Skip to main content

Challenges and Solutions for Sustainable Groundwater Usage: Pollution Control and Integrated Management

Abstract

Purpose of Review

This paper aims to critically review the current status of groundwater usage from the point of view of pollutant control and integrated management.

Recent Findings

This paper has shown that sustainable efforts must be encouraged to minimize the arsenic content from all the possible sources before entering the groundwater system. Excessive nitrate and pesticide utilization must be significantly reduced for a sustainable environment. Although various in situ remediation technologies are possible to remove some contaminants in the groundwater, the future concern is how it can be carried out in accordance with environmental sustainable goal such as the implementation of in situ bioremediation and bioelectroremediation which provide a cheaper and greener solution compared to physical and chemical approaches. To develop a successful integrated management for a sustainable groundwater usage in the future, conjunctive water management is recommended as it involves the management of ground and surface water resources to enhance security of water supply and environmental sustainability.

Summary

This paper critically reviews the current state of knowledge concerning groundwater usage from the point of view of pollutant control and integrated management. Information presented in this paper is highly useful for the management of groundwater not only in the quality point of view but also in the sustainable quantity for future development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Sartori S, Latrônico F, Campos LM. Sustainability and sustainable development: a taxonomy in the field of literature. Ambient Soc. 2014;17(1):1–20.

    Google Scholar 

  2. 2.

    Axelsson R, Angelstam P, Elbakidze M, Stryamets N, Johansson K-E. Sustainable development and sustainability: landscape approach as a practical interpretation of principles and implementation concepts. J Landsc Ecol. 2011;4(3):5–30.

    Google Scholar 

  3. 3.

    Reganold JP, Papendick RI, Parr JF. Sustainable agriculture. Sci Am. 1990;262(6):112–21.

    Google Scholar 

  4. 4.

    Grigoroudis E, Kouikoglou VS, Phillis YA, Kanellos FD. Energy sustainability: a definition and assessment model. Oper Res. 2019;19(2):1–41.

    Google Scholar 

  5. 5.

    Subramani T, Elango L, Damodarasamy SR. Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamil Nadu, India. Environ Geol. 2005;47(8):1099–110.

    CAS  Google Scholar 

  6. 6.

    Adimalla N, Dhakate R, Kasarla A, Taloor AK. Appraisal of groundwater quality for drinking and irrigation purposes in central Telangana, India. Groundw Sustain Dev. 2020;10:100334.

    Google Scholar 

  7. 7.

    Sheikhy Narany T, Aris AZ, Sefie A, Keesstra S. Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Sci Total Environ. 2017;(599–600):844–53.

  8. 8.

    Isa NM, Aris AZ, Lim WY, Sulaiman WNAW, Praveena SM. Evaluation of heavy metal contamination in groundwater samples from Kapas Island, Terengganu, Malaysia. Arab J Geosci. 2014;7(3):1087–100.

    CAS  Google Scholar 

  9. 9.

    Braadbaart O, Braadbaart F. Policing the urban pumping race: industrial groundwater overexploitation in Indonesia. World Dev. 1997;25(2):199–210.

    Google Scholar 

  10. 10.

    Khare D, Jat MK, Ediwahyunan. Assessment of counjunctive use planning options: a case study of Sapon irrigation command area of Indonesia. J Hydrol. 2006;328(3):764–77.

    Google Scholar 

  11. 11.

    •• Gejl RN, Rygaard M, Henriksen H, Rasmussen J, Bjerg PL. Understanding the impacts of groundwater abstraction through long-term trends in water quality. Water Res. 2019;156:241–51 This paper discusses the impacts of long-term abstraction on groundwater quality by providing the correlation analysis between groundwater drawdown and groundwater quality parameters.

    CAS  Google Scholar 

  12. 12.

    •• Gill B, Webb J, Stott K, Cheng X, Wilkinson R, Cossens B. Economic, social and resource management factors influencing groundwater trade: evidence from Victoria, Australia. J Hydrol. 2017;550:253–67 This paper evaluates the effects of complex variables from the perspective of economy, social, and management on the grounwater trading.

    Google Scholar 

  13. 13.

    Sayre SS, Taraz V. Groundwater depletion in India: social losses from costly well deepening. J Environ Econ Manage. 2019;93:85–100.

    Google Scholar 

  14. 14.

    Ma C, Wu Y. Dechlorination of perchloroethylene using zero-valent metal and microbial community. Environ Geol. 2008;55(1):47–54.

    CAS  Google Scholar 

  15. 15.

    Feinerman E, Knapp KC. Benefits from groundwater management: magnitude, sensitivity, and distribution. Am J Agr Econ. 1983;65(4):703–10.

    Google Scholar 

  16. 16.

    • Thomann JA, Werner AD, Irvine DJ, Currell MJ. Adaptive management in groundwater planning and development: a review of theory and applications. J Hydrol. 2020;586:124871 This paper provides an overview of adaptive management applied in the context of groundwater to improve future management practices.

    Google Scholar 

  17. 17.

    Castilla-Rho JC, Holley C, Castilla JC. Groundwater as a common pool resource: modelling, management and the complicity ethic in a non-collective world. In: Valera L, Castilla JC, editors. Global changes. Chambridge: Springer; 2020. p. 89–109.

    Google Scholar 

  18. 18.

    Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo J-D, Ross A, Arshad M, et al. Integrated groundwater management: an overview of concepts and challenges. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo J-D, Ross A, editors. Integrated groundwater management. Chambridge: Springer; 2016. p. 3–20.

    Google Scholar 

  19. 19.

    Konikow LF, Kendy E. Groundwater depletion: a global problem. Hydrogeol J. 2005;13(1):317–20.

    CAS  Google Scholar 

  20. 20.

    Wada Y, Van Beek LP, Van Kempen CM, Reckman JW, Vasak S, Bierkens MF. Global depletion of groundwater resources. Geophys Res Lett. 2010;37(20):20402.

    Google Scholar 

  21. 21.

    Jia X, O’Connor D, Hou D, Jin Y, Li G, Zheng C, et al. Groundwater depletion and contamination: spatial distribution of groundwater resources sustainability in China. Sci Total Environ. 2019;672:551–62.

    CAS  Google Scholar 

  22. 22.

    Yang Y, Watanabe M, Zhang X, Zhang J, Wang Q, Hayashi S. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain. Agric Water Manag. 2006;82(1–2):25–44.

    Google Scholar 

  23. 23.

    Hou D, Li G, Nathanail P. An emerging market for groundwater remediation in China: policies, statistics, and future outlook. Front Environ Sci Eng. 2018;12(1):16.

    Google Scholar 

  24. 24.

    Aeschbach-Hertig W, Gleeson T. Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci. 2012;5(12):853–61.

    CAS  Google Scholar 

  25. 25.

    Borji M, Nia AM, Malekian A, Salajegheh A, Khalighi S. Comprehensive evaluation of groundwater resources based on DPSIR conceptual framework. Arab J Geosci. 2018;11(8):158.

    Google Scholar 

  26. 26.

    Zhang D, Shen J, Sun F. Evaluation of water environment performance based on a DPSIR-SBM-Tobit model. KSCE J Civ Eng. 2020;24(5):1641–54.

    Google Scholar 

  27. 27.

    Awa SH, Hadibarata T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut. 2020;231(2):47.

    CAS  Google Scholar 

  28. 28.

    Brammer H, Ravenscroft P. Arsenic in groundwater: a threat to sustainable agriculture in south and South-east Asia. Environ Int. 2009;35(3):647–54.

    CAS  Google Scholar 

  29. 29.

    Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J. Arsenic in groundwater of West Bengal, India: a review of human health risks and assessment of possible intervention options. Sci Total Environ. 2018;612:148–69.

    CAS  Google Scholar 

  30. 30.

    Vahter M. Mechanisms of arsenic biotransformation. Toxicology. 2002;181:211–7.

    Google Scholar 

  31. 31.

    Thomas DJ. Molecular processes in cellular arsenic metabolism. Toxicol Appl Pharmacol. 2007;222(3):365–73.

    CAS  Google Scholar 

  32. 32.

    Hayakawa T, Kobayashi Y, Cui X, Hirano S. A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol. 2005;79(4):183–91.

    CAS  Google Scholar 

  33. 33.

    Naranmandura H, Suzuki N, Suzuki KT. Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol. 2006;19(8):1010–8.

    CAS  Google Scholar 

  34. 34.

    Liu Z-G, Huang X-J. Voltammetric determination of inorganic arsenic. Trends Anal Chem. 2014;60:25–35.

    CAS  Google Scholar 

  35. 35.

    Katsoyiannis IA, Zouboulis AI. Application of biological processes for the removal of arsenic from groundwaters. Water Res. 2004;38(1):17–26.

    CAS  Google Scholar 

  36. 36.

    Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002;17(5):517–68.

    CAS  Google Scholar 

  37. 37.

    Wilkie JA, Hering JG. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada. Environ Sci Technol. 1998;32(5):657–62.

    CAS  Google Scholar 

  38. 38.

    Scott MJ, Morgan JJ. Reactions at oxide surfaces. 1. Oxidation of As (III) by synthetic birnessite. Environ Sci Technol. 1995;29(8):1898–905.

    CAS  Google Scholar 

  39. 39.

    Driehaus W, Seith R, Jekel M. Oxidation of arsenate (III) with manganese oxides in water treatment. Water Res. 1995;29(1):297–305.

    CAS  Google Scholar 

  40. 40.

    Senn DB, Hemond HF. Nitrate controls on iron and arsenic in an urban lake. Science. 2002;296(5577):2373–6.

    CAS  Google Scholar 

  41. 41.

    Ayotte JD, Montgomery DL, Flanagan SM, Robinson KW. Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications. Environ Sci Technol. 2003;37(10):2075–83.

    CAS  Google Scholar 

  42. 42.

    Peters SC. Arsenic in groundwaters in the northern Appalachian Mountain belt: a review of patterns and processes. J Contam Hydrol. 2008;99(1):8–21.

    CAS  Google Scholar 

  43. 43.

    Lipfert G, Reeve AS, Sidle WC, Marvinney R. Geochemical patterns of arsenic-enriched ground water in fractured, crystalline bedrock, Northport, Maine, USA. Appl Geochem. 2006;21(3):528–45.

    CAS  Google Scholar 

  44. 44.

    Peters SC, Burkert L. The occurrence and geochemistry of arsenic in groundwaters of the Newark basin of Pennsylvania. Appl Geochem. 2008;23(1):85–98.

    CAS  Google Scholar 

  45. 45.

    Peters SC, Blum JD. The source and transport of arsenic in a bedrock aquifer, New Hampshire, USA. Appl Geochem. 2003;18(11):1773–87.

    CAS  Google Scholar 

  46. 46.

    Höhn R, Isenbeck-Schröter M, Kent D, Davis J, Jakobsen R, Jann S, et al. Tracer test with As (V) under variable redox conditions controlling arsenic transport in the presence of elevated ferrous iron concentrations. J Contam Hydrol. 2006;88(1–2):36–54.

    Google Scholar 

  47. 47.

    Harvey CF, Swartz CH, Badruzzaman A, Keon-Blute N, Yu W, Ali MA, et al. Arsenic mobility and groundwater extraction in Bangladesh. Science. 2002;298(5598):1602–6.

    CAS  Google Scholar 

  48. 48.

    Sun W, Sierra R, Field JA. Anoxic oxidation of arsenite linked to denitrification in sludges and sediments. Water Res. 2008;42(17):4569–77.

    CAS  Google Scholar 

  49. 49.

    Yu C, Yao Y, Hayes G, Zhang B, Zheng C. Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. Sci Total Environ. 2010;408(24):6108–16.

    CAS  Google Scholar 

  50. 50.

    Katz BG. Nitrate contamination in karst groundwater. In: White WB, Culver DC, Pipan T, editors. Encyclopedia of caves. Cambridge: Academic; 2019. p. 756–60.

    Google Scholar 

  51. 51.

    Power AG. Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365(1554):2959–71.

    Google Scholar 

  52. 52.

    Elisante E, Muzuka AN. Assessment of sources and transformation of nitrate in groundwater on the slopes of Mount Meru, Tanzania. Environ Earth Sci. 2016;75(3):277.

    Google Scholar 

  53. 53.

    Andrade A, Stigter T. The distribution of arsenic in shallow alluvial groundwater under agricultural land in Central Portugal: insights from multivariate geostatistical modeling. Sci Total Environ. 2013;449:37–51.

    CAS  Google Scholar 

  54. 54.

    Nakagawa K, Amano H, Asakura H, Berndtsson R. Spatial trends of nitrate pollution and groundwater chemistry in Shimabara, Nagasaki, Japan. Environ Earth Sci. 2016;75(3):234.

    Google Scholar 

  55. 55.

    Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2(7):593–602.

    CAS  Google Scholar 

  56. 56.

    Ward MH, Jones RR, Brender JD, De Kok TM, Weyer PJ, Nolan BT, et al. Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health. 2018;15(7):1557.

    Google Scholar 

  57. 57.

    Tabrez S, Ahmad M. Toxicity, biomarkers, genotoxicity, and carcinogenicity of trichloroethylene and its metabolites: a review. J Environ Sci Health C. 2009;27(3):178–96.

    CAS  Google Scholar 

  58. 58.

    Rodríguez AGP, López MIR, Casillas ÁD, León JAA, Banik SD. Impact of pesticides in karst groundwater. Review of recent trends in Yucatan, Mexico. Groundw Sustain Dev. 2018;7:20–9.

    Google Scholar 

  59. 59.

    Faniband M, Lindh CH, Jönsson BA. Human biological monitoring of suspected endocrine-disrupting compounds. Asian J Androl. 2014;16(1):5–16.

    Google Scholar 

  60. 60.

    Cohn BA, Wolff MS, Cirillo PM, Sholtz RI. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115(10):1406–14.

    CAS  Google Scholar 

  61. 61.

    Schinas V, Leotsinidis M, Alexopoulos A, Tsapanos V, Kondakis XG. Organochlorine pesticide residues in human breast milk from Southwest Greece: associations with weekly food consumption patterns of mothers. Arch Environ Health Int J. 2000;55(6):411–7.

    CAS  Google Scholar 

  62. 62.

    Freire C, Koifman S. Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology. 2012;33(5):947–71.

    CAS  Google Scholar 

  63. 63.

    Liou H, Tsai M, Chen C, Jeng J, Chang Y, Chen S, et al. Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology. 1997;48(6):1583–8.

    CAS  Google Scholar 

  64. 64.

    Seidler A, Hellenbrand W, Robra B-P, Vieregge P, Nischan P, Joerg J, et al. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology. 1996;46(5):1275.

    CAS  Google Scholar 

  65. 65.

    Barbeau A, Roy M, Bernier G, Campanella G, Paris S. Ecogenetics of Parkinson’s disease: prevalence and environmental aspects in rural areas. Can J Neurol Sci. 1987;14(1):36–41.

    CAS  Google Scholar 

  66. 66.

    Ritz B, Yu F. Parkinson’s disease mortality and pesticide exposure in California 1984–1994. Int J Epidemiol. 2000;29(2):323–9.

    CAS  Google Scholar 

  67. 67.

    Shortle JS, Abler DG. Environmental policies for agricultural pollution control. Wallingford: CABI; 2001.

    Google Scholar 

  68. 68.

    Steinich B, Marin LE. Hydrogeological investigations in northwestern Yucatan, Mexico, using resistivity surveys. Groundwater. 1996;34(4):640–6.

    CAS  Google Scholar 

  69. 69.

    Wong F, Alegria HA, Bidleman TF. Organochlorine pesticides in soils of Mexico and the potential for soil–air exchange. Environ Pollut. 2010;158(3):749–55.

    CAS  Google Scholar 

  70. 70.

    Albers CN, Feld L, Ellegaard-Jensen L, Aamand J. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters. Water Res. 2015;83:61–70.

    CAS  Google Scholar 

  71. 71.

    • O’Connor D, Hou D, Ok YS, Song Y, Sarmah AK, Li X, et al. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. J Control Release. 2018;283:200–13 This paper comprehensively discusses the use of controlled release materials for sustainable in situ remediation of groundwater in terms of fabrications, characterizations, and applications.

    Google Scholar 

  72. 72.

    Baric M, Majone M, Beccari M, Papini MP. Coupling of polyhydroxybutyrate (PHB) and zero valent iron (ZVI) for enhanced treatment of chlorinated ethanes in permeable reactive barriers (PRBs). Chem Eng J. 2012;195:22–30.

    Google Scholar 

  73. 73.

    Baker RS, Nielsen SG, Heron G, Ploug N. How effective is thermal remediation of DNAPL source zones in reducing groundwater concentrations? Groundwater Monit Remediat. 2016;36(1):38–53.

    CAS  Google Scholar 

  74. 74.

    Tse KKC, Lo S-L, Wang JWH. Pilot study of in-situ thermal treatment for the remediation of pentachlorophenol-contaminated aquifers. Environ Sci Technol. 2001;35(24):4910–5.

    CAS  Google Scholar 

  75. 75.

    Triplett Kingston JL, Dahlen PR, Johnson PC. State-of-the-practice review of in situ thermal technologies. Groundwater Monit Remediat. 2010;30(4):64–72.

    Google Scholar 

  76. 76.

    Němeček J, Steinová J, Špánek R, Pluhař T, Pokorný P, Najmanová P, et al. Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents – a field test. Sci Total Environ. 2018;(622–623):743–55.

  77. 77.

    Wilkin RT, Acree SD, Ross RR, Puls RW, Lee TR, Woods LL. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater. Sci Total Environ. 2014;468:186–94.

    Google Scholar 

  78. 78.

    Sun Y, Lei C, Khan E, Chen SS, Tsang DC, Ok YS, et al. Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment. Sci Total Environ. 2018;615:498–507.

    CAS  Google Scholar 

  79. 79.

    Baric M, Pierro L, Pietrangeli B, Papini MP. Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers. New Biotechnol. 2014;31(4):377–82.

    CAS  Google Scholar 

  80. 80.

    Obiri-Nyarko F, Grajales-Mesa SJ, Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere. 2014;111:243–59.

    CAS  Google Scholar 

  81. 81.

    Marley MC, Hazebrouck DJ, Walsh MT. The application of in situ air sparging as an innovative soils and ground water remediation technology. Groundwater Monit Remediat. 1992;12(2):137–45.

    CAS  Google Scholar 

  82. 82.

    Bass DH, Hastings NA, Brown RA. Performance of air sparging systems: a review of case studies. J Hazard Mater. 2000;72(2):101–19.

    CAS  Google Scholar 

  83. 83.

    Zhang X, Gu X, Lu S, Miao Z, Xu M, Fu X, et al. Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid. Front Environ Sci Eng. 2016;10(3):502–12.

    CAS  Google Scholar 

  84. 84.

    Kambhu A, Comfort S, Chokejaroenrat C, Sakulthaew C. Developing slow-release persulfate candles to treat BTEX contaminated groundwater. Chemosphere. 2012;89(6):656–64.

    CAS  Google Scholar 

  85. 85.

    Lee ES, Seol Y, Fang Y, Schwartz FW. Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene. Environ Sci Technol. 2003;37(11):2540–6.

    CAS  Google Scholar 

  86. 86.

    Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol. 2005;39(22):8943–7.

    CAS  Google Scholar 

  87. 87.

    Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol. 2010;12(4):1011–20.

    CAS  Google Scholar 

  88. 88.

    Friman H, Schechter A, Nitzan Y, Cahan R. Phenol degradation in bio-electrochemical cells. Int Biodeterior Biodegradation. 2013;84:155–60.

    CAS  Google Scholar 

  89. 89.

    Pous N, Casentini B, Rossetti S, Fazi S, Puig S, Aulenta F. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater. 2015;283:617–22.

    CAS  Google Scholar 

  90. 90.

    Pous N, Puig S, Coma M, Balaguer MD, Colprim J. Bioremediation of nitrate-polluted groundwater in a microbial fuel cell. J Chem Technol Biotechnol. 2013;88(9):1690–6.

    CAS  Google Scholar 

  91. 91.

    Zhang Y, Angelidaki I. A new method for in situ nitrate removal from groundwater using submerged microbial desalination–denitrification cell (SMDDC). Water Res. 2013;47(5):1827–36.

    CAS  Google Scholar 

  92. 92.

    Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol. 2007;41(7):2554–9.

    CAS  Google Scholar 

  93. 93.

    Cecconet D, Sabba F, Devecseri M, Callegari A, Capodaglio AG. In situ groundwater remediation with bioelectrochemical systems: a critical review and future perspectives. Environ Int. 2020;137:105550.

    CAS  Google Scholar 

  94. 94.

    Liu R, Zheng X, Li M, Han L, Liu X, Zhang F, et al. A three chamber bioelectrochemical system appropriate for in-situ remediation of nitrate-contaminated groundwater and its reaction mechanisms. Water Res. 2019;158:401–10.

    CAS  Google Scholar 

  95. 95.

    Palma E, Espinoza Tofalos A, Daghio M, Franzetti A, Tsiota P, Cruz Viggi C, et al. Bioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system: substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminant. New Biotechnol. 2019;53:41–8.

    CAS  Google Scholar 

  96. 96.

    Lyon DY, Vogel TM. Bioaugmentation for groundwater remediation: an overview. Bioaugmentation for groundwater remediation. Springer; 2013. p. 1–37.

  97. 97.

    Furukawa Y, Kim J-w, Watkins J, Wilkin RT. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ Sci Technol. 2002;36(24):5469–75.

    CAS  Google Scholar 

  98. 98.

    Grathwohl P, Schad H, editors. Funnel-and-gate systems for in-situ treatment of contaminated groundwater at former manufactured gas plant sites. [Winter Meeting on Ground Water Pollution], Vingsted (Denmark), 9–10 Mar 1999; 1999: Danmarks Tekniske Univ.

  99. 99.

    Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ Eng Sci. 2007;24(4):401–23.

    CAS  Google Scholar 

  100. 100.

    Moon HS, Nam K, Kim JY. A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere. 2008;73(5):723–8.

    CAS  Google Scholar 

  101. 101.

    Prasad MNV, Prasad R. Nature’s cure for cleanup of contaminated environment–a review of bioremediation strategies. Rev Environ Health. 2012;27(4):181–9.

    CAS  Google Scholar 

  102. 102.

    Pous N, Balaguer MD, Colprim J, Puig S. Opportunities for groundwater microbial electro-remediation. Microb Biotechnol. 2018;11(1):119–35.

    CAS  Google Scholar 

  103. 103.

    Bass DH, Hastings NA, Brown RA. Performance of air sparging systems: a review of case studies. J Hazard Mater. 2000;72(2–3):101–19.

    CAS  Google Scholar 

  104. 104.

    Liu C, Ball WP. Back diffusion of chlorinated solvent contaminants from a natural aquitard to a remediated aquifer under well-controlled field conditions: predictions and measurements. Groundwater. 2002;40(2):175–84.

    CAS  Google Scholar 

  105. 105.

    Sale T, Parker B, Newell C, Devlin J. Management of contaminants stored in low permeability zones - a state of the science review. 2013. https://apps.dtic.mil/dtic/tr/fulltext/u2/a619819.pdf.

    Google Scholar 

  106. 106.

    Cang L, Fan G-P, Zhou D-M, Wang Q-Y. Enhanced-electrokinetic remediation of copper–pyrene co-contaminated soil with different oxidants and pH control. Chemosphere. 2013;90(8):2326–31.

    CAS  Google Scholar 

  107. 107.

    Thepsithar P, Roberts EP. Removal of phenol from contaminated kaolin using electrokinetically enhanced in situ chemical oxidation. Environ Sci Technol. 2006;40(19):6098–103.

    CAS  Google Scholar 

  108. 108.

    Brusseau ML, Nelson N, Zhang Z, Blue J, Rohrer J, Allen T. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ. J Contam Hydrol. 2007;90(1–2):21–40.

    CAS  Google Scholar 

  109. 109.

    Brusseau ML, Carroll KC, Allen T, Baker J, DiGuiseppi W, Hatton J, et al. Impact of in situ chemical oxidation on contaminant mass discharge: linking source-zone and plume-scale characterizations of remediation performance. Environ Sci Technol. 2011;45(12):5352–8.

    CAS  Google Scholar 

  110. 110.

    Panter SE. The hidden potential of mass-based treatment: a method for preventing rebound. Remed J. 2015;25(4):99–109.

    Google Scholar 

  111. 111.

    Zhang Z, Brusseau ML. Nonideal transport of reactive solutes in heterogeneous porous media: 5. Simulating regional-scale behavior of a trichloroethene plume during pump-and-treat remediation. Water Resour Res. 1999;35(10):2921–35.

    CAS  Google Scholar 

  112. 112.

    Johnson GR, Zhang Z, Brusseau ML. Characterizing and quantifying the impact of immiscible-liquid dissolution and nonlinear, rate-limited sorption/desorption on low-concentration elution tailing. Water Resour Res. 2003;39(5):1120.

    Google Scholar 

  113. 113.

    Maghrebi M, Jankovic I, Allen-King RM, Rabideau AJ, Kalinovich I, Weissmann GS. Impacts of transport mechanisms and plume history on tailing of sorbing plumes in heterogeneous porous formations. Adv Water Resour. 2014;73:123–33.

    Google Scholar 

  114. 114.

    Li L, Benson CH, Lawson EM. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers. J Contam Hydrol. 2006;83(1–2):89–121.

    CAS  Google Scholar 

  115. 115.

    Stefaniuk M, Oleszczuk P, Ok YS. Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J. 2016;287:618–32.

    CAS  Google Scholar 

  116. 116.

    Henderson AD, Demond AH. Permeability of iron sulfide (FeS)-based materials for groundwater remediation. Water Res. 2013;47(3):1267–76.

    CAS  Google Scholar 

  117. 117.

    Zhou D, Li Y, Zhang Y, Zhang C, Li X, Chen Z, et al. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J Contam Hydrol. 2014;168:1–16.

    CAS  Google Scholar 

  118. 118.

    Ross A. Speeding the transition towards integrated groundwater and surface water management in Australia. J Hydrol. 2018;567:e1–e10.

    Google Scholar 

  119. 119.

    Risbey J, Kandlikar M, Patwardhan A. Assessing integrated assessments. Clim Chang. 1996;34(3–4):369–95.

    Google Scholar 

  120. 120.

    Hamilton SH, ElSawah S, Guillaume JH, Jakeman AJ, Pierce SA. Integrated assessment and modelling: overview and synthesis of salient dimensions. Environ Model Softw. 2015;64:215–29.

    Google Scholar 

  121. 121.

    Chew M, Maheshwari B, Somerville M. Photovoice for understanding groundwater management issues and challenges of villagers in Rajasthan, India. Groundw Sustain Dev. 2019;8:134–43.

    Google Scholar 

  122. 122.

    De Groot WT, Tadepally H. Community action for environmental restoration: a case study on collective social capital in India. Environ Dev Sustain. 2008;10(4):519–36.

    Google Scholar 

  123. 123.

    •• Jadeja Y, Maheshwari B, Packham R, Bohra H, Purohit R, Thaker B, et al. Managing aquifer recharge and sustaining groundwater use: developing a capacity building program for creating local groundwater champions. Sustain Water Res Manag. 2018;4(2):317–29 This paper shows how a well-designed program of capacity building and on-going support through training and nurturing can be effective for communities and stakeholders in making a good decision to improve sustainable groundwater management.

    Google Scholar 

  124. 124.

    Kaufman-Hayoz R, Batting C, Bruppacher S, Difila R, GiGuilio A. A typology of tools for building sustainable strategies. Basel: Birkhauser; 2001.

    Google Scholar 

  125. 125.

    Bhattacharjee S, Saha B, Saha B, Uddin MS, Panna CH, Bhattacharya P, et al. Groundwater governance in Bangladesh: established practices and recent trends. Groundw Sustain Dev. 2019;8:69–81.

    Google Scholar 

  126. 126.

    Chan NW, Roy R, Chaffin BC. Water governance in Bangladesh: an evaluation of institutional and political context. Water. 2016;8(9):403.

    Google Scholar 

  127. 127.

    Roy R, Chan NW. A multi-level evaluation of policy integration of human resource development in agriculture sector. Nat Resour. 2014;5(4):44357.

    Google Scholar 

  128. 128.

    Jakeman AJ, Letcher RA. Integrated assessment and modelling: features, principles and examples for catchment management. Environ Model Softw. 2003;18(6):491–501.

    Google Scholar 

  129. 129.

    Qureshi AS, McCornick PG, Sarwar A, Sharma BR. Challenges and prospects of sustainable groundwater management in the Indus Basin, Pakistan. Water Resour Manag. 2010;24(8):1551–69.

    Google Scholar 

  130. 130.

    Coulon F, Jones K, Li H, Hu Q, Gao J, Li F, et al. China’s soil and groundwater management challenges: lessons from the UK’s experience and opportunities for China. Environ Int. 2016;91:196–200.

    Google Scholar 

  131. 131.

    Bazilian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, et al. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy. 2011;39(12):7896–906.

    Google Scholar 

  132. 132.

    Vellido A, Martí E, Comas J, Rodríguez-Roda I, Sabater F. Exploring the ecological status of human altered streams through generative topographic mapping. Environ Model Softw. 2007;22(7):1053–65.

    Google Scholar 

  133. 133.

    Kelly RA, Jakeman AJ, Barreteau O, Borsuk ME, ElSawah S, Hamilton SH, et al. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ Model Softw. 2013;47:159–81.

    Google Scholar 

  134. 134.

    Wintle BA, McCarthy MA, Volinsky CT, Kavanagh RP. The use of Bayesian model averaging to better represent uncertainty in ecological models. Conserv Biol. 2003;17(6):1579–90.

    Google Scholar 

  135. 135.

    Voinov A, Cerco C. Model integration and the role of data. Environ Model Softw. 2010;25(8):965–9.

    Google Scholar 

  136. 136.

    Mohammed TA, Ghazali AH. Evaluation of yield and groundwater quality for selected wells in Malaysia. Pertanika Journal of Sciences and Technology. 2009;17(1):33–42.

    Google Scholar 

  137. 137.

    Sefie A, Aris AZ, Ramli MF, Narany TS, Shamsuddin MKN, Saadudin SB, et al. Hydrogeochemistry and groundwater quality assessment of the multilayered aquifer in Lower Kelantan Basin, Kelantan, Malaysia. Environ Earth Sci. 2018;77(10):397.

    Google Scholar 

  138. 138.

    Usman UA, Yusoff I, Raoov M, Hodgkinson J. Trace metals geochemistry for health assessment coupled with adsorption remediation method for the groundwater of Lorong Serai 4, Hulu Langat, west coast of Peninsular Malaysia. Environ Geochem Health. 2020;42:3079–99.

    CAS  Google Scholar 

  139. 139.

    Sapingi MSM, Murshed MF, Tajaruddin HA, Omar FM. Performance evaluation of metakaolin as low cost adsorbent for manganese removal in anoxic groundwater. Civ Env Eng Rep. 2019;29(3):107–22.

    Google Scholar 

  140. 140.

    Tawnie I, Sefie A, Normi I, Shamsuddin M, Mohamed A, editors. Overview of groundwater contamination in Malaysia. The 12th International Symposium on Southeast Asian Water Environment, Hanoi, Vietnam; 2016.

  141. 141.

    Wahab Al-Baldawi IA, Abdullah SRS, Suja F, Anuar N, Idris M. Phytoremediation of contaminated ground water using Typha angustifolia. Water Pract Technol. 2015;10(3):616–24.

    Google Scholar 

  142. 142.

    Musa S, Denan F, Hamdan R, Radin MR. Natural groundwater eco-treatment (N-GET) for water supply at Johor, Malaysia. J Adv Res Fluid Mech. 2015;9(1):19–27.

    Google Scholar 

  143. 143.

    Voinov A, Bousquet F. Modelling with stakeholders. Environ Model Softw. 2010;25(11):1268–81.

    Google Scholar 

  144. 144.

    van der Vat M, Boderie P, Bons K, Hegnauer M, Hendriksen G, van Oorschot M, et al. Participatory modelling of surface and groundwater to support strategic planning in the Ganga basin in India. Water. 2019;11(12):2443.

    Google Scholar 

  145. 145.

    Basco-Carrera L, Warren A, van Beek E, Jonoski A, Giardino A. Collaborative modelling or participatory modelling? A framework for water resources management. Environ Model Softw. 2017;91:95–110.

    Google Scholar 

  146. 146.

    •• Mani A, Tsai FT-C, Kao S-C, Naz BS, Ashfaq M, Rastogi D. Conjunctive management of surface and groundwater resources under projected future climate change scenarios. J Hydrol. 2016;540:397–411 This paper evaluates a mixed integer linear fractional programming (MILFP) method for obtaining the optimized conjunctive use of future surface water and groundwater resources under projected climate change scenarios.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Universitas Nahdlatul Ulama Surabaya for facilitating the current work. Collaboration from Nicholls State University and Curtin University Malaysia is highly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raj Boopathy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Syafiuddin, A., Boopathy, R. & Hadibarata, T. Challenges and Solutions for Sustainable Groundwater Usage: Pollution Control and Integrated Management. Curr Pollution Rep 6, 310–327 (2020). https://doi.org/10.1007/s40726-020-00167-z

Download citation

Keywords

  • Groundwater
  • Pollution control
  • Integrated management
  • Conjunctive water management