Skip to main content

Contaminant Removal and Resource Recovery in Bioelectrochemical Wastewater Treatment

This article has been updated

Abstract

Bioelectrochemical system (BES) is an emerging technology for wastewater treatment. The urgent requirement for dealing with water shortage, wastewater treatment and reuse, energy generation, and resources recovery has promoted intensive research in BES during the last decade. This review summarizes the latest typical BES configurations based on specific functions, including microbial fuel cells (MFC), microbial electrolysis cells (MEC), microbial electrosynthesis systems (MSS), microbial desalination cells (MDC), microbial recycling cells (MRC), microbial solar cells (MSC), and microbial electrochemical snorkel (MES). The removal of contaminants, particularly emerging organic, non-metallic, metallic, and metalloid contaminants, and the recovery of resources in the form of bioenergy, biofuel, nutrients, metals, and metalloids in wastewater treatment using BES technology have been reviewed in this work. Limitations of BES technology in terms of reactor performance, scale-up, and construction costs for real-world wastewater treatment applications are discussed and future research directions needed for the successful deployment of BES technology are proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 16 March 2022

    Springer Nature's version of this paper was updated to delete added data in "BES Configurations" section.

Abbreviations

1,2-DCA:

1,2-Dichloroethane

3-D:

Three-dimensional

AEM:

Anion exchange membrane

BES:

Bioelectrochemical system

BES-AD:

BES-anaerobic digestion

BES-FBR:

BES-fluidized bed reactor

CEM:

Cation exchange membrane

CW-BES:

Constructed wetland-BES

DET:

Direct electron transfer

EAM:

Electrochemically active microorganisms

EC + BES-FBR:

BES-FBR coupled with electrocoagulation

IET:

Indirect electron transfer

MCL:

Maximum contaminant levels

MDC:

Microbial desalination cells

MEC:

Microbial electrolysis cells

MES:

Microbial electrochemical snorkel

MFC:

Microbial fuel cells

MFC-MBR:

MFC-membrane bioreactor

MRC:

Microbial recycling cells

MSC:

Microbial solar cells

MSS:

Microbial electrosynthesis systems

USEPA:

U.S. Environmental Protection Agency

WHO:

World Health Organization

References

  1. Li W, Hai X, Han L, Mao J, Tian M. Does urbanization intensify regional water scarcity? Evidence and implications from a megaregion of China. J Cleaner Prod. 2020;244:118592.

    Article  Google Scholar 

  2. Yuan H, Hou Y, Abu-Reesh IM, Chen J, He Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Mater Horiz. 2016;3:382–401.

    Article  CAS  Google Scholar 

  3. United Nations. Waste water: the untapped resources. Facts and figure. The United Nations World Water Development Report; 2017.

  4. Escapa A, Mateos R, Martínez E, Blanes J. Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sustain Energy Rev. 2016;55:942–56.

    Article  CAS  Google Scholar 

  5. Gao H, Scherson YD, Wells GF. Towards energy neutral wastewater treatment: methodology and state of the art. Environ Sci Processes Impacts. 2014;16:1223–46.

    Article  CAS  Google Scholar 

  6. USEPA. Wastewater management fact sheet: energy conservation. EPA 832-F-06–024; 2006.

  7. Water Infrastructure Network. Water infrastructure now: recommendations for clean and safe water in the 21st century. Washington, DC: Water Infrastructure Network (WIN); 2001.

    Google Scholar 

  8. Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science. 2012;337:686–90.

    Article  CAS  Google Scholar 

  9. Logan BE. Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol. 2005;52:31–7.

    Article  CAS  Google Scholar 

  10. United Nations. The United Nations world water development report 2014: water and energy. Paris: UN Water; 2014.

    Google Scholar 

  11. Tong T, Elimelech M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ Sci Technol. 2016;50:6846–55.

    Article  CAS  Google Scholar 

  12. Tugtaş AE, Çalli B. Removal and recovery of metals by using bio-electrochemical system. In: Das D, editor. Microbial Fuel Cell. Cham: Springer; 2018. p. 307–33.

  13. Wang H, Ren Z. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014;66:219–32.

    Article  CAS  Google Scholar 

  14. Hendricks D. Fundamentals of water treatment unit processes: physical, chemical, and biological. New York: CRC Press; 2010.

    Google Scholar 

  15. Minh NQ, Takahashi T. Science and technology of ceramic fuel cells. Amsterdam: Elsevier; 1995.

    Google Scholar 

  16. Potter MC. On the difference of potential due to the vital activity of microorganisms. Proc Univ Durham Phil Soc. 1910;3:245–9.

    Google Scholar 

  17. Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proceedings of the royal society of London Series b, containing papers of a biological character. 1911;84:260–76.

    Article  Google Scholar 

  18. Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007;25:464–82.

    Article  CAS  Google Scholar 

  19. Khera J, Chandra A. Microbial fuel cells: recent trends. Proc Natl Acad Sci, India, Sect A. 2012;82:31–41.

    Article  CAS  Google Scholar 

  20. Zhang S, et al. Current advances of VOCs degradation by bioelectrochemical systems: a review. Chem Eng J. 2018;334:2625–37.

    Article  CAS  Google Scholar 

  21. Goglio A, Tucci M, Rizzi B, Colombo A, Cristiani P, Schievano A. Microbial recycling cells (MRCs): a new platform of microbial electrochemical technologies based on biocompatible materials, aimed at cycling carbon and nutrients in agro-food systems. Sci Total Environ. 2019;649:1349–61.

    Article  CAS  Google Scholar 

  22. Kumar G, Saratale RG, Kadier A, Sivagurunathan P, Zhen G, Kim SH, Saratale GD. A review on bio-electrochemical systems (BESs) for the syngas and value added biochemicals production. Chemosphere. 2017;177:84–92.

    Article  CAS  Google Scholar 

  23. Wang H, Ren Z. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv. 2013;31:1796–807.

    Article  CAS  Google Scholar 

  24. Ezziat L, Elabed A, Ibnsouda S, El Abed S. Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater. Front Energy Res. 2019;7:1–13.

    Article  Google Scholar 

  25. Logan BE. Microbial fuel cells. New Jersey: John Wiley & Sons; 2008.

    Google Scholar 

  26. Liu H, Grot S, Logan BE. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol. 2005;39:4317–20.

    Article  CAS  Google Scholar 

  27. Rozendal RA, Hamelers HV, Euverink GJ, Metz SJ, Buisman CJ. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy. 2006;31:1632–40.

    Article  CAS  Google Scholar 

  28. Rabaey K, Rozendal RA. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol. 2010;8:706–16.

    Article  CAS  Google Scholar 

  29. Saeed HM, et al. Microbial desalination cell technology: a review and a case study. Desalin. 2015;359:1–13.

    Article  CAS  Google Scholar 

  30. Strik DP, Timmers RA, Helder M, Steinbusch KJ, Hamelers HV, Buisman CJ. Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 2011;29:41–9.

    Article  CAS  Google Scholar 

  31. Erable B, Etcheverry L, Bergel A. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater. Biofouling. 2011;27:319–26.

    Article  CAS  Google Scholar 

  32. Ramírez-Vargas CA, Prado A, Arias CA, Carvalho PN, Esteve-Núñez A, Brix H. Microbial electrochemical technologies for wastewater treatment: principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands. Water. 2018;10:1128.

    Article  CAS  Google Scholar 

  33. Zou S, He Z. Efficiently ‘pumping out’ value-added resources from wastewater by bioelectrochemical systems: a review from energy perspectives. Water Res. 2018;131:62–73.

    Article  CAS  Google Scholar 

  34. Chiranjeevi P, Patil SA. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol Adv. 2020;39:107468.

    Article  CAS  Google Scholar 

  35. Kumar R, Singh L, Wahid ZA, Din MFM. Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. Int J Energy Res. 2015;39:1048–67.

    Article  CAS  Google Scholar 

  36. Ow YLP, Green DR, Hao Z, Mak TW. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol. 2008;9:532–42.

    Article  CAS  Google Scholar 

  37. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature. 2005;435:1098–101.

    Article  CAS  Google Scholar 

  38. Butti SK, et al. Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sustain Energy Rev. 2016;53:462–76.

    Article  CAS  Google Scholar 

  39. Erable B, Duţeanu NM, Ghangrekar MM, Dumas C, Scott K. Application of electro-active biofilms. Biofouling. 2010;26:57–71.

    Article  CAS  Google Scholar 

  40. Mao L, Verwoerd WS. Selection of organisms for systems biology study of microbial electricity generation: a review. Int J Energy Environ Eng. 2013;4:17.

    Article  CAS  Google Scholar 

  41. Logan BE, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40:5181–92.

    Article  CAS  Google Scholar 

  42. Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E. Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci. 2008;1:417–29.

    Article  CAS  Google Scholar 

  43. Zhou M, Wang H, Hassett DJ, Gu T. Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J Chem Technol Biotechnol. 2013;88:508–18.

    Article  CAS  Google Scholar 

  44. Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol. 2008;42:8101–7.

    Article  CAS  Google Scholar 

  45. Nevin KP, et al. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol. 2008;10:2505–14.

    Article  CAS  Google Scholar 

  46. Cheng S, Liu H, Logan BE. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol. 2006;40:2426–32.

    Article  CAS  Google Scholar 

  47. Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. Water Res. 2018;141:1–8.

    Article  CAS  Google Scholar 

  48. Ge Z, He Z. Long-term performance of a 200 liter modularized microbial fuel cell system treating municipal wastewater: treatment, energy, and cost. Environ Sci Water Res Technol. 2016;2:274–81.

    Article  CAS  Google Scholar 

  49. Buitrón G, Cervantes-Astorga C. Performance evaluation of a low-cost microbial fuel cell using municipal wastewater. Water Air Soil Pollut. 2013;224:1470.

    Article  CAS  Google Scholar 

  50. Rodrigo M, Canizares P, Lobato J, Paz R, Sáez C, Linares J. Production of electricity from the treatment of urban waste water using a microbial fuel cell. J Power Sources. 2007;169:198–204.

    Article  CAS  Google Scholar 

  51. Jiang D, et al. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrogen Energy. 2011;36:876–84.

    Article  CAS  Google Scholar 

  52. Ditzig J, Liu H, Logan BE. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrogen Energy. 2007;32:2296–304.

    Article  CAS  Google Scholar 

  53. Escapa A, Gil-Carrera L, García V, Morán A. Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater. Bioresour Technol. 2012;117:55–62.

    Article  CAS  Google Scholar 

  54. Gil-Carrera L, Escapa A, Carracedo B, Morán A, Gómez X. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages. Bioresour Technol. 2013;146:63–9.

    Article  CAS  Google Scholar 

  55. Escapa A, San-Martín M, Mateos R, Morán A. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations. Bioresour Technol. 2015;180:72–8.

    Article  CAS  Google Scholar 

  56. You S, Zhao Q, Jiang J, Zhang J. Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation. Chem Biochem Eng Q. 2006;20:407–12.

    CAS  Google Scholar 

  57. Choi J, Ahn Y. Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. J Environ Manage. 2013;130:146–52.

    Article  CAS  Google Scholar 

  58. Puig S, Serra M, Coma M, Balaguer M, Colprim J. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs). Water Sci Technol. 2011;64:904–9.

    Article  CAS  Google Scholar 

  59. Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res. 2009;43:1480–8.

    Article  CAS  Google Scholar 

  60. Min B, Kim J, Oh S, Regan JM, Logan BE. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 2005;39:4961–8.

    Article  CAS  Google Scholar 

  61. Kim JR, Dec J, Bruns MA, Logan BE. Removal of odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol. 2008;74:2540–3.

    Article  CAS  Google Scholar 

  62. Ichihashi O, Hirooka K. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour Technol. 2012;114:303–7.

    Article  CAS  Google Scholar 

  63. Cheng CY, Li CC, Chung YC. Continuous electricity generation and pollutant removal from swine wastewater using a single-chambered air-cathode microbial fuel cell. In: Zhou C, Yan J, Dong R, Jin B, editors. Advanced Materials Research. Freienbach: Trans Tech Publications Ltd; 2014. p. 158–62.

    Chapter  Google Scholar 

  64. Ma D, Jiang Z, Lay C, Zhou D. Electricity generation from swine wastewater in microbial fuel cell: Hydraulic reaction time effect. Int J Hydrogen Energy. 2016;41:21820–6.

    Article  CAS  Google Scholar 

  65. Vilajeliu-Pons A, Puig S, Salcedo-Dávila I, Balaguer M, Colprim J. Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials. Environ Sci Water Res Technol. 2017;3:947–59.

    Article  CAS  Google Scholar 

  66. Sangeetha T, Guo Z, Liu W, Cui M, Yang C, Wang L, Wang A. Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC). Int J Hydrogen Energy. 2016;41:2189–96.

    Article  CAS  Google Scholar 

  67. Dong Y, Qu Y, He W, Du Y, Liu J, Han X, Feng Y. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour Technol. 2015;195:66–72.

    Article  CAS  Google Scholar 

  68. Feng Y, Wang X, Logan BE, Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol. 2008;78:873–80.

    Article  CAS  Google Scholar 

  69. Wen Q, Wu Y, Zhao L, Sun Q, Kong F. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. J Zhejiang Univ Sci B. 2010;11:87–93.

    Article  CAS  Google Scholar 

  70. Çetinkaya AY, Köroğlu EO, Demir NM, Baysoy DY, Özkaya B, Çakmakçı M. Electricity production by a microbial fuel cell fueled by brewery wastewater and the factors in its membrane deterioration. Chin J Catal. 2015;36:1068–76.

    Article  CAS  Google Scholar 

  71. Lu M, et al. Long-term performance of a 20-L continuous flow microbial fuel cell for treatment of brewery wastewater. J Power Sources. 2017;356:274–87.

    Article  CAS  Google Scholar 

  72. Firdous S, et al. The performance of microbial fuel cells treating vegetable oil industrial wastewater. Environ Technol Innovation. 2018;10:143–51.

    Article  Google Scholar 

  73. Mardanpour MM, Esfahany MN, Behzad T, Sedaqatvand R. Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosens Bioelectron. 2012;38:264–9.

    Article  CAS  Google Scholar 

  74. Hassan M, Fernandez AS, San Martin I, Xie B, Moran A. Hydrogen evolution in microbial electrolysis cells treating landfill leachate: dynamics of anodic biofilm. Int J Hydrogen Energy. 2018;43:13051–63.

    Article  CAS  Google Scholar 

  75. Zhang G, Jiao Y, Lee D. Transformation of dissolved organic matters in landfill leachate–bioelectrochemical system. Bioresour Technol. 2015;191:350–4.

    Article  CAS  Google Scholar 

  76. Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J. Microbial fuel cell application in landfill leachate treatment. J Hazard Mater. 2011;185:763–7.

    Article  CAS  Google Scholar 

  77. Tugtaş AE, Cavdar P, Çalli B. Bio-electrochemical post-treatment of anaerobically treated landfill leachate. Bioresour Technol. 2013;128:266–72.

    Article  CAS  Google Scholar 

  78. Ganesh K, Jambeck JR. Treatment of landfill leachate using microbial fuel cells: alternative anodes and semi-continuous operation. Bioresour Technol. 2013;139:383–7.

    Article  CAS  Google Scholar 

  79. Holzman DC. Microbe power! Environ Health Perspect. 2005;113:A754–7.

    Google Scholar 

  80. Ucar D, Zhang Y, Angelidaki I. An overview of electron acceptors in microbial fuel cells. Front Microbiol. 2017;8:643.

    Article  Google Scholar 

  81. Luo H, Liu G, Zhang R, Jin S. Phenol degradation in microbial fuel cells. Chem Eng J. 2009;147:259–64.

    Article  CAS  Google Scholar 

  82. Gu H, Zhang X, Li Z, Lei L. Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Chin Sci Bull. 2007;52:3448–51.

    Article  CAS  Google Scholar 

  83. Huang L, Chai X, Quan X, Logan BE, Chen G. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol. 2012;111:167–74.

    Article  CAS  Google Scholar 

  84. Pham H, Boon N, Marzorati M, Verstraete W. Enhanced removal of 1, 2-dichloroethane by anodophilic microbial consortia. Water Res. 2009;43:2936–46.

    Article  CAS  Google Scholar 

  85. Aulenta F, Tocca L, Verdini R, Reale P, Majone M. Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ Sci Technol. 2011;45:8444–51.

    Article  CAS  Google Scholar 

  86. Zeppilli M, Dell’Armi E, Cristiani L, Petrangeli Papini M, Majone M. Reductive/oxidative sequential bioelectrochemical process for perchloroethylene removal. Water. 2019;11:2579.

    Article  CAS  Google Scholar 

  87. Guo W, Song H, Zhou L, Sun J. Simultaneous removal of sulfanilamide and bioelectricity generation in two-chambered microbial fuel cells. Desalin Water Treat. 2016;57:24982–9.

    Article  CAS  Google Scholar 

  88. Hou B, Hu Y, Sun J. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Bioresour Technol. 2012;111:105–10.

    Article  CAS  Google Scholar 

  89. Zhang Y, Angelidaki I. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Res. 2012;46:6445–53.

    Article  CAS  Google Scholar 

  90. Wang Y, Niu C, Zeng G, Hu W, Huang D, Ruan M. Microbial fuel cell using ferrous ion activated persulfate as a cathodic reactant. Int J Hydrogen Energy. 2011;36:15344–51.

    Article  CAS  Google Scholar 

  91. Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol. 2010;44:4685–91.

    Article  CAS  Google Scholar 

  92. Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol. 2009;43:8159–65.

    Article  CAS  Google Scholar 

  93. Zhang Z, Chen G, Tang Y. Towards selenium recovery: biocathode induced selenate reduction to extracellular elemental selenium nanoparticles. Chem Eng J. 2018;351:1095–103.

    Article  CAS  Google Scholar 

  94. Nguyen VK, Park Y, Yu J, Lee T. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater. Bioresour Technol. 2016;212:182–9.

    Article  CAS  Google Scholar 

  95. Qiu R, Zhang B, Li J, Lv Q, Wang S, Gu Q. Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode. J Power Sources. 2017;359:379–83.

    Article  CAS  Google Scholar 

  96. Tao H, Liang M, Li W, Zhang L, Ni J, Wu W. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J Hazard Mater. 2011;189:186–92.

    Article  CAS  Google Scholar 

  97. Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol. 2005;39:8943–7.

    Article  CAS  Google Scholar 

  98. Choi C, Hu N. The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour Technol. 2013;133:589–98.

    Article  CAS  Google Scholar 

  99. Ali J, Wang L, Waseem H, Sharif HMA, Djellabi R, Zhang C, Pan G. Bioelectrochemical recovery of silver from wastewater with sustainable power generation and its reuse for biofouling mitigation. J Cleaner Prod. 2019;235:1425–37.

    Article  CAS  Google Scholar 

  100. Jiang L, Huang L, Sun Y. Recovery of flakey cobalt from aqueous Co (II) with simultaneous hydrogen production in microbial electrolysis cells. Int J Hydrogen Energy. 2014;39:654–63.

    Article  CAS  Google Scholar 

  101. Wang Z, Lim B, Choi C. Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresour Technol. 2011;102:6304–7.

    Article  CAS  Google Scholar 

  102. Antonopoulou G, Stamatelatou K, Bebelis S, Lyberatos G. Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem Eng J. 2010;50:10–5.

    Article  CAS  Google Scholar 

  103. Jung S, Regan JM. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol. 2007;77:393–402.

    Article  CAS  Google Scholar 

  104. Kim JR, Jung SH, Regan JM, Logan BE. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol. 2007;98:2568–77.

    Article  CAS  Google Scholar 

  105. Zhang T, Zeng Y, Chen S, Ai X, Yang H. Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochem Commun. 2007;9:349–53.

    Article  CAS  Google Scholar 

  106. Zhang Y, et al. A graphene modified anode to improve the performance of microbial fuel cells. J Power Sources. 2011;196:5402–7.

    Article  CAS  Google Scholar 

  107. Zhao C, Wang Y, Shi F, Zhang J, Zhu J. High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chem Commun. 2013;49:6668–70.

    Article  CAS  Google Scholar 

  108. Nancharaiah Y, Mohan SV, Lens P. Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol. 2015;195:102–14.

    Article  CAS  Google Scholar 

  109. Friman H, Schechter A, Ioffe Y, Nitzan Y, Cahan R. Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. Microb Biotechnol. 2013;6:425–34.

    Article  CAS  Google Scholar 

  110. Song T, Wu X, Zhou C. Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess Biosyst Eng. 2014;37:133–8.

    Article  CAS  Google Scholar 

  111. Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR. Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep. 2010;2:289–94.

    Article  CAS  Google Scholar 

  112. Leitão P, Rossetti S, Danko AS, Nouws H, Aulenta F. Enrichment of Dehalococcoides mccartyi spp. from a municipal activated sludge during AQDS-mediated bioelectrochemical dechlorination of 1, 2-dichloroethane to ethene. Bioresour Technol. 2016;214:426–31.

    Article  CAS  Google Scholar 

  113. Adams C, Wang Y, Loftin K, Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng. 2002;128:253–60.

    Article  CAS  Google Scholar 

  114. Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices–a review. J Environ Manage. 2011;92:2304–47.

    Article  CAS  Google Scholar 

  115. Yan W, Xiao Y, Yan W, Ding R, Wang S, Zhao F. The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a review. Chem Eng J. 2019;358:1421–37.

    Article  CAS  Google Scholar 

  116. Forgacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int. 2004;30:953–71.

    Article  CAS  Google Scholar 

  117. Kalathil S, Lee J, Cho MH. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnol. 2011;29:32–7.

    Article  CAS  Google Scholar 

  118. Hou B, Sun J, Hu Y. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation. Appl Microbiol Biotechnol. 2011;90:1563–72.

    Article  CAS  Google Scholar 

  119. Huang W, Chen J, Hu Y, Chen J, Sun J, Zhang L. Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode. Int J Hydrogen Energy. 2017;42:2349–59.

    Article  CAS  Google Scholar 

  120. Sun J, Li W, Li Y, Hu Y, Zhang Y. Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresour Technol. 2013;142:407–14.

    Article  CAS  Google Scholar 

  121. USEPA. National primary drinking water regulations. Washington, DC: Environmental Protection Agency (US); 2009.

    Google Scholar 

  122. Desloover J, Puig S, Virdis B, Clauwaert P, Boeckx P, Verstraete W, Boon N. Biocathodic nitrous oxide removal in bioelectrochemical systems. Environ Sci Technol. 2011;45:10557–66.

    Article  CAS  Google Scholar 

  123. Li J, Fu Q, Liao Q, Zhu X, Ye D, Tian X. Persulfate: a self-activated cathodic electron acceptor for microbial fuel cells. J Power Sources. 2009;194:269–74.

    Article  CAS  Google Scholar 

  124. Srinivasan R, Sorial GA. Treatment of perchlorate in drinking water: a critical review. Sep Purif Technol. 2009;69:7–21.

    Article  CAS  Google Scholar 

  125. Bender KS, O’Connor SM, Chakraborty R, Coates JD, Achenbach LA. Sequencing and transcriptional analysis of the chlorite dismutase gene of Dechloromonas agitata and its use as a metabolic probe. Appl Environ Microbiol. 2002;68:4820–6.

    Article  CAS  Google Scholar 

  126. Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD, Achenbach LA. Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol. 2005;187:5090–6.

    Article  CAS  Google Scholar 

  127. Giblin T, Frankenberger W. Perchlorate and nitrate reductase activity in the perchlorate-respiring bacterium perclace. Microbiol Res. 2001;156:311–5.

    Article  CAS  Google Scholar 

  128. Jiang C, et al. Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell. Chem Eng J. 2017;308:783–90.

    Article  CAS  Google Scholar 

  129. Shea C, Clauwaert P, Verstraete W, Nerenberg R. Adapting a denitrifying biocathode for perchlorate reduction. Water Sci Technol. 2008;58:1941–6.

    Article  CAS  Google Scholar 

  130. Eary L, Rai D. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ Sci Technol. 1988;22:972–7.

    Article  CAS  Google Scholar 

  131. Owlad M, Aroua MK, Daud WAW, Baroutian S. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut. 2009;200:59–77.

    Article  CAS  Google Scholar 

  132. Jin W, Du H, Zheng S, Zhang Y. Electrochemical processes for the environmental remediation of toxic Cr(VI): a review. Electrochim Acta. 2016;191:1044–55.

    Article  CAS  Google Scholar 

  133. Kumar ASK, Kalidhasan S, Rajesh V, Rajesh N. Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. Ind Eng Chem Res. 2012;51:58–69.

    Article  CAS  Google Scholar 

  134. Lee K, Ulrich C, Geil R, Trochimowicz H. Effects of inhaled chromium dioxide dust on rats exposed for two years. Fundam Appl Toxicol. 1988;10:125–45.

    Article  CAS  Google Scholar 

  135. Huang L, Chen J, Quan X, Yang F. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng. 2010;33:937–45.

    Article  CAS  Google Scholar 

  136. Kim C, et al. Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater. Chem Eng J. 2017;328:703–7.

    Article  CAS  Google Scholar 

  137. Wang G, Huang L, Zhang Y. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett. 2008;30:1959.

    Article  CAS  Google Scholar 

  138. Huang L, Chai X, Chen G, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol. 2011;45:5025–31.

    Article  CAS  Google Scholar 

  139. Carpentier W, Sandra K, De Smet I, Brigé A, De Smet L, Van Beeumen J. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol. 2003;69:3636–9.

    Article  CAS  Google Scholar 

  140. Li H, Feng Y, Zou X, Luo X. Study on microbial reduction of vanadium matallurgical waste water. Hydrometallurgy. 2009;99:13–7.

    Article  CAS  Google Scholar 

  141. Zhang B, et al. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng. 2010;33:187–94.

    Article  CAS  Google Scholar 

  142. Wu Y, et al. Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresour Technol. 2018;253:372–7.

    Article  CAS  Google Scholar 

  143. Zhou C, Ontiveros-Valencia A, de Saint Cyr LC, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE. Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res. 2014;64:255–64.

    Article  CAS  Google Scholar 

  144. Vijay A, Khandelwal A, Chhabra M, Vincent T. Microbial fuel cell for simultaneous removal of uranium (VI) and nitrate. Chem Eng J. 2020;388:124157.

    Article  CAS  Google Scholar 

  145. Choi C, Cui Y. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresour Technol. 2012;107:522–5.

    Article  CAS  Google Scholar 

  146. Ho N, Babel S, Sombatmankhong K. Bio-electrochemical system for recovery of silver coupled with power generation and wastewater treatment from silver(I) diammine complex. J Water Process Eng. 2018;23:186–94.

    Article  Google Scholar 

  147. Tao H, Gao Z, Ding H, Xu N, Wu W. Recovery of silver from silver (I)-containing solutions in bioelectrochemical reactors. Bioresour Technol. 2012;111:92–7.

    Article  CAS  Google Scholar 

  148. Wang Y, Wang B, Pan B, Chen Q, Yan W. Electricity production from a bio-electrochemical cell for silver recovery in alkaline media. Appl Energy. 2013;112:1337–41.

    Article  CAS  Google Scholar 

  149. Zhang Z, Adedeji I, Chen G, Tang Y. Chemical-free recovery of elemental selenium from selenate-contaminated water by a system combining a biological reactor, a bacterium–nanoparticle separator, and a tangential flow filter. Environ Sci Technol. 2018;52:13231–8.

    Article  CAS  Google Scholar 

  150. Kharaka YK, Ambats G, Presser TS, Davis RA. Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes. Appl Geochem. 1996;11:797–802.

    Article  CAS  Google Scholar 

  151. Catal T, Bermek H, Liu H. Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett. 2009;31:1211–6.

    Article  CAS  Google Scholar 

  152. Huang L, Yao B, Wu D, Quan X. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell–microbial electrolysis cell systems. J Power Sources. 2014;259:54–64.

    Article  CAS  Google Scholar 

  153. Jiang S, Ho C, Lee J, Van Duong H, Han S, Hur H. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere. 2012;87:621–4.

    Article  CAS  Google Scholar 

  154. Call D, Logan BE. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol. 2008;42:3401–6.

    Article  CAS  Google Scholar 

  155. Kadier A, et al. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew Sustain Energy Rev. 2016;61:501–25.

    Article  CAS  Google Scholar 

  156. Gil-Carrera L, Escapa A, Mehta P, Santoyo G, Guiot S, Morán A, Tartakovsky B. Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production. Bioresour Technol. 2013;130:584–91.

    Article  CAS  Google Scholar 

  157. Cusick RD, et al. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol. 2011;89:2053–63.

    Article  CAS  Google Scholar 

  158. Kadier A, et al. Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): strategies for inhibiting growth of methanogens. Bioelectrochem. 2018;119:211–9.

    Article  CAS  Google Scholar 

  159. Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol. 2009;43:3953–8.

    Article  CAS  Google Scholar 

  160. Moreno R, San-Martín M, Escapa A, Morán A. Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell. Renew Energy. 2016;93:442–8.

    Article  CAS  Google Scholar 

  161. Hou Y, Zhang R, Luo H, Liu G, Kim Y, Yu S, Zeng J. Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production. Process Biochem. 2015;50:1103–9.

    Article  CAS  Google Scholar 

  162. Zhen G, Lu X, Kobayashi T, Kumar G, Xu K. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J. 2016;284:1146–55.

    Article  CAS  Google Scholar 

  163. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio. 2010;1:e00103-00110.

    Article  CAS  Google Scholar 

  164. Nevin KP, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol. 2011;77:2882–6.

    Article  CAS  Google Scholar 

  165. Zhao H, Zhang Y, Chang Y, Li Z. Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells. J Power Sources. 2012;217:59–64.

    Article  CAS  Google Scholar 

  166. Ganigué R, Puig S, Batlle-Vilanova P, Balaguer MD, Colprim J. Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun. 2015;51:3235–8.

    Article  CAS  Google Scholar 

  167. Sharma M, Aryal N, Sarma PM, Vanbroekhoven K, Lal B, Benetton XD, Pant D. Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chem Commun. 2013;49:6495–7.

    Article  CAS  Google Scholar 

  168. Torella JP, et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. PNAS. 2015;112:2337–42.

    Article  CAS  Google Scholar 

  169. Bajracharya S, Vanbroekhoven K, Buisman CJ, Pant D, Strik DP. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environ Sci Pollut Res. 2016;23:22292–308.

    Article  CAS  Google Scholar 

  170. Rozendal RA, Leone E, Keller J, Rabaey K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun. 2009;11:1752–5.

    Article  CAS  Google Scholar 

  171. Li X, Angelidaki I, Zhang Y. Salinity-gradient energy driven microbial electrosynthesis of hydrogen peroxide. J Power Sources. 2017;341:357–65.

    Article  CAS  Google Scholar 

  172. Miran W, Nawaz M, Jang J, Lee DS. Chlorinated phenol treatment and in situ hydrogen peroxide production in a sulfate-reducing bacteria enriched bioelectrochemical system. Water Res. 2017;117:198–206.

    Article  CAS  Google Scholar 

  173. Desloover J, Abate Woldeyohannis A, Verstraete W, Boon N, Rabaey K. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environ Sci Technol. 2012;46:12209–16.

    Article  CAS  Google Scholar 

  174. Wu X, Modin O. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresour Technol. 2013;146:530–6.

    Article  CAS  Google Scholar 

  175. Wan Y, et al. Bioelectrochemical ammoniation (BEA) coupled with microbial electrolysis for nitrogen recovery from nitrate in wastewater. Environ Sci Technol. 2020;54:3002–11.

    Article  CAS  Google Scholar 

  176. Cusick RD. Nutrient and heat recovery from waste streams using microbial electrochemical technologies. US: Pennsylvania State University; 2013. Dissertation.

    Google Scholar 

  177. Moussa SB, Maurin G, Gabrielli C, Amor MB. Electrochemical precipitation of struvite. Electrochem Solid-State Lett. 2006;9:C97.

    Article  CAS  Google Scholar 

  178. Fischer F, Bastian C, Happe M, Mabillard E, Schmidt N. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresour Technol. 2011;102:5824–30.

    Article  CAS  Google Scholar 

  179. Liang X, Gadd GM. Metal and metalloid biorecovery using fungi. Microb Biotechnol. 2017;10:1199–205.

    Article  Google Scholar 

  180. Li M, Pan Y, Huang L, Zhang Y, Yang J. Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC–MEC system. Environ Technol. 2017;38:615–28.

    Article  CAS  Google Scholar 

  181. Zhang B, Zhao H, Shi C, Zhou S, Ni J. Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells. J Chem Technol Biotechnol. 2009;84:1780–6.

    Article  CAS  Google Scholar 

  182. Arends JB, Verstraete W. 100 years of microbial electricity production: three concepts for the future. Microb Biotechnol. 2012;5:333–46.

    Article  CAS  Google Scholar 

  183. Kiran V, Gaur B. Microbial fuel cell: technology for harvesting energy from biomass. Rev Chem Eng. 2013;29:189–203.

    Article  CAS  Google Scholar 

  184. Zhang F, Ge Z, Grimaud J, Hurst J, He Z. In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour Technol. 2013;136:316–21.

    Article  CAS  Google Scholar 

  185. Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour Technol. 2011;102:9335–44.

    Article  CAS  Google Scholar 

  186. Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun. 2007;9:492–6.

    Article  CAS  Google Scholar 

  187. Feng Y, Yang Q, Wang X, Logan BE. Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. J Power Sources. 2010;195:1841–4.

    Article  CAS  Google Scholar 

  188. Chen S, et al. Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy Environ Sci. 2011;4:1417–21.

    Article  CAS  Google Scholar 

  189. Liang D, et al. Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells. Appl Energy. 2020;264:114700.

    Article  CAS  Google Scholar 

  190. Muthukumar H, Mohammed SN, Chandrasekaran N, Sekar AD, Pugazhendhi A, Matheswaran M. Effect of iron doped zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int J Hydrogen Energy. 2019;44:2407–16.

    Article  CAS  Google Scholar 

  191. Madaeni S, Zinadini S, Vatanpour V. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci. 2011;380:155–62.

    Article  CAS  Google Scholar 

  192. Jebur M, Sengupta A, Chiao Y-H, Kamaz M, Qian X, Wickramasinghe R. Pi electron cloud mediated separation of aromatics using supported ionic liquid (SIL) membrane having antibacterial activity. J Membr Sci. 2018;556:1–11.

    Article  CAS  Google Scholar 

  193. Borjas Z, Ortiz JM, Aldaz A, Feliu J, Esteve-Núñez A. Strategies for reducing the start-up operation of microbial electrochemical treatments of urban wastewater. Energies. 2015;8:14064–77.

    Article  CAS  Google Scholar 

  194. Pinto D, Coradin T, Laberty-Robert C. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells. Bioelectrochem. 2018;120:1–9.

    Article  CAS  Google Scholar 

  195. Zaybak Z, Pisciotta JM, Tokash JC, Logan BE. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. J Biotechnol. 2013;168:478–85.

    Article  CAS  Google Scholar 

  196. Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K. The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol. 2008;78:409–18.

    Article  CAS  Google Scholar 

  197. Liu P, Liang P, Jiang Y, Hao W, Miao B, Wang D, Huang X. Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell. Appl Energy. 2018;216:382–8.

    Article  CAS  Google Scholar 

  198. Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ Sci. 2013;6:1901–8.

    Article  CAS  Google Scholar 

  199. Yong X, et al. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosens Bioelectron. 2014;56:19–25.

    Article  CAS  Google Scholar 

  200. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol. 2006;40:3388–94.

    Article  CAS  Google Scholar 

  201. Aguirre-Sierra A, Bacchetti-De Gregoris T, Berná A, Salas J, Aragón C, Esteve-Núñez A. Microbial electrochemical systems outperform fixed-bed biofilters in cleaning up urban wastewater. Environ Sci Water Res Technol. 2016;2:984–93.

    Article  CAS  Google Scholar 

  202. Bo T, Zhu X, Zhang L, Tao Y, He X, Li D, Yan Z. A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem Commun. 2014;45:67–70.

    Article  CAS  Google Scholar 

  203. Fang Z, Song H, Yu R, Li X. A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products. Ecol Eng. 2016;94:455–63.

    Article  Google Scholar 

  204. Fradler KR, Kim JR, Shipley G, Massanet-Nicolau J, Dinsdale RM, Guwy AJ, Premier GC. Operation of a bioelectrochemical system as a polishing stage for the effluent from a two-stage biohydrogen and biomethane production process. Biochem Eng J. 2014;85:125–31.

    Article  CAS  Google Scholar 

  205. Malaeb L, Katuri KP, Logan BE, Maab H, Nunes SP, Saikaly PE. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environ Sci Technol. 2013;47:11821–8.

    Article  CAS  Google Scholar 

  206. Tejedor-Sanz S, Ortiz JM, Esteve-Núñez A. Merging microbial electrochemical systems with electrocoagulation pretreatment for achieving a complete treatment of brewery wastewater. Chem Eng J. 2017;330:1068–74.

    Article  CAS  Google Scholar 

  207. Wang J, Song X, Wang Y, Abayneh B, Li Y, Yan D, Bai J. Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: Establishment of electrochemically active bacteria community on anode. Bioresour Technol. 2016;221:358–65.

    Article  CAS  Google Scholar 

  208. Zhang S, Song H, Yang X, Yang Y, Yang K, Wang X. Fate of tetracycline and sulfamethoxazole and their corresponding resistance genes in microbial fuel cell coupled constructed wetlands. RSC Adv. 2016;6:95999–6005.

    Article  CAS  Google Scholar 

  209. Cusick RD, Kiely PD, Logan BE. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrogen Energy. 2010;35:8855–61.

    Article  CAS  Google Scholar 

  210. He L, Du P, Chen Y, Lu H, Cheng X, Chang B, Wang Z. Advances in microbial fuel cells for wastewater treatment. Renew Sustain Energy Rev. 2017;71:388–403.

    Article  Google Scholar 

  211. Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008;26:450–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Sarkar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Sarkar, D., Li, L. et al. Contaminant Removal and Resource Recovery in Bioelectrochemical Wastewater Treatment. Curr Pollution Rep 8, 159–176 (2022). https://doi.org/10.1007/s40726-022-00218-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00218-7

Keywords

  • Bioelectrochemical system
  • Wastewater treatment
  • Contaminant removal
  • Bioenergy and biofuel recovery
  • Nutrients recovery
  • Metals and metalloids recovery