Skip to main content
Log in

A Review of Bacterial Antibiotic Resistance Genes and Their Removal Strategies from Wastewater

  • Biology and Pollution (R Boopathy and Y Hong, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of review

This review is intended to address the issues of unsafe disposal of antibiotics from various sources to the environment, its incomplete degradation, the resulting antibiotic resistance properties on microorganisms exposed to these antibiotics as well as some currently available techniques to remove both the antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) from water and wastewater systems.

Recent findings

There is a linear correlation between the concentration of antibiotics in wastewater and the emergence of ARBs and the presence of ARGs. Wastewater treatment plant (WWTP) remains as one of the primary sources for ARB and ARG, even though the occurrence of ARBs and ARGs has also been reported in environment with no anthropogenic impact. Conventional removal techniques are available together with newer approaches that promises higher ARBs and ARGs removal efficiencies. Use of bioinformatic tools such as plasmidome is important to ensure sufficient information on ARGs, which may be directly mobilized and transferred to pathogens, can be obtained and analyzed.

Summary

This review highlights the effects of continuous exposure to ARBs and ARGs present in the environment, notably wastewater, to human health. Various sources of antibiotics, classes of ARBs, and types of ARGs are adequately covered including highlights on recent reports from different countries. Conventional and newer approaches to remove ARBs and ARGs from wastewater were also elaborated to further assist reader’s understanding on the subject matter discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Chandra N, Kumar S. Antibiotics Producing Soil Microorganisms. In: Hashmi M, Strezov V, Varma A, editors. Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, vol 51. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-66260-2.

    Chapter  Google Scholar 

  2. Zimdahl, RL. Chapter 9 - Antibiotics, In: Robert L. Zimdahl (eds). Six Chemicals That Changed Agriculture. Academic Press; 2015. Chapter 9: p. 165-182, ISBN 9780128005613, https://doi.org/10.1016/B978-0-12-800561-3.00009-2.

  3. Adzitey F. Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry; a mini review. World Vet. J. 2015;5(3):36–41. https://doi.org/10.5455/wvj.20150853.

    Article  Google Scholar 

  4. Heal CF, Banks JL, Lepper PD, Kontopantelis E, van Driel ML. Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. Cochrane Database Syst Rev. 2016;11(11):CD011426. https://doi.org/10.1002/14651858.CD011426.pub2.

    Article  Google Scholar 

  5. Gao Y, Shang Q, Li W, Guo W, Stojadinovic A, Mannion C, et al. Antibiotics for cancer treatment: A double-edged sword. J Cancer. 2020;11(17):5135–49. https://doi.org/10.7150/jca.47470.

    Article  CAS  Google Scholar 

  6. Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines Against Antimicrobial Resistance. Front Immunol. 2020;11:1048. https://doi.org/10.3389/fimmu.2020.01048 Erratum in: Front Immunol. 2020 Jul 21;11:1578.

    Article  CAS  Google Scholar 

  7. Agyare C, Boamah VE, Zumbi GV, Osei, FB. Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance, Antimicrobial Resistance - A Global Threat. In: Yashwant Kumar (eds). IntechOpen; 2018. doi: https://doi.org/10.5772/intechopen.79371.

  8. Bright-Ponte SJ. Antimicrobial use data collection in animal agriculture. Zoonoses Public Health. 2020 Nov;67(Suppl 1):1–5. https://doi.org/10.1111/zph.12771.

    Article  Google Scholar 

  9. World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2016–2017. Switzerland, Geneva; 2017.

  10. Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, et al. Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect. 2013;121(9):993–1001. https://doi.org/10.1289/ehp.1206316.

    Article  Google Scholar 

  11. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13(5):310–7. https://doi.org/10.1038/nrmicro3439.

    Article  CAS  Google Scholar 

  12. Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci Total Environ. 2019;669:785–97. https://doi.org/10.1016/j.scitotenv.2019.03.162.

    Article  CAS  Google Scholar 

  13. Chang Q, Wang W, Regev-Yochay G, Lipsitch M, Hanage WP. Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl. 2015;8(3):240–7. https://doi.org/10.1111/eva.12185.

    Article  Google Scholar 

  14. • Barancheshme F, Munir M. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants. Front Microbiol. 2018;8:2603. https://doi.org/10.3389/fmicb.2017.02603Removal of ARGs by different treatment processes.

    Article  Google Scholar 

  15. Ma Q, Xu X, Luo M, Wang J, Yang C, Hu X, et al. A Waterborne Outbreak of Shigella sonnei with Resistance to Azithromycin and Third-Generation Cephalosporins in China in 2015. Antimicrob Agents Chemother. 2017;61(6):e00308–17. https://doi.org/10.1128/AAC.00308-17.

    Article  Google Scholar 

  16. Qamar FN, Yousafzai MT, Khalid M, Kazi AM, Lohana H, Karim S, et al. Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: a matched case-control study. Lancet Infect Dis. 2018;18(12):1368–76. https://doi.org/10.1016/S1473-3099(18)30483-3.

    Article  Google Scholar 

  17. Finley RL, Collignon P, Larsson DG, McEwen SA, Li XZ, Gaze WH, et al. The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis. 2013;57(5):704–10. https://doi.org/10.1093/cid/cit355.

    Article  Google Scholar 

  18. Gupta PK, Pant ND, Bhandari R, Shrestha P. Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross-sectional study. Antimicrob Resist Infect Control. 2016;5:23. https://doi.org/10.1186/s13756-016-0122-7.

    Article  Google Scholar 

  19. Gwenzi W, Sanganyado E. Recurrent Cholera Outbreaks in Sub-Saharan Africa: Moving beyond Epidemiology to Understand the Environmental Reservoirs and Drivers. Challenges. 2019;10(1):1. https://doi.org/10.3390/challe10010001.

    Article  Google Scholar 

  20. Dekker D, Krumkamp R, Eibach D, Sarpong N, Boahen KG, Frimpong M, et al. Characterization of Salmonella enterica from invasive bloodstream infections and water sources in rural Ghana. BMC Infect Dis. 2018;18(1):47. https://doi.org/10.1186/s12879-018-2957-4.

    Article  CAS  Google Scholar 

  21. Bernardo K, Pakulat N, Macht M, Krut O, Seifert H, Fleer S, et al. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2002;2(6):747–53. https://doi.org/10.1002/1615-9861(200206)2:6b747::AIDPROT747N3.0.CO;2-V.

    Article  CAS  Google Scholar 

  22. Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 2012;50(9):2918–31. https://doi.org/10.1128/JCM.01000-12.

    Article  CAS  Google Scholar 

  23. Steensels D, Deplano A, Denis O, Simon A, Verroken A. MALDI-TOF MS typing of a nosocomial methicillin-resistant Staphylococcus aureus outbreak in a neonatal intensive care unit. Acta Clin Belg. 2017 Aug;72(4):219–25. https://doi.org/10.1080/17843286.2016.1198521.

    Article  Google Scholar 

  24. Chereau F, Opatowski L, Tourdjman M, Vong S. Risk assessment for antibiotic resistance in South East Asia. BMJ. 2017;358:j3393. https://doi.org/10.1136/bmj.j3393.

    Article  Google Scholar 

  25. Pepper IL, Brooks JP, Gerba CP. Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? Environ Sci Technol. 2018;52(7):3949–59. https://doi.org/10.1021/acs.est.7b04360.

    Article  CAS  Google Scholar 

  26. Ma L, Li B, Zhang T. New insights into antibiotic resistome in drinking water and management perspectives: A metagenomic based study of small-sized microbes. Water Res. 2019;152:191–201. https://doi.org/10.1016/j.watres.2018.12.069.

    Article  CAS  Google Scholar 

  27. O'Flaherty E, Borrego CM, Balcázar JL, Cummins E. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water. Sci Total Environ. 2018;616-617:1356–64. https://doi.org/10.1016/j.scitotenv.2017.10.180.

    Article  CAS  Google Scholar 

  28. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482–501. https://doi.org/10.3934/microbiol.2018.3.482.

    Article  CAS  Google Scholar 

  29. Bello-López JM, Cabrero-Martínez OA, Ibáñez-Cervantes G, Hernández-Cortez C, Pelcastre-Rodríguez LI, Gonzalez-Avila LU, et al. Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus Aeromonas spp. Microorganisms. 2019;7(9):363. https://doi.org/10.3390/microorganisms7090363.

    Article  CAS  Google Scholar 

  30. Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020;25(6):1340. https://doi.org/10.3390/molecules25061340.

    Article  CAS  Google Scholar 

  31. Blair JM, Richmond GE, Piddock LJ. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014;9(10):1165–77. https://doi.org/10.2217/fmb.14.66.

    Article  CAS  Google Scholar 

  32. Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, et al. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev. 2019;43(5):548–75. https://doi.org/10.1093/femsre/fuz016.

    Article  CAS  Google Scholar 

  33. Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci. 2014;23(3):243–59. https://doi.org/10.1002/pro.2414.

    Article  CAS  Google Scholar 

  34. McGuinness WA, Malachowa N, DeLeo FR. Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269–81.

    CAS  Google Scholar 

  35. Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol. 2002;92(Suppl):46S–54S. https://doi.org/10.1046/j.1365-2672.92.5s1.7.x.

    Article  Google Scholar 

  36. Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25(4):661–81. https://doi.org/10.1128/CMR.00043-12.

    Article  CAS  Google Scholar 

  37. Markley JL, Wencewicz TA. Tetracycline-Inactivating enzymes. Frontier Microbiol. 2018;9:1058. https://doi.org/10.3389/fmicb.2018.01058.

    Article  Google Scholar 

  38. Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, et al. A Critical Review on Antibiotics and Hormones in Swine Wastewater: Water Pollution Problems and Control Approaches. J Hazard Mater. 2020:387, 121682. https://doi.org/10.1016/j.hazmat.2019.121682.

  39. Zhu TT, Su Z, Lai W, Zhang Y, Liu Y. Insight into the Fate and Removal of Antibiotics and Antibiotics Resistance Genes using Biological Wastewater Treatment Technology. Science of the Total Environment. 2021;776:145906. https://doi.org/10.1016/j.scitotenv.2021.145906.

    Article  CAS  Google Scholar 

  40. Hörömpöli D, Ciglia C, Glüsenkamp KH, Haustedt LO, Falkenstein-Paul H, Bendas G, et al. The Antibiotic Negamycin Crosses the Bacterial Cytoplasmic Membrane by Multiple Routes. Antimicrobial Agents and Chemotherapy. 2021. https://doi.org/10.1128/AAC.00986-20.

  41. Shao S, Hu Y, Cheng J, Chen Y. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol. 2018 Dec;38(8):1195–208. https://doi.org/10.1080/07388551.2018.1471038.

    Article  CAS  Google Scholar 

  42. Anjali R, Shanthakumar S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. J Environ Manage. 2019 Sep 15;246:51–62. https://doi.org/10.1016/j.jenvman.2019.05.090.

    Article  CAS  Google Scholar 

  43. Muñoz JJR, Cuervo López FM, Texier AC. Ampicillin biotransformation by a nitrifying consortium. World J Microbiol Biotechnol. 2020;36(2):21. https://doi.org/10.1007/s11274-020-2798-3.

    Article  CAS  Google Scholar 

  44. Shi H, Ni J, Zheng T, Wang X, Wu C, Wang Q. Remediation of wastewater contaminated by antibiotics. A review. Environ Chem Lett. Springer. 2020;18:345–60. https://doi.org/10.1007/s10311-019-00945-2.

    Article  CAS  Google Scholar 

  45. Cheng D, Hao Ngo H, Guo W, Wang Chang S, Duc Nguyen D, Liu Y, et al. Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Bioresour Technol. 2020 Mar;299:122654. https://doi.org/10.1016/j.biortech.2019.122654.

    Article  CAS  Google Scholar 

  46. Wang J, Chu L, Wojnárovits L, Takács E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Sci Total Environ. 2020;744:140997. https://doi.org/10.1016/j.scitotenv.2020.140997.

    Article  CAS  Google Scholar 

  47. Mao D, Yu S, Rysz M, Luo Y, Yang F, Li F, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015;85:458–66. https://doi.org/10.1016/j.watres.2015.09.010.

    Article  CAS  Google Scholar 

  48. Al Salah DMM, Ngweme GN, Laffite A, Otamonga JP, Mulaji C, Poté J. Hospital wastewaters: A reservoir and source of clinically relevant bacteria and antibiotic resistant genes dissemination in urban river under tropical conditions. Ecotoxicol Environ Saf. 2020;200:110767. https://doi.org/10.1016/j.ecoenv.2020.110767.

    Article  CAS  Google Scholar 

  49. Zhang Z, Li B, Li N, Sardar MF, Song T, Zhu C, et al. Effects of UV disinfection on phenotypes and genotypes of antibiotic-resistant bacteria in secondary effluent from a municipal wastewater treatment plant. Water Res. 2019;157:546–54. https://doi.org/10.1016/j.watres.2019.03.079.

    Article  CAS  Google Scholar 

  50. Kumar M, Ram B, Sewwandi H, Sulfikar, Honda R, Chaminda T. Treatment enhances the prevalence of antibiotic-resistant bacteria and antibiotic resistance genes in the wastewater of Sri Lanka, and India. Environ Res. 2020;183:109179. https://doi.org/10.1016/j.envres.2020.109179.

    Article  CAS  Google Scholar 

  51. Yang Y, Chen Y, Cai Y, Xing S, Mi J, Liao X. The relationship between culturable doxycycline-resistant bacterial communities and antibiotic resistance gene hosts in pig farm wastewater treatment plants. Ecotoxicol Environ Saf. 2020;206:111164. https://doi.org/10.1016/j.ecoenv.2020.111164.

    Article  CAS  Google Scholar 

  52. Sib E, Voigt AM, Wilbring G, Schreiber C, Faerber HA, Skutlarek D, et al. Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks. Int J Hyg Environ Health. 2019;222(4):655–62. https://doi.org/10.1016/j.ijheh.2019.03.006.

    Article  CAS  Google Scholar 

  53. Szekeres E, Baricz A, Chiriac CM, Farkas A, Opris O, Soran ML, et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ Pollut. 2017;225:304–15. https://doi.org/10.1016/j.envpol.2017.01.054.

    Article  CAS  Google Scholar 

  54. Wang Q, Wang P, Yang Q. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci Total Environ. 2018;621:990–9. https://doi.org/10.1016/j.scitotenv.2017.10.128.

    Article  CAS  Google Scholar 

  55. Becker RW, Ibáñez M, Cuervo Lumbaque E, Wilde ML, Flores da Rosa T, Hernández F, et al. Investigation of pharmaceuticals and their metabolites in Brazilian hospital wastewater by LC-QTOF MS screening combined with a preliminary exposure and in silico risk assessment. Sci Total Environ. 2020;699:134218. https://doi.org/10.1016/j.scitotenv.2019.134218.

    Article  CAS  Google Scholar 

  56. Castiglioni S, Zuccato E, Fattore E, Riva F, Terzaghi E, Koenig R, et al. Micropollutants in Lake Como water in the context of circular economy: A snapshot of water cycle contamination in a changing pollution scenario. J Hazard Mater. 2020;384:121441. https://doi.org/10.1016/j.jhazmat.2019.121441.

    Article  CAS  Google Scholar 

  57. Voigt AM, Zacharias N, Timm C, Wasser F, Sib E, Skutlarek D, et al. Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater - An evaluation of clinical influences. Chemosphere. 2020;241:125032. https://doi.org/10.1016/j.chemosphere.2019.125032.

    Article  CAS  Google Scholar 

  58. Santos F, Almeida CMR, Ribeiro I, Mucha AP. Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater. Ecol Eng. Elsevier. 2019;129:45–53. https://doi.org/10.1016/j.ecoleng.2019.01.007.

    Article  Google Scholar 

  59. Niestępski S, Harnisz M, Ciesielski S, Korzeniewska E, Osińska A. Environmental fate of Bacteroidetes, with particular emphasis on Bacteroides fragilis group bacteria and their specific antibiotic resistance genes, in activated sludge wastewater treatment plants. J Hazard Mater. 2020;394:122544. https://doi.org/10.1016/j.jhazmat.2020.122544.

    Article  CAS  Google Scholar 

  60. Karkman A, Do TT, Walsh F, Virta MPJ. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018;26(3):220–8. https://doi.org/10.1016/j.tim.2017.09.005.

    Article  CAS  Google Scholar 

  61. Savin M, Bierbaum G, Hammerl JA, Heinemann C, Parcina M, Sib E, et al. ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Appl Environ Microbiol. 2020;86(8):e02748–19. https://doi.org/10.1128/AEM.02748-19.

    Article  CAS  Google Scholar 

  62. • Pazda M, Kumirska J, Stepnowski P, Mulkiewicz E. Antibiotic resistance genes identified in wastewater treatment plant systems - A review. Sci Total Environ. 2019;697:134023. https://doi.org/10.1016/j.scitotenv.2019.134023This review highlights ARB present in wastewater treatment plant systems.

    Article  CAS  Google Scholar 

  63. Komolafe OO. Antibiotic resistance in bacteria - an emerging public health problem. Malawi Med J. 2003;15(2):63–7. https://doi.org/10.4314/mmj.v15i2.10780.

    Article  CAS  Google Scholar 

  64. Ciorba V, Odone A, Veronesi L, Pasquarella C, Signorelli C. Antibiotic resistance as a major public health concern: epidemiology and economic impact. Ann Ig. 2015 May-Jun;27(3):562–79. https://doi.org/10.7416/ai.2015.2048.

    Article  Google Scholar 

  65. Wade W. Unculturable bacteria--the uncharacterized organisms that cause oral infections. J R Soc Med. 2002;95(2):81–3. https://doi.org/10.1258/jrsm.95.2.81.

    Article  Google Scholar 

  66. Chen B, Yuan K, Chen X, Yang Y, Zhang T, Wang Y, et al. Metagenomic Analysis Revealing Antibiotic Resistance Genes (ARGs) and Their Genetic Compartments in the Tibetan Environment. Environ Sci Technol. 2016;50(13):6670–9. https://doi.org/10.1021/acs.est.6b00619.

    Article  CAS  Google Scholar 

  67. Cao J, Hu Y, Liu F, Wang Y, Bi Y, Lv N, et al. Metagenomic analysis reveals the microbiome and resistome in migratory birds. Microbiome. 2020;8(1):26. https://doi.org/10.1186/s40168-019-0781-8.

    Article  Google Scholar 

  68. Tóth AG, Csabai I, Krikó E, Tőzsér D, Maróti G, Patai ÁV, et al. Antimicrobial resistance genes in raw milk for human consumption. Sci Rep. 2020;10(1):7464. https://doi.org/10.1038/s41598-020-63675-4.

    Article  CAS  Google Scholar 

  69. Guo J, Li J, Chen H, Bond PL, Yuan Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017;123:468–78. https://doi.org/10.1016/j.watres.2017.07.002.

    Article  CAS  Google Scholar 

  70. Ng C, Tay M, Tan B, Le TH, Haller L, Chen H, et al. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters. Front Microbiol. 2017;8:2200. https://doi.org/10.3389/fmicb.201702200 Erratum in: Front Microbiol. 2018 Feb 05;9:175.

    Article  Google Scholar 

  71. Gupta SK, Shin H, Han D, Hur HG, Unno T. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. J Microbiol. 2018;56(6):408–15. https://doi.org/10.1007/s12275-018-8195-z.

    Article  CAS  Google Scholar 

  72. Liu Z, Klümper U, Liu Y, Yang Y, Wei Q, Lin JG, et al. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ Int. 2019;129:208–20. https://doi.org/10.1016/j.envint.2019.05.036.

    Article  CAS  Google Scholar 

  73. Sabri NA, Schmitt H, Van Der Zaan B, Gerritsen HW, Zuidema T, Rijnaarts HHM, et al. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020;8(1):102245. https://doi.org/10.1016/j.jece.2018.03.004.

    Article  CAS  Google Scholar 

  74. Heuer H, Abdo Z, Smalla K. Patchy distribution of flexible genetic elements in bacterial populations mediates robustness to environmental uncertainty. FEMS Microbiol Ecol. 2008;65(3):361–71. https://doi.org/10.1111/j.1574-6941.2008.00539.x.

    Article  CAS  Google Scholar 

  75. Li LL, Norman A, Hansen LH, Sørensen SJ. Metamobilomics--expanding our knowledge on the pool of plasmid encoded traits in natural environments using high-throughput sequencing. Clin Microbiol Infect. 2012;18(Suppl 4):5–7. https://doi.org/10.1111/j.1469-0691.2012.03862.x.

    Article  CAS  Google Scholar 

  76. Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom. 2017;3(10):e000128. https://doi.org/10.1099/mgen.0.000128.

    Article  Google Scholar 

  77. Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981;145(3):1365–73. https://doi.org/10.1128/jb.145.3.1365-1373.1981.

    Article  CAS  Google Scholar 

  78. Sentchilo V, Mayer AP, Guy L, Miyazaki R, Green Tringe S, Barry K, et al. Community-wide plasmid gene mobilization and selection. ISME J. 2013;7(6):1173–86. https://doi.org/10.1038/ismej.2013.13.

    Article  CAS  Google Scholar 

  79. Dib JR, Wagenknecht M, Farías ME, Meinhardt F. Strategies and approaches in plasmidome studies-uncovering plasmid diversity disregarding of linear elements? Front Microbiol. 2015;6:463. https://doi.org/10.3389/fmicb.2015.00463.

    Article  Google Scholar 

  80. Zhang T, Zhang XX, Ye L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One. 2011;6(10):e26041. https://doi.org/10.1371/journal.pone.0026041.

    Article  CAS  Google Scholar 

  81. Li AD, Li LG, Zhang T. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants. Front Microbiol. 2015;6:1025. https://doi.org/10.3389/fmicb.2015.01025.

    Article  Google Scholar 

  82. • Perez MF, Kurth D, Farías ME, Soria MN, Castillo Villamizar GA, Poehlein A, et al. First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Front Microbiol. 2020;11:1343. https://doi.org/10.3389/fmicb.2020.01343Pioneering work on plasmidome, ARBs and ARGs.

    Article  Google Scholar 

  83. Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of 'historical' antibiotic resistance genes in remote pristine Antarctic soils. Microbiome. 2018;6(1):40. https://doi.org/10.1186/s40168-018-0424-5.

    Article  Google Scholar 

  84. McKinney CW, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol. 2012;46(24):13393–400. https://doi.org/10.1021/es303652q.

    Article  CAS  Google Scholar 

  85. Du J, Geng J, Ren H, Ding L, Xu K, Zhang Y. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A(2)O-MBR system. Environ Sci Pollut Res Int. 2015;22(5):3715–26. https://doi.org/10.1007/s11356-014-3552-x.

    Article  CAS  Google Scholar 

  86. Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011;45(2):681–93. https://doi.org/10.1016/j.watres.2010.08.033.

    Article  CAS  Google Scholar 

  87. Ye M, Sun M, Feng Y, Wan J, Xie S, Tian D, et al. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. J Hazard Mater. 2016;309:219–27. https://doi.org/10.1016/j.jhazmat.2015.10.074.

    Article  CAS  Google Scholar 

  88. Chen J, Ying GG, Wei XD, Liu YS, Liu SS, Hu LX, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. Sci Total Environ. 2016;571:974–82. https://doi.org/10.1016/j.scitotenv.2016.07.085.

    Article  CAS  Google Scholar 

  89. Fang H, Zhang Q, Nie X, Chen B, Xiao Y, Zhou Q, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland. Chemosphere. 2017;173:99–106. https://doi.org/10.1016/j.chemosphere.2017.01.027.

    Article  CAS  Google Scholar 

  90. Li H, Duan M, Gu J, Zhang Y, Qian X, Ma J, et al. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicol Environ Saf. 2017 Jun;140:1–6. https://doi.org/10.1016/j.ecoenv.2017.01.007.

    Article  CAS  Google Scholar 

  91. Yuan QB, Guo MT, Yang J. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control. PLoS One. 2015;10(3):e0119403. https://doi.org/10.1371/journal.pone.0119403.

    Article  CAS  Google Scholar 

  92. Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci. 2014;204:15–34. https://doi.org/10.1016/j.cis.2013.12.002.

    Article  CAS  Google Scholar 

  93. Li N, Sheng GP, Lu YZ, Zeng RJ, Yu HQ. Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Res. 2017;111:204–12. https://doi.org/10.1016/j.watres.2017.01.010.

    Article  CAS  Google Scholar 

  94. Yoon Y, Chung HJ, Wen Di DY, Dodd MC, Hur HG, Lee Y. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2. Water Res. 2017;123:783–93. https://doi.org/10.1016/j.watres.2017.06.056.

    Article  CAS  Google Scholar 

  95. Stange C, Sidhu JPS, Toze S, Tiehm A. Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment. Int J Hyg Environ Health. 2019;222(3):541–8. https://doi.org/10.1016/j.ijheh.2019.02.002.

    Article  CAS  Google Scholar 

  96. Christgen B, Yang Y, Ahammad SZ, Li B, Rodriquez DC, Zhang T, et al. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater. Environ Sci Technol. 2015;49(4):2577–84. https://doi.org/10.1021/es505521w.

    Article  CAS  Google Scholar 

  97. Golet EM, Alder AC, Giger W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed. Environ Sci Technol. 2002;36(17):3645–51. https://doi.org/10.1021/es0256212.

    Article  CAS  Google Scholar 

  98. Guo R, Chen J. Application of alga-activated sludge combined system (AASCS) as a novel treatment to remove cephalosporins. Chem Eng J. Elsevier. 2015;260:550–6. https://doi.org/10.1016/j.cej.2014.09.053.

    Article  CAS  Google Scholar 

  99. Gao N, Liu CX, Xu QM, Cheng JS, Yuan YJ. Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus. Chemosphere. 2018 Mar;195:146–55. https://doi.org/10.1016/j.chemosphere.2017.12.062.

    Article  CAS  Google Scholar 

  100. Copete-Pertuz LS, Plácido J, Serna-Galvis EA, Torres-Palma RA, Mora A. Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal. Sci Total Environ. 2018;630:1195–204. https://doi.org/10.1016/j.scitotenv.2018.02.244.

    Article  CAS  Google Scholar 

  101. Lucas D, Badia-Fabregat M, Vicent T, Caminal G, Rodríguez-Mozaz S, Balcázar JL, et al. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. Chemosphere. 2016;152:301–8. https://doi.org/10.1016/j.chemosphere.2016.02.113.

    Article  CAS  Google Scholar 

  102. Zhu N, Jin H, Ye X, Liu W, Li D, Shah GM, et al. Fate and driving factors of antibiotic resistance genes in an integrated swine wastewater treatment system: From wastewater to soil. Sci Total Environ. 2020 Jun 15;721:137654. https://doi.org/10.1016/j.scitotenv.2020.137654.

    Article  CAS  Google Scholar 

  103. Neyestani M, Dickenson E, McLain J, Robleto E, Rock C, Gerrity D. Impacts of solids retention time on trace organic compound attenuation and bacterial resistance to trimethoprim and sulfamethoxazole. Chemosphere. 2017;182:149–58. https://doi.org/10.1016/j.chemosphere.2017.04.121.

    Article  CAS  Google Scholar 

  104. Gurung K, Ncibi MC, Sillanpää M. Removal and fate of emerging organic micropollutants (EOMs) in municipal wastewater by a pilot-scale membrane bioreactor (MBR) treatment under varying solid retention times. Sci Total Environ. 2019;667:671–80. https://doi.org/10.1016/j.scitotenv.2019.02.308.

    Article  CAS  Google Scholar 

  105. Asif MB, Ren B, Li C, Maqbool T, Zhang X, Zhang Z. Powdered activated carbon - Membrane bioreactor (PAC-MBR): Impacts of high PAC concentration on micropollutant removal and microbial communities. Sci Total Environ. 2020;745:141090. https://doi.org/10.1016/j.scitotenv.2020.141090.

    Article  CAS  Google Scholar 

  106. Xiao F, Simcik MF, Gulliver JS. Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation. Water Res. 2013;47(1):49–56. https://doi.org/10.1016/j.watres.2012.09.024.

    Article  CAS  Google Scholar 

  107. Lan L, Kong X, Sun H, Li C, Liu D. High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. J Environ Manage. 2019;231:439–45. https://doi.org/10.1016/j.jenvman.2018.10.073.

    Article  CAS  Google Scholar 

  108. Liang C, Wei D, Zhang S, Ren Q, Shi J, Liu L. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment. Ecotoxicol Environ Saf. 2021 Mar 1;210:111885. https://doi.org/10.1016/j.ecoenv.2020.111885.

    Article  CAS  Google Scholar 

  109. Sharma V, Kumar RV, Pakshirajan K, Pugazhenthi G. Integrated adsorption-membrane filtration process for antibiotic removal from aqueous solution. Powder Technol. Elsevier. 2017;321:259–69. https://doi.org/10.1016/j.powtec.2017.08.040.

    Article  CAS  Google Scholar 

  110. Hasany M, Mardanpour MM, Yaghmaei S. Biocatalysts in microbial electrolysis cells: A review. Int J Hydrog Energ. 2016;41:1477–93. https://doi.org/10.1016/j.ijhydene.2015.10.097.

    Article  CAS  Google Scholar 

  111. Feng L, Casas ME, Ottosen LDM, Møller HB, Bester K. Removal of antibiotics during the anaerobic digestion of pig manure. Sci Total Environ. 2017;603-604:219–25. https://doi.org/10.1016/j.scitotenv.2017.05.280.

    Article  CAS  Google Scholar 

  112. Harnisch F, Gimkiewicz C, Bogunovic B, Kreuzig R, Schröder U. On the removal of sulfonamides using microbial bioelectrochemical systems. Electrochem Commun. 2013;26:77–80. https://doi.org/10.1016/j.elecom.2012.10.015.

    Article  CAS  Google Scholar 

  113. Zhang S, Song HL, Yang XL, Yang KY, Wang XY. Effect of electrical stimulation on the fate of sulfamethoxazole and tetracycline with their corresponding resistance genes in three-dimensional biofilm-electrode reactors. Chemosphere. 2016;164:113–9. https://doi.org/10.1016/j.chemosphere.2016.08.076.

    Article  CAS  Google Scholar 

  114. Song HL, Zhang S, Yang XL, Chen TQ, Zhang YY. Coupled effects of electrical stimulation and antibiotics on microbial community in three-dimensional biofilm-electrode reactors. Water Air Soil Pollut. 2017;228:83. https://doi.org/10.1007/s11270-017-3267-y.

    Article  CAS  Google Scholar 

  115. Hassan M, Zhu G, Lu Y, Al-Falahi AH, Lu Y, Huang S, et al. Removal of antibiotics from wastewater and its problematic effects on microbial communities by biolectrochemical technology: Current knowledge and future perspective. Environmental Engineering Research. 2021;26(1):190405. https://doi.org/10.4491/eer.2019.405.

    Article  Google Scholar 

  116. Gorito AM, Ribeiro AR, Almeida CMR, Silva AMT. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ Pollut. 2017;227:428–43. https://doi.org/10.1016/j.envpol.2017.04.060.

    Article  CAS  Google Scholar 

  117. Acosta R, Fierro V, Martinez de Yuso A, Nabarlatz D, Celzard A. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere. 2016;149:168–76. https://doi.org/10.1016/j.chemosphere.2016.01.093.

    Article  CAS  Google Scholar 

  118. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci. 2012 Feb 15;368(1):540–6. https://doi.org/10.1016/j.jcis.2011.11.015.

    Article  CAS  Google Scholar 

  119. Peng B, Chen L, Que C, Yang K, Deng F, Deng X, et al. Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions. Sci Rep. 2016;6:31920. https://doi.org/10.1038/srep31920.

    Article  CAS  Google Scholar 

  120. Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, et al. Conventional and emerging technologies for removal of antibiotics from wastewater. J Hazard Mater. 2020;400:122961. https://doi.org/10.1016/j.jhazmat.2020.122961.

    Article  Google Scholar 

  121. Zhang X, Zhang Y, Ngo HH, Guo W, Wen H, Zhang D, et al. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar. Sci Total Environ. 2020;716:137015. https://doi.org/10.1016/j.scitotenv.2020.137015.

    Article  CAS  Google Scholar 

  122. Pan M, Chu LM. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci Total Environ. 2016;545-546:48–56. https://doi.org/10.1016/j.scitotenv.2015.12.040.

    Article  CAS  Google Scholar 

  123. Du L, Zhao Y, Wang C, Zhang H, Chen Q, Zhang X, et al. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate. Sci Total Environ. 2020;721:137765. https://doi.org/10.1016/j.scitotenv.2020.137765.

    Article  CAS  Google Scholar 

  124. Zhuang Y, Ren H, Geng J, Zhang Y, Zhang Y, Ding L, et al. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environ Sci Pollut Res Int. 2015;22(9):7037–44. https://doi.org/10.1007/s11356-014-3919-z.

    Article  CAS  Google Scholar 

  125. Zhang Y, Zhuang Y, Geng J, Ren H, Zhang Y, Ding L, et al. Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Sci Total Environ. 2015;512-513:125–32. https://doi.org/10.1016/j.scitotenv.2015.01.028.

    Article  CAS  Google Scholar 

  126. Hiller CX, Hübner U, Fajnorova S, Schwartz T, Drewes JE. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. Sci Total Environ. 2019;685:596–608. https://doi.org/10.1016/j.scitotenv.2019.05.315.

    Article  CAS  Google Scholar 

  127. Bourrouet A, García J, Mujeriego R, Peñuelas G. Faecal bacteria and bacteriophage inactivation in a full-scale UV disinfection system used for wastewater reclamation. Water Sci Technol. 2001;43(10):187–94.

    Article  CAS  Google Scholar 

  128. Wang J, Wang S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J. Elsevier. 2018;334:1502–17. https://doi.org/10.1016/j.cej.2017.11.059.

    Article  CAS  Google Scholar 

  129. Kokkinos P, Mantzavinos D, Venieri D. Current Trends in the Application of Nanomaterials for the Removal of Emerging Micropollutants and Pathogens from Water. Molecules. 2020;25(9):2016. https://doi.org/10.3390/molecules25092016.

    Article  CAS  Google Scholar 

  130. Wang X, Yin R, Zeng L, Zhu M. A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environ Pollut. 2019;253:100–10. https://doi.org/10.1016/j.envpol.2019.06.067.

    Article  CAS  Google Scholar 

  131. Nidheesh PV. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environ Sci Pollut Res Int. 2017;24(35):27047–69. https://doi.org/10.1007/s11356-017-0481-5.

    Article  CAS  Google Scholar 

  132. Leili M, Fazlzadeh M, Bhatnagar A. Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environ Technol. 2018;39(9):1158–72. https://doi.org/10.1080/09593330.2017.1323956.

    Article  CAS  Google Scholar 

  133. Gao XJ, Fan XJ, Chen XP, Ge ZQ. Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater. Int. J. Environ. Sci. Technol. 2018;15(10):2203–12. https://doi.org/10.1007/s13762-017-1596-4.

    Article  CAS  Google Scholar 

  134. Yang L, Hu D, Liu H, Wang X, Liu Y, Xia Q, et al. Biodegradation pathway of penicillins by β-lactamase encapsulated in metal-organic frameworks. J. Hazard. Mater. 2021;414:125549. https://doi.org/10.1016/j.jhazmat.2021.125549.

    Article  CAS  Google Scholar 

  135. Malakootian M, Yaseri M, Faraji M. Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2019;26(9):8444–58. https://doi.org/10.1007/s11356-019-04227-w.

    Article  CAS  Google Scholar 

  136. Pardhi VP, Verma T, Flora SJS, Chandasana H, Shukla R. Nanocrystals: An Overview of Fabrication, Characterization and Therapeutic Applications in Drug Delivery. Curr. Pharm. Des. 2018;24(43):5129–46. https://doi.org/10.2174/1381612825666190215121148.

    Article  CAS  Google Scholar 

  137. Jain K, Patel AS, Pardhi VP, Flora SJS. Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater Treatment. Molecules. 2021;26(6):1797. https://doi.org/10.3390/molecules26061797.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainul Akmar Zakaria.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest in the content and materials published in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noor, Z.Z., Rabiu, Z., Sani, M.H.M. et al. A Review of Bacterial Antibiotic Resistance Genes and Their Removal Strategies from Wastewater. Curr Pollution Rep 7, 494–509 (2021). https://doi.org/10.1007/s40726-021-00198-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00198-0

Keywords

Navigation