev Biol Anim. 2014;50(5):427–38.

    Article  CAS  Google Scholar 

  177. Zhu B, et al. The fate and oxidative stress of different sized SiO2 nanoparticles in zebrafish ( Danio rerio ) larvae. Chemosphere. 2019;225:705–12.

    Article  CAS  Google Scholar 

  178. Dumitrescu E, et al. Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish. Environ Pollut. 2017;229:439–47.

    Article  CAS  Google Scholar 

  179. Aschberger K, et al. Review of carbon nanotubes toxicity and exposure–appraisal of human health risk assessment based on open literature. Crit Rev Toxicol. 2010;40(9):759–90.

    Article  CAS  Google Scholar 

  180. Gernand JM, Casman EA. A meta-analysis of carbon nanotube pulmonary toxicity studies–how physical dimensions and impurities affect the toxicity of carbon nanotubes. Risk Anal. 2014;34(3):583–97.

    Article  Google Scholar 

  181. Varga C, Szendi K. Carbon nanotubes induce granulomas but not mesotheliomas. In Vivo. 2010;24(2):153–6.

    Google Scholar 

  182. Muller J, et al. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci. 2009;110(2):442–8.

    Article  CAS  Google Scholar 

  183. Wick P, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007;168(2):121–31.

    Article  CAS  Google Scholar 

  184. Muller J, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207(3):221–31.

    Article  CAS  Google Scholar 

  185. Kostarelos K. The long and short of carbon nanotube toxicity. Nat Biotechnol. 2008;26(7):774–6.

    Article  CAS  Google Scholar 

  186. Donaldson K, et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5–22.

    Article  CAS  Google Scholar 

  187. Amiri A, et al. Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater Lett. 2012;72:153–6.

    Article  CAS  Google Scholar 

  188. Zardini HZ, et al. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B Biointerfaces. 2012;92:196–202.

    Article  CAS  Google Scholar 

  189. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674–9.

    Article  CAS  Google Scholar 

  190. Yang C, et al. Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir. 2010;26(20):16013–9.

    Article  CAS  Google Scholar 

  191. Kang S, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 2007;23(17):8670–3.

    Article  CAS  Google Scholar 

  192. Murugan E, Vimala G. Effective functionalization of multiwalled carbon nanotube with amphiphilic poly(propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. J Colloid Interface Sci. 2011;357(2):354–65.

    Article  CAS  Google Scholar 

  193. Yan L, et al. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale. 2011;3(2):362–82.

    Article  CAS  Google Scholar 

  194. Bennett SW, Keller AA. Comparative photoactivity of CeO2, gamma-Fe2O3, TiO2and ZnO in various aqueous systems. Appl Catal B. 2011;102:600–7.

    Article  CAS  Google Scholar 

  195. Li F, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquat Toxicol. 2015;158:1–13.

    Article  Google Scholar 

  196. Miller RJ, et al. TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS ONE. 2012;7(1): e30321.

    Article  CAS  Google Scholar 

  197. Angel BM, Vallotton P, Apte SC. On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae. Aquat Toxicol. 2015;168:90–7.

    Article  CAS  Google Scholar 

  198. Booth A, et al. Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata. Sci Total Environ. 2015;505:596–605.

    Article  CAS  Google Scholar 

  199. Kuang Y, et al. Comparison study on the antibacterial activity of nano- or bulk-cerium oxide. J Nanosci Nanotechnol. 2011;11(5):4103–8.

    Article  CAS  Google Scholar 

  200. He X, et al. Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for Escherichia coli. Nanotoxicology. 2012;6(3):233–40.

    Article  CAS  Google Scholar 

  201. Rodea-Palomares I, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci. 2011;119(1):135–45.

    Article  CAS  Google Scholar 

  202. Fang X, et al. Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. J Colloid Interface Sci. 2010;348(2):329–34.

    Article  CAS  Google Scholar 

  203. Navarro E, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17(5):372–86.

    Article  CAS  Google Scholar 

  204. Artells E, et al. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. PLoS ONE. 2013;8(8): e71260.

    Article  CAS  Google Scholar 

  205. Arnold MC, et al. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch Environ Contam Toxicol. 2013;65(2):224–33.

    Article  CAS  Google Scholar 

  206. Babu KS, et al. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. Int J Nanomedicine. 2014;9:5515–31.

    CAS  Google Scholar 

  207. Kim IS, Baek M, Choi SJ. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol. 2010;10(5):3453–8.

    Article  CAS  Google Scholar 

  208. Krishnamoorthy K, et al. Surface chemistry of cerium oxide nanocubes: toxicity against pathogenic bacteria and their mechanistic study. J Ind Eng Chem. 2014;20:3515–7.

    Article  Google Scholar 

  209. Cassee FR, et al. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol. 2011;41(3):213–29.

    Article  Google Scholar 

  210. Xue Y, et al. Direct evidence of hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem Part C. 2011;115:4433–8.

    Article  CAS  Google Scholar 

  211. Leung YH, et al. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties. J Photochem Photobiol B. 2015;145:48–59.

    Article  CAS  Google Scholar 

  212. Pauluhn J. Fate of inhaled Nano-CeO2 revisited: Predicting the unpredictable. Regul Toxicol Pharmacol. 2018;97:63–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jejal Reddy Bathi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bathi, J.R., Wright, L. & Khan, E. Critical Review of Engineered Nanoparticles: Environmental Concentrations and Toxicity. Curr Pollution Rep 8, 498–518 (2022). https://doi.org/10.1007/s40726-022-00237-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00237-4

Keywords

Navigation