A Review of Sub-lethal Neonicotinoid Insecticides Exposure and Effects on Pollinators


Purpose of Review

Beekeepers around the world have been reporting the ongoing weakening of honeybee health and subsequently the increasing colony losses since 1990. However, it was not until the abrupt emergence of colony collapse disorder (CCD) in the 2000s that has raised the concern of losing this important perennial pollinator. In this report, we provide a summary of the sub-lethal effects of pesticides, in particular of neonicotinoids, on pollinators’ health from papers published in peer-review journals.

Recent Findings

We have identified peer-review papers that are relevant to examine the effects of sub-lethal pesticide exposures on the health of honeybees (Apis mellifera), bumblebees (Bombus terrestris), and other bees from a literature search on PubMed and Google Scholar using the following combined keywords of “pollinators,” “honeybee,” “bees,” “pesticides,” or “neonicotinoids,” and from a cross-reference check of a report made available by the European Parliament in preparation to fulfill their regulatory mandate on the issue of protecting pollinators among their membership nations.


The weight-of-evidence of this review clearly demonstrated bees’ susceptibility to insecticides, in particular to neonicotinoids, and the synergistic effects to diseases that are commonly present in bee colonies. One important aspect of assessing and managing the risks posed by neonicotinoids to bees is the chronic effects induced by exposures at the sub-lethal levels. More than 90% of literature published after 2009 directly or indirectly demonstrated the adverse health effects associated with sub-lethal exposure to neonicotinoids, including abnormal foraging activities, impaired brood development, neurological or cognitive effects, and colony collapse disorder.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abbott VA, Nadeau JL, Higo HA, Winston ML. Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). J Econ Entomol. 2008;101(3):784–96.

    CAS  Article  Google Scholar 

  2. 2.

    Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol. 2010;12(3):774–82.

    Article  Google Scholar 

  3. 3.

    Australian Government. Overview report neonicotinoids and the health of honey bees in Australia 2014. archive.apvma.gov.au/news_media/docs/neonicotinoids_overview_report_february_2014.pdf. Accessed 12 May 2018.

  4. 4.

    Bernal J, Garrido-Bailón E, Del Nozal MJ, González-Porto AV, Martín-Hernández R, Diego JC, et al. Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J Econ Entomol. 2010;103(6):1964–71.

    CAS  Article  Google Scholar 

  5. 5.

    Biddinger DJ, Robertson JL, Mullin C, Frazier J, Ashcraft SA, Rajotte EG, et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS One. 2013;8(9):e72587.

    CAS  Article  Google Scholar 

  6. 6.

    Blanchard P, Schurr F, Celle O, Cougoule N, Drajnudel P, Thiéry R, et al. First detection of Israeli acute paralysis virus (IAPV) in France, a dicistrovirus affecting honeybees (Apis mellifera). J Invertebr Pathol. 2008;99:348–50.

    Article  Google Scholar 

  7. 7.

    Boily M, Sarrasin B, Deblois C, Aras P, Chagnon M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environ Sci Pollut Res Int. 2013;20(8):5603–14.

    CAS  Article  Google Scholar 

  8. 8.

    Bryden J, Gill RJ, Mitton RA, Raine NE, Jansen VA. Chronic sublethal stress causes bee colony failure. Ecol Lett. 2013;16:1463–9.

    Article  Google Scholar 

  9. 9.

    Catae AF, Roat TC, De Oliveira RA, Ferreira Nocelli RC, Malaspina O. Cytotoxic effects of thiamethoxam in the midgut and Malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae). Microsc Res Tech. 2014;77:274–81. https://doi.org/10.1002/jemt.22339.

    CAS  Article  Google Scholar 

  10. 10.

    Cepero A, Ravoet J, Gómez-Moracho T, Bernal JL, Del Nozal MJ, Bartolomé C, et al. Holistic screening of collapsing honey bee colonies in Spain: a case study. BMC Res Notes. 2014;7(1):649.

    Article  Google Scholar 

  11. 11.

    Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, Aubert M. A survey of pesticide residues in pollen loads collected by honey bees in France. J Econ Entomol. 2006;99(2):253–62.

    CAS  Article  Google Scholar 

  12. 12.

    Christopher Cutler G, Scott-Dupree CD. A field study examining the effects of exposure to neonicotinoid seed-treated corn on commercial bumble bee colonies. Ecotoxicology. 2014;23(9):1755–63.

    CAS  Article  Google Scholar 

  13. 13.

    Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, et al. Metagenomic survey of microbes in honey bee colony collapse disorder. Science. 2007;318:283–7.

    CAS  Article  Google Scholar 

  14. 14.

    Cresswell JE, Page CJ, Uygun MB, Holmbergh M, Li Y, Wheeler JG, et al. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology (Jena). 2012;115(6):365–71. https://doi.org/10.1016/j.zool.2012.05.003.

    Article  Google Scholar 

  15. 15.

    Cresswell JE, Robert FX, Florance H, Smirnoff N. Clearance of ingested neonicotinoid pesticide (imidacloprid) in honey bees (Apis mellifera) and bumblebees (Bombus terrestris). Pest Manag Sci. 2014;70(2):332–7.

    CAS  Article  Google Scholar 

  16. 16.

    Cutler CG, Scott-Dupree CD, Drexler DM. Honey bees, neonicotinoids and bee incident reports: the Canadian situation. Pest Manag Sci. 2014;70(5):779–83.

    CAS  Article  Google Scholar 

  17. 17.

    de Almeida RC, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch Environ Contam Toxicol. 2013;65(2):234–43.

    Article  CAS  Google Scholar 

  18. 18.

    de Miranda JR, Cordoni G, Budge G. The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol. 2010;103:S30–47.

    Article  CAS  Google Scholar 

  19. 19.

    Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue MH. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf. 2004a;57:410–9.

    CAS  Article  Google Scholar 

  20. 20.

    Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, et al. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol. 2004b;78:83–92.

    CAS  Article  Google Scholar 

  21. 21.

    Derecka K, Blythe MJ, Malla S, Genereux DP, Guffanti A, Pavan P, et al. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One. 2013;8(7):e68191. https://doi.org/10.1371/journal.pone.0068191.

    CAS  Article  Google Scholar 

  22. 22.

    Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF Jr, Evans JD, Chen Y. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Genet Virol. 2011;92(Pt 1):151–5.

    Article  CAS  Google Scholar 

  23. 23.

    Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci U S A. 2013;110(46):18466–71.

    Article  CAS  Google Scholar 

  24. 24.

    Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol. 2014. https://doi.org/10.1111/1462-2920.12426.

    Article  CAS  Google Scholar 

  25. 25.

    Eiri DM, Nieh JC. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. J Exp Biol. 2012;215(Pt 12):2022–9.

    CAS  Article  Google Scholar 

  26. 26.

    El Hassani AK, Dacher M, Gauthier M, Armengaud C. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav. 2005;82:30–9.

    Article  CAS  Google Scholar 

  27. 27.

    El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol. 2008;54:653–61.

    Article  CAS  Google Scholar 

  28. 28.

    Erickson B. Europe bans three neonicotinoids. Chem Eng News. 2013;91(18):11.

    Google Scholar 

  29. 29.

    Farooqui T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem Int. 2013;62(1):122–36.

    CAS  Article  Google Scholar 

  30. 30.

    Feltham H, Park K, Goulson D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology. 2014;23:317–23. https://doi.org/10.1007/s10646-014-1189-7.

    CAS  Article  Google Scholar 

  31. 31.

    Fischer J, Müller T, Spatz AK, Greggers U, Grünewald B, Menze R. Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One. 2014;9(3):e91364. https://doi.org/10.1371/journal.pone.0091364.

    CAS  Article  Google Scholar 

  32. 32.

    Gels JA, Held DW, Potter DA. Hazards of insecticides to the bumble bees Bombus impatiens (Hymenoptera: Apidae) foraging on flowering white clover in turf. J Econ Entomol. 2002;95(4):722–8.

    CAS  Article  Google Scholar 

  33. 33.

    Gill RJ, Raine NE. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct Ecol. 2014;28:1459–71. https://doi.org/10.1111/1365-2435.12292.

    Article  Google Scholar 

  34. 34.

    Gill RJ, Ramos-Rodriguez O, Raine NE. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature. 2012;491(7422):105–8. https://doi.org/10.1038/nature11585.

    CAS  Article  Google Scholar 

  35. 35.

    Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Di Bernardo A, et al. Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol. 2009;102(5):1808–15.

    CAS  Article  Google Scholar 

  36. 36.

    Grimm M, Sedy K, Süβnbacher E, Riss A. Existing scientific evidence of the effects of neonicotinoid pesticides on bees. 2012. http://www.europarl.europa.eu/RegData/etudes/note/join/2012/492465/IPOL-ENVI_NT(2012)492465_EN.pdf. Accessed 11 Nov 2013.

  37. 37.

    Henry M, Rollin O, Aptel J, Tchamitchian S, Beguin M, Requier F, et al. A common pesticide decreases foraging success and survival in honey bees. Science. 2012;336(6079):348–50. https://doi.org/10.1126/science.1215039.

    CAS  Article  Google Scholar 

  38. 38.

    Higes M, Martín-Hernández R, Botías C, Bailón EG, González-Porto AV, Barrios L, et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol. 2008;10:2659–69.

    Article  Google Scholar 

  39. 39.

    Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One. 2012;7(1):e29268. https://doi.org/10.1371/journal.pone.0029268.

    CAS  Article  Google Scholar 

  40. 40.

    Larson JL, Redmond CT, Potter DA. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS One. 2013;8(6):e66375.

    CAS  Article  Google Scholar 

  41. 41.

    Laycock I, Cresswell JE. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid. PLoS One. 2013;8(11):e79872. https://doi.org/10.1371/journal.pone.0079872.

    CAS  Article  Google Scholar 

  42. 42.

    Laycock I, Cotterell KC, O’Shea-Wheller TA, Cresswell JE. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees. Ecotoxicol Environ Saf. 2014;100:153–8.

    CAS  Article  Google Scholar 

  43. 43.

    Lu C, Warchol KM, Callahan RA. In situ replication of honey bee colony collapse disorder. Bull Insectol. 2012;65(1):99–106.

    Google Scholar 

  44. 44.

    Lu C, Warchol KM, Callahan RA. Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bull Insectol. 2014;67(1):125–30.

    CAS  Google Scholar 

  45. 45.

    Maini S, Medrzycki P, Porrini C. The puzzle of honey bee losses: a brief review. Bull Insectol. 2010;63(1):153–60.

    Google Scholar 

  46. 46.

    Mayes MA, Thompson GD, Husband B, Miles MM. Spinosad toxicity to pollinators and associated risk. Rev Environ Contam Toxicol. 2003;179:37–71.

    CAS  Google Scholar 

  47. 47.

    Medrzycki P, Sgolastra F, Bortolotti L, Bogo G, Tosi S, Padovani E, et al. Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides. J Apic Res. 2010;49:52–9.

    CAS  Article  Google Scholar 

  48. 48.

    Morandin LA, Winston ML, Franklin MT, Abbott VA. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson). Pest Manag Sci. 2005;61(7):619–26.

    CAS  Article  Google Scholar 

  49. 49.

    Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, et al. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One. 2010;5(3):e9754.

    Article  CAS  Google Scholar 

  50. 50.

    Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA, Connolly CN. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun. 2013;4:1634. https://doi.org/10.1038/ncomms2648.

    CAS  Article  Google Scholar 

  51. 51.

    Pareja L, Colazzo M, Perez-Parada A, Niell S, Carrasco-Letelier L, Bseil N, et al. Detection of pesticides in active and depopulated beehives in Uruguay. Int J Environ Res Public Health. 2011;8:3844–58. https://doi.org/10.3390/ijerph8103844.

    CAS  Article  Google Scholar 

  52. 52.

    Pettis JS, vanEngelsdorp D, Johnson J, Dively G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften. 2012;99(2):153–8.

    CAS  Article  Google Scholar 

  53. 53.

    Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, Vanengelsdorp D. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One. 2013;8(7):e70182.

    CAS  Article  Google Scholar 

  54. 54.

    Pilling E, Campbell P, Coulson M, Ruddle N, Tornier I. A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS One. 2013;8(10):e77193.

    CAS  Article  Google Scholar 

  55. 55.

    Rondeau G, Sánchez-Bayo F, Tennekes HA, Decourtye A, Ramírez-Romero R, Desneux N. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci Rep. 2014;4:5566.

    CAS  Article  Google Scholar 

  56. 56.

    Rossi Cde A, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. Effects of sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera (Hymenoptera, Apidae). Microsc Res Tech. 2013;76(5):552–8. https://doi.org/10.1002/jemt.22199.

    CAS  Article  Google Scholar 

  57. 57.

    Sandrock C, Tanadini LG, Pettis JS, Biesmeijer JC, Potts SG, Neumann P. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric Forest Entomol. 2014a;16:119–28.

    Article  Google Scholar 

  58. 58.

    Sandrock C, Tanadini M, Tanadini LG, Fauser-Misslin A, Potts SG, Neumann P. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS One. 2014b;9(8):e103592.

    Article  CAS  Google Scholar 

  59. 59.

    Schneider CW, Tautz J, Grünewald B, Fuchs S. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One. 2012;7(1):e30023.

    CAS  Article  Google Scholar 

  60. 60.

    Scholer J, Krischik V. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens. PLoS One. 2014;9(3):e91573.

    Article  CAS  Google Scholar 

  61. 61.

    Scott-Dupree CD, Conroy L, Harris CR. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J Econ Entomol. 2009;102(1):177–82.

    CAS  Article  Google Scholar 

  62. 62.

    Smagghe G, Deknopper J, Meeus I, Mommaerts V. Dietary chlorantraniliprole suppresses reproduction in worker bumblebees. Pest Manag Sci. 2013;69(7):787–91.

    CAS  Article  Google Scholar 

  63. 63.

    Takashi M. Reduction in homing flights in the honey bee Apis mellifera after a sublethal dose of neonicotinoid insecticides. Bull Insectol. 2013;66(1):1–9.

    Google Scholar 

  64. 64.

    Tan K, Chen W, Dong S, Liu X, Wang Y, Nieh JC. Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS One. 2014;9(7):e102725.

    Article  CAS  Google Scholar 

  65. 65.

    Teeters BS, Johnson RM, Ellis MD, Siegfried BD. Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ Toxicol Chem. 2012;31(6):1349–54.

    CAS  Article  Google Scholar 

  66. 66.

    Thompson HM, Fryday SL, Harkin S, Milner S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie. 2014;45:545–53.

    CAS  Article  Google Scholar 

  67. 67.

    Tomé HV, Martins GF, Lima MA, Campos LA, Guedes RN. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One. 2012;7(6):e38406.

    Article  CAS  Google Scholar 

  68. 68.

    U.S. Department of Agriculture: Washington, DC. Report on the National Stakeholders Conference on Honey Bee Health 2013. http://www.usda.gov/documents/ReportHoneyBeeHealth.pdf. Accessed 12 May 2018.

  69. 69.

    United Nations News Center report. Humans must change behaviour to save bees. 2011. http://www.un.org/apps/news/story.asp?NewsID=37731&Cr=unep&Cr1#.VF0_9_nF_T8. Accessed 5 May 2018.

  70. 70.

    US EPA-OPP. Reregistration eligibility decision for tau-fluvalinate. 2005. http://www.epa.gov/pesticides/reregistration/REDs/taufluvalinate_red.pdf. Accessed 5 May 2018.

  71. 71.

    vanEngelsdorp D, Underwood RM, Caron D, Hayes J Jr. An estimate of managed colony losses in the winter of 2006-2007: a report commission by the Apiary Inspectors of America. Am Bee J. 2007;147:599–603.

    Google Scholar 

  72. 72.

    vanEngelsdorp D, Hayes J Jr, Underwood RM, Pettis J. A survey of honey bee colony losses in the U. S. Fall 2007 to Spring 2008. PLoS One. 2008;3(12):e4071. https://doi.org/10.1371/journal.pone.0004071.

    CAS  Article  Google Scholar 

  73. 73.

    vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, et al. Colony collapse disorder: a descriptive study. PLoS One. 2009;4(8):e6481. https://doi.org/10.1371/journal.pone.0006481.

    CAS  Article  Google Scholar 

  74. 74.

    Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, et al. Exposure to sub-lethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One. 2011;6(6):e21550. https://doi.org/10.1371/journal.pone.0021550.

    CAS  Article  Google Scholar 

  75. 75.

    Whitehorn PR, O’Connor S, Goulson D, Wackers FL. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 2012;336(6079):351–2. https://doi.org/10.1126/science.1215025.

    CAS  Article  Google Scholar 

  76. 76.

    Williams GR, Tarpy DR, vanEngelsdorp D, Chauzat MP, Cox-Foster DL, Delaplane KS, et al. Colony collapse disorder in context. Bioessays. 2010;32:845–6.

    Article  Google Scholar 

  77. 77.

    Williamson SM, Wright GA. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J Exp Biol. 2013;216(Pt 10):1799–807.

    CAS  Article  Google Scholar 

  78. 78.

    Williamson SM, Baker DD, Wright GA. Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee Apis mellifera. Invertebr Neurosci. 2013;13(1):63–70.

    CAS  Article  Google Scholar 

  79. 79.

    Williamson SM, Willis SJ, Wright GA. Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology. 2014;23(8):1409–18.

    CAS  Article  Google Scholar 

  80. 80.

    Wu JY, Anelli CM, Sheppard WS. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One. 2011;6(2):e14720.

    CAS  Article  Google Scholar 

  81. 81.

    Wu JY, Smart MD, Anelli CM, Sheppard WS. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invertebr Pathol. 2012;109(3):326–9.

    CAS  Article  Google Scholar 

  82. 82.

    Yang EC, Chuang YC, Chen YL, Chang LH. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol. 2008;101(6):1743–8.

    CAS  Article  Google Scholar 

Download references


This study was funded by the National Natural Science Foundation of China (21577129).

Author information



Corresponding author

Correspondence to Chensheng Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Hung, YT. & Cheng, Q. A Review of Sub-lethal Neonicotinoid Insecticides Exposure and Effects on Pollinators. Curr Pollution Rep 6, 137–151 (2020). https://doi.org/10.1007/s40726-020-00142-8

Download citation


  • Neonicotinoids
  • Honeybee
  • Pollinator
  • Sub-lethal exposure