Skip to main content

Advertisement

Log in

A Review of Immobilisation-Based Remediation of Per- and Poly-Fluoroalkyl Substances (PFAS) in Soils

  • Land Pollution (GM Hettiarachchi and A Juhasz, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides an overview of the latest developments in immobilisation of per- and poly-fluoroalkyl substances (PFAS) for soil remediation. It examines the efficacy of a range of amendments, including those with binding agents, along with a discussion of immobilisation mechanisms and post-immobilisation assessment needs.

Recent Findings

Researchers have recently applied a variety of soil amendments to soil for PFAS immobilisation. Efficacy of these has varied widely, both between amendment and soil types and for individual PFAS molecules present in contaminated soils. Activated carbon based amendments, including composite amendments exhibit the highest efficacies of the examined studies.

Summary

Immobilisation of PFAS is complex, with efficacy of immobilisation varying with soil properties including pH, clay and organic matter content, amendment properties, and molecular properties of the individual PFAS. Optimal remediation strategies need to be adjusted accordingly to site specific soil properties and contamination profiles. Additionally, bioavailability testing needs to supplement standard leaching approaches to determine effectiveness of PFAS soil immobilisation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Web of Science topic search results for “PFAS” 2016: 141, vs 2020: 561, accessed 15/06/2021.

References

  1. Dauchy X, Boiteux V, Bach C, Rosin C, Munoz JF. Per- and polyfluoroalkyl substances in firefighting foam concentrates and water samples collected near sites impacted by the use of these foams. Chemosphere. 2017;183:53–61. https://doi.org/10.1016/j.chemosphere.2017.05.056.

    Article  CAS  Google Scholar 

  2. Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ Sci Pollut Res. 2015;22(19):14546–59. https://doi.org/10.1007/s11356-015-4202-7.

    Article  CAS  Google Scholar 

  3. KEMI. Occurrence and Use of Highly Fluorinated Substances and Alternatives. KEMI (Swedish Chemicals Agency); 2015.

  4. United Nations Environment Programme. Stockholm Convention; 2021. http://chm.pops.int/.

  5. Wang J, Shi G, Yao J, Sheng N, Cui R, Su Z, et al. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. Environ Int. 2020;134:105317. https://doi.org/10.1016/j.envint.2019.105317.

    Article  CAS  Google Scholar 

  6. DeWitt JC, editor. Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. Springer; 2015.

  7. Xu C, Jiang ZY, Liu Q, Liu H, Gu A. Estrogen receptor beta mediates hepatotoxicity induced by perfluorooctane sulfonate in mouse. Environ Sci Pollut Res. 2017;24(15):13414–23. https://doi.org/10.1007/s11356-017-8943-3.

    Article  CAS  Google Scholar 

  8. Dong GH, Zhang YH, Zheng L, Liu W, Jin YH, He QC. Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch Toxicol. 2009;83(9):805–15. https://doi.org/10.1007/s00204-009-0424-0.

    Article  CAS  Google Scholar 

  9. Lee I, Viberg H. A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. NeuroToxicology. 2013;37:190–6. https://doi.org/10.1016/j.neuro.2013.05.007.

    Article  CAS  Google Scholar 

  10. Shi X, Du Y, Lam PKS, Wu RSS, Zhou B. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol Appl Pharmacol. 2008;230(1):23–32. https://doi.org/10.1016/j.taap.2008.01.043.

  11. Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. Environ Int. 2017;99:43–54. https://doi.org/10.1016/j.envint.2016.11.014.

    Article  CAS  Google Scholar 

  12. Miller A, Elliott JE, Elliott KH, Lee S, Cyr F. Temporal trends of perfluoroalkyl substances (PFAS) in eggs of coastal and offshore birds: Increasing PFAS levels associated with offshore bird species breeding on the Pacific coast of Canada and wintering near Asia. Environ Toxicol Chem. 34(8):1799-808. https://doi.org/10.1002/etc.2992.

  13. Molina ED, Balander R, Fitzgerald SD, Giesy JP, Kannan K, Mitchell R, et al. Effects of air cell injection of perfluorooctane sulfonate before incubation on development of the white leghorn chicken (Gallus domesticus) embryo. Environ Toxicol Chem. 2006;25(1):227–32.

    Article  CAS  Google Scholar 

  14. Groffen T, Eens M, Bervoets L. Do concentrations of perfluoroalkylated acids (PFAAs) in isopods reflect concentrations in soil and songbirds? A study using a distance gradient from a fluorochemical plant. Sci Total Environ. 2019;657:111–23. https://doi.org/10.1016/j.scitotenv.2018.12.072.

    Article  CAS  Google Scholar 

  15. Ase Høisæter, Pfaff A, Breedveld GD. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. J Contam Hydrol. 2019;222:112–122. https://doi.org/10.1016/j.jconhyd.2019.02.010.

  16. Hepburn E, Madden C, Szabo D, Coggan TL, Clarke B, Currell M. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environ Pollut. 2019;248:101–13. https://doi.org/10.1016/j.envpol.2019.02.018.

    Article  CAS  Google Scholar 

  17. Filipovic M, Woldegiorgis A, Norstrm K, Bibi M, Lindberg M, sters AH. Historical usage of aqueous film forming foam: A case study of the widespread distribution of perfluoroalkyl acids from a military airport to groundwater, lakes, soils and fish. Chemosphere. 2015;129:39-45. https://doi.org/10.1016/j.chemosphere.2014.09.005.

  18. Semerd J, Hatasov N, Grasserov A, ern T, Filipov A, Han A, et al. Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic - Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere. 2020;261:128018. https://doi.org/10.1016/j.chemosphere.2020.128018.

  19. Gallen C, Eaglesham G, Drage D, Nguyen TH, Mueller J. A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants. Chemosphere. 2018;208:975–83. https://doi.org/10.1016/j.chemosphere.2018.06.024.

    Article  CAS  Google Scholar 

  20. Szabo D, Coggan TL, Robson TC, Currell M, Clarke BO. Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Sci Total Environ. 2018;644:1409–17. https://doi.org/10.1016/j.scitotenv.2018.07.048.

    Article  CAS  Google Scholar 

  21. Brusseau ML, Anderson RH, Guo B. PFAS concentrations in soils: Background levels versus contaminated sites. Sci Total Environ. 2020;740:140017. https://doi.org/10.1016/j.scitotenv.2020.140017.

    Article  CAS  Google Scholar 

  22. Washington JW, Yoo H, Ellington JJ, Jenkins TM, Libelo EL. Concentrations, Distribution, and Persistence of Perfluoroalkylates in Sludge-Applied Soils near Decatur, Alabama, USA. Environ Sci Technol. 2010;44(22):8390–6. https://doi.org/10.1021/es1003846.

    Article  CAS  Google Scholar 

  23. Coggan TL, Moodie D, Kolobaric A, Szabo D, Shimeta J, Crosbie ND, et al. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon. 2019;5(8):e02316. https://doi.org/10.1016/j.heliyon.2019.e02316.

    Article  Google Scholar 

  24. Dombrowski PM, Kakarla P, Caldicott W, Chin Y, Sadeghi V, Bogdan D, et al. Technology review and evaluation of different chemical oxidation conditions on treatability of PFAS. Remediat J. 28(2):135-50. https://doi.org/10.1002/rem.21555.

  25. Stoiber T, Evans S, Naidenko OV. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere. 2020;260:127659. https://doi.org/10.1016/j.chemosphere.2020.127659.

    Article  CAS  Google Scholar 

  26. Garca AN, Viciano N, Font R. Products obtained in the fuel-rich combustion of PTFE at high temperature. J Anal Appl Pyrolysis. 2007;80(1):85-91. https://doi.org/10.1016/j.jaap.2007.01.004.

  27. Senevirathna S, Mahinroosta R. Remediation of Soil and Groundwater Contaminated with Per-and Poly-Fluoroalkyl Substances (PFAS). In: Soil and Groundwater Remediation Technologies: A Practical Guide. CRC Press 2020:109-24.

  28. Ross I, McDonough J, Miles J, Storch P, Thelakkat Kochunarayanan P, Kalve E, et al. A review of emerging technologies for remediation of PFASs. Remediat J. 2018;28(2):101–26. https://doi.org/10.1002/rem.21553.

    Article  Google Scholar 

  29. Lampert DJ. Emerging Research Needs for Assessment and Remediation of Sediments Contaminated with Per-and Poly-fluoroalkyl Substances. Current Pollution Reports. 2018;4(4):277–9. https://doi.org/10.1007/s40726-018-0098-4.

    Article  Google Scholar 

  30. Ahmed MB, Johir MAH, McLaughlan R, Nguyen LN, Xu B, Nghiem LD. Per- and polyfluoroalkyl substances in soil and sediments: Occurrence, fate, remediation and future outlook. Science of the Total Environment. 2020;748. https://doi.org/10.1016/j.scitotenv.2020.141251.

  31. Bolan N, Sarkar B, Yan Y, Li Q, Wijesekara H, Kannan K, et al. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils To mobilize or to immobilize or to degrade? J Hazard Mater. 2021;401:123892. https://doi.org/10.1016/j.jhazmat.2020.123892.

    Article  CAS  Google Scholar 

  32. Mahinroosta R, Senevirathna L. A review of the emerging treatment technologies for PFAS contaminated soils. J Environ Manag. 2020;255:109896. https://doi.org/10.1016/j.jenvman.2019.109896.

    Article  CAS  Google Scholar 

  33. Sörengard M, Gago-Ferrero P, Kleja DB, Ahrens L. Laboratory-scale and pilot-scale stabilization and solidification (S/S) remediation of soil contaminated with per- and polyfluoroalkyl substances (PFASs). J Hazard Mater. 2021;402:123453. https://doi.org/10.1016/j.jhazmat.2020.123453.

    Article  CAS  Google Scholar 

  34. Sörengard M, Kleja DB, Ahrens L. Stabilization of per- and polyfluoroalkyl substances (PFASs) with colloidal activated carbon (PlumeStop) as a function of soil clay and organic matter content. J Environ Manag. 2019;249:109345. https://doi.org/10.1016/j.jenvman.2019.109345.

    Article  CAS  Google Scholar 

  35. Sormo E, Silvani L, Bjerkli N, Hageman N, Zimmerman AR, Hale SE, et al. Stabilization of PFAS-contaminated soil with activated biochar. Science of The Total Environment. 2021;763:144034. https://doi.org/10.1016/j.scitotenv.2020.144034.

    Article  CAS  Google Scholar 

  36. Askeland M, Clarke BO, Cheema SA, Mendez A, Gasco G, Paz-Ferreiro J. Biochar sorption of PFOS, PFOA, PFHxS and PFHxA in two soils with contrasting texture. Chemosphere. 2020;249.

    Article  CAS  Google Scholar 

  37. Silvani L, Cornelissen G, Botnen Smebye A, Zhang Y, Okkenhaug G, Zimmerman AR, et al. Can biochar and designer biochar be used to remediate per- and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils? Sci Total Environ. 2019;694:133693. https://doi.org/10.1016/j.scitotenv.2019.133693.

    Article  CAS  Google Scholar 

  38. Brunig J, Baduel C, Barnes CM, Mueller JF. Sorbent assisted immobilisation of perfluoroalkyl acids in soils effect on leaching and bioavailability. J Hazard Mater. 2021:125171. https://doi.org/10.1016/j.jhazmat.2021.125171.

  39. Das P, Arias EVA, Kambala V, Mallavarapu M, Naidu R. Remediation of perfluorooctane sulfonate in contaminated soils by modified clay adsorbenta risk-based approach. Water Air Soil Pollut. 2013;224(12):1714. https://doi.org/10.1007/s11270-013-1714-y.

    Article  CAS  Google Scholar 

  40. Kabiri S, Centner M, McLaughlin MJ. Durability of sorption of per- and polyfluorinated alkyl substances in soils immobilised using common adsorbents: 1. Effects of perturbations in pH. Sci Total Environ. 2021;766:144857. https://doi.org/10.1016/j.scitotenv.2020.144857.

  41. Kabiri S, McLaughlin MJ. Durability of sorption of per- and polyfluorinated alkyl substances in soils immobilized using common adsorbents: 2. Effects of repeated leaching, temperature extremes, ionic strength and competing ions. Sci Total Environ. 2021;766:144718. https://doi.org/10.1016/j.scitotenv.2020.144718.

  42. Sörengard M, Kleja DB, Ahrens L. Stabilization and solidification remediation of soil contaminated with poly- and perfluoroalkyl substances (PFASs). J Hazard Mater. 2019;367:639–46. https://doi.org/10.1016/j.jhazmat.2019.01.005.

    Article  CAS  Google Scholar 

  43. Hale SE, Arp HPH, Slinde GA, Wade EJ, Bjørseth K, Breedveld GD, et al. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility. Chemosphere. 2017;171:9–18. https://doi.org/10.1016/j.chemosphere.2016.12.057.

    Article  CAS  Google Scholar 

  44. Kupryianchyk D, Hale SE, Breedveld GD, Cornelissen G. Treatment of sites contaminated with perfluorinated compounds using biochar amendment. Chemosphere. 2016;142:35–40. https://doi.org/10.1016/j.chemosphere.2015.04.085.

    Article  CAS  Google Scholar 

  45. Brennan A, Moreno Jimnez E, Alburquerque JA, Knapp CW, Switzer C. Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environ Pollut. 2014;193:79–87. https://doi.org/10.1016/j.envpol.2014.06.016.

    Article  CAS  Google Scholar 

  46. Vasilyeva GK, Strijakova ER, Nikolaeva SN, Lebedev AT, Shea PJ. Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environ Pollut. 2010;158(3):770–7. https://doi.org/10.1016/j.envpol.2009.10.010.

    Article  CAS  Google Scholar 

  47. Julien F, Baudu M, Mazet M. Relationship between chemical and physical surface properties of activated carbon. Water Res. 1998;32(11):3414–24. https://doi.org/10.1016/S0043-1354(98)00109-2.

    Article  CAS  Google Scholar 

  48. Yu Q, Zhang R, Deng S, Huang J, Yu G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Res. 2009;43(4):1150–1158. https://doi.org/10.1016/j.watres.2008.12.001.

  49. Zhang D, Luo Q, Gao B, Chiang SYD, Woodward D, Huang Q. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon. Chemosphere. 2016;144:2336–42. https://doi.org/10.1016/j.chemosphere.2015.10.124.

    Article  CAS  Google Scholar 

  50. Sörengård M, stblom E, Khler S, Ahrens L. Adsorption behavior of per- and polyfluoralkyl substances (PFASs) to 44 inorganic and organic sorbents and use of dyes as proxies for PFAS sorption. J Environ Chem Eng. 2020;8(3):103744. https://doi.org/10.1016/j.jece.2020.103744.

  51. Ochoa-Herrera V, Sierra-Alvarez R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere. 2008;72(10):1588–93. https://doi.org/10.1016/j.chemosphere.2008.04.029.

    Article  CAS  Google Scholar 

  52. Tomczyk A, Sokołowska Z, Boguta P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology. 2020:1–25. https://doi.org/10.1007/s11157-020-09523-3.

  53. Hagemann N, Spokas K, Schmidt HP, Kgi R, Bhler M, Bucheli T. Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbons ABCs. Water. 2018;10(2):182. https://doi.org/10.3390/w10020182.

    Article  CAS  Google Scholar 

  54. Sarkar B, Rusmin R, Ugochukwu UC, Mukhopadhyay R, Manjaiah KM. Chapter 5 - Modified clay minerals for environmental applications. In: Mercurio M, Sarkar B, Langella A, editors. Modified Clay and Zeolite Nanocomposite Materials. 2019:113–127. https://doi.org/10.1016/B978-0-12-814617-0.00003-7.

  55. Zhang R, Yan W, Jing C. Mechanistic study of PFOS adsorption on kaolinite and montmorillonite. Colloids Surf A Physicochem Eng Asp. 2014;462:252–8. https://doi.org/10.1016/j.colsurfa.2014.09.019.

    Article  CAS  Google Scholar 

  56. Xiao F, Zhang X, Penn L, Gulliver JS, Simcik MF. Effects of monovalent cations on the competitive adsorption of perfluoroalkyl acids by Kaolinite: Experimental studies and modeling. Environ Sci Technol. 2011;45(23):10028–35. https://doi.org/10.1021/es202524y.

    Article  CAS  Google Scholar 

  57. Aly YH, McInnis DP, Lombardo SM, Arnold WA, Pennell KD, Hatton J, et al. Enhanced adsorption of perfluoro alkyl substances for in situ remediation. Environ Sci Water Res Technol. 2019;5:1867–75. https://doi.org/10.1039/C9EW00426B.

    Article  CAS  Google Scholar 

  58. Anderson EL, Mousavi MPS, Aly YH, Chen XV, Simcik MF, Bhlmann P. Remediation of perfluorooctylsulfonate contamination by in Situ Sequestration: Direct monitoring of PFOS binding to polyquaternium polymers. ACS Omega. 2019;4(1):1068–76. https://doi.org/10.1021/acsomega.8b03275.

    Article  CAS  Google Scholar 

  59. Liu Y, Su G, Wang F, Jia J, Li S, Zhao L, et al. Elucidation of the molecular determinants for optimal perfluorooctanesulfonate adsorption using a combinatorial nanoparticle library approach. Environ Sci Technol. 2017;51(12):7120–7. https://doi.org/10.1021/acs.est.7b01635.

    Article  CAS  Google Scholar 

  60. Li C, Schffer A, Squaris JM, Lszl K, Tth A, Tombcz E, et al. Surface-associated metal catalyst enhances the sorption of perfluorooctanoic acid to multi-walled carbon nanotubes. J Colloid Interface Sci. 2012;377(1):342–346. https://doi.org/10.1016/j.jcis.2012.03.038.

  61. Liu L, Li D, Li C, Ji R, Tian X. Metal nanoparticles by doping carbon nanotubes improved the sorption of perfluorooctanoic acid. J Hazard Mater. 2018;351:206–14. https://doi.org/10.1016/j.jhazmat.2018.03.001.

    Article  CAS  Google Scholar 

  62. Liu L, Liu Y, Li C, Ji R, Tian X. Improved sorption of perfluorooctanoic acid on carbon nanotubes hybridized by metal oxide nanoparticles. Environ Sci Pollut Res. 2018;25(16):15507–17. https://doi.org/10.1007/s11356-018-1728-5.

    Article  CAS  Google Scholar 

  63. Heads of EPAs Australia and New Zealand (HEPA). PFAS National Environmental Management Plan Version 2.0; 2020.

  64. Chen H, Reinhard M, Yin T, Nguyen TV, Tran NH, Gin KYH. Multi-compartment distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in an urban catchment system. Water Res. 2019;154:227–37. https://doi.org/10.1016/j.watres.2019.02.009.

    Article  CAS  Google Scholar 

  65. Higgins CP, Luthy RG. Sorption of Perfluorinated Surfactants on Sediments. Environ Sci Technol. 2006;40(23):7251–6. https://doi.org/10.1021/es061000n.

    Article  CAS  Google Scholar 

  66. Milinovic J, Lacorte S, Vidal M, Rigol A. Sorption behaviour of perfluoroalkyl substances in soils. Sci Total Environ. 2015;511:63–71. https://doi.org/10.1016/j.scitotenv.2014.12.017.

    Article  CAS  Google Scholar 

  67. Campos Pereira H, Ullberg M, Kleja DB, Gustafsson JP, Ahrens L. Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon Effect of cation composition and pH. Chemosphere. 2018;207:183–91. https://doi.org/10.1016/j.chemosphere.2018.05.012.

    Article  CAS  Google Scholar 

  68. Oliver DP, Li Y, Orr R, Nelson P, Barnes M, McLaughlin MJ, et al. The role of surface charge and pH changes in tropical soils on sorption behaviour of per-and polyfluoroalkyl substances (PFASs). Sci Total Environ. 2019;673:197–206. https://doi.org/10.1016/j.scitotenv.2019.04.055.

    Article  CAS  Google Scholar 

  69. Qian J, Shen M, Wang P, Wang C, Hou J, Ao Y, et al. Adsorption of perfluorooctane sulfonate on soils: Effects of soil characteristics and phosphate competition. Chemosphere. 2017;168:1383–8. https://doi.org/10.1016/j.chemosphere.2016.11.114.

    Article  CAS  Google Scholar 

  70. Li F, Fang X, Zhou Z, Liao X, Zou J, Yuan B, et al. Adsorption of perfluorinated acids onto soils: Kinetics, isotherms, and influences of soil properties. Sci Total Environ. 2019;649:504–14. https://doi.org/10.1016/j.scitotenv.2018.08.209.

    Article  CAS  Google Scholar 

  71. Li Y, Oliver DP, Kookana RS. A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substances (PFASs). Sci Total Environ. 2018;628:110–20. https://doi.org/10.1016/j.scitotenv.2018.01.167.

    Article  CAS  Google Scholar 

  72. Rayne S, Forest K. Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. J Environ Sci Health A. 2009;44(12):1145–99. https://doi.org/10.1080/10934520903139811.

    Article  CAS  Google Scholar 

  73. Du Z, Deng S, Bei Y, Huang Q, Wang B, Huang J, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbentsa review. Journal of Hazardous Materials. 2014;274:443–54. doi: https://doi.org/10.1016/j.jhazmat.2014.04.038.

    Article  CAS  Google Scholar 

  74. Campos-Pereira H, Kleja DB, Sjstedt C, Ahrens L, Klysubun W, Gustafsson JP. The Adsorption of Per- and Polyfluoroalkyl Substances (PFASs) onto Ferrihydrite Is Governed by Surface Charge. Environ Sci Technol. 2020;54(24):15722–30. https://doi.org/10.1021/acs.est.0c01646.

    Article  CAS  Google Scholar 

  75. Arp HPH, Niederer C, Goss KU. Predicting the Partitioning Behavior of Various Highly Fluorinated Compounds. Environ Sci Technol. 2006;40(23):7298–304. https://doi.org/10.1021/es060744y.

    Article  CAS  Google Scholar 

  76. Liu L, Liu Y, Gao B, Ji R, Li C, Wang S. Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: A review. Crit Rev Environ Sci Technol. 2020;50(22):2379–414. https://doi.org/10.1080/10643389.2019.1700751.

    Article  CAS  Google Scholar 

  77. Ebrahimi F, Lewis AJ, Sales CM, Suri R, McKenzie ER. Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes. Chemosphere. 2021;271:129530. https://doi.org/10.1016/j.chemosphere.2020.129530.

    Article  CAS  Google Scholar 

  78. Xiao F, Jin B, Golovko SA, Golovko MY, Xing B. Sorption and Desorption Mechanisms of Cationic and Zwitterionic Per- and Polyfluoroalkyl Substances in Natural Soils: Thermodynamics and Hysteresis. Environ Sci Technol. 2019;53(20):11818–27. https://doi.org/10.1021/acs.est.9b05379.

    Article  CAS  Google Scholar 

  79. MacKay AA, Gschwend PM. Enhanced Concentrations of PAHs in Groundwater at a Coal Tar Site. Environ Sci Technol. 2001;35(7):1320–8. https://doi.org/10.1021/es0014786.

    Article  CAS  Google Scholar 

  80. Lead JR, Wilkinson KJ. Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem. 2006;3(3):159–71. https://doi.org/10.1071/EN06025.

    Article  CAS  Google Scholar 

  81. Zhou J, Fileman T, Evans S, Donkin P, Readman J, Mantoura R, et al. The partition of fluoranthene and pyrene between suspended particles and dissolved phase in the Humber Estuary: a study of the controlling factors. Sci Total Environ. 1999;243:305–21. https://doi.org/10.1016/S0048-9697(99)00404-0.

    Article  Google Scholar 

  82. Sen TK, Khilar KC. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interf Sci. 2006;119(2–3):71–96. https://doi.org/10.1016/j.cis.2005.09.001.

    Article  CAS  Google Scholar 

  83. Benhabib K, Simonnot MO, Faure P, Sardin M. Evidence of colloidal transport of PAHs during column experiments run with contaminated soil samples. Environ Sci Pollut Res. 2017;24(10):9220–8. https://doi.org/10.1007/s11356-017-8586-4.

    Article  CAS  Google Scholar 

  84. Eganhouse RP, DiFilippo E, Pontolillo J, Orem W, Hackley P, Edwards BD. DDT and related compounds in pore water of shallow sediments on the Palos Verdes Shelf, California, USA. Mar Chem. 2018;203:78–90. https://doi.org/10.1016/j.marchem.2018.05.003.

    Article  CAS  Google Scholar 

  85. Valsala R, Govindarajan SK. Co-colloidal BTEX and Microbial Transport in a Saturated Porous System: Numerical Modeling and Sensitivity Analysis. Transp Porous Media. 2019;127(2):269–94. https://doi.org/10.1007/s11242-018-1191-2.

    Article  CAS  Google Scholar 

  86. Dai G, Liu X, Liang G, Han X, Shi L, Cheng D, et al. Distribution of organochlorine pesticides (OCPs) and poly chlorinated biphenyls (PCBs) in surface water and sediments from Baiyangdian Lake in North China. J Environ Sci. 2011;23(10):1640–1649. https://doi.org/10.1016/S1001-0742(10)60633-X.

  87. Lin Q, Xu X, Bao Q, Oh K, Chen D, Zhang L, et al. Influence of water-dispersible colloids from organic manure on the mechanism of metal transport in historically contaminated soils: coupling colloid fractionation with high-energy synchrotron analysis. J Soils Sediments. 2016;16(2):349–59. https://doi.org/10.1007/s11368-015-1233-0.

    Article  CAS  Google Scholar 

  88. U S EPA. Leaching Environmental Assessment Framework (LEAF) How-To Guide, SW-846 Update VII Rev. 1. U.S. Environmental Protection Agency; 2019.

  89. Alexander M. Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants. Environ Sci Technol. 2000;34(20):4259–65. https://doi.org/10.1021/es001069+.

    Article  CAS  Google Scholar 

  90. Ross I, Houtz E, Kalve E, McDonough J, Hurst J, Miles J. PFASs and the TOP Assay. Industrial Fire Journal. 2018;Q1:26–7.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Australian Government and the University of South Australia for supporting J.A.S. with a Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert L. Juhasz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Land Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sleep, J.A., Juhasz, A.L. A Review of Immobilisation-Based Remediation of Per- and Poly-Fluoroalkyl Substances (PFAS) in Soils. Curr Pollution Rep 7, 524–539 (2021). https://doi.org/10.1007/s40726-021-00199-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00199-z

Keywords

Navigation