Advertisement

Current Pollution Reports

, Volume 4, Issue 2, pp 143–153 | Cite as

Innovative Approaches for Noise Management in Smart Cities: a Review

  • Francesco Asdrubali
  • Francesco D’Alessandro
Noise Pollution (P Zannin, Section Editor)
  • 83 Downloads
Part of the following topical collections:
  1. Topical Collection on Noise Pollution

Abstract

According to the European Commission, “a Smart City is a city seeking to address public issues via ICT-based solutions on the basis of a multi-stakeholder, municipally based partnership”. The smart city concept “encompasses a more interactive and responsive city administration and safer public spaces”. The new paradigm of smart city, which is closely correlated to Internet of Things, requires a new approach also for environmental noise assessment and monitoring, in order to establish noise management strategies that should be more dynamic, widespread and closer to citizens’ wellbeing. In the last decade, new technologies and methodologies have been developed in order to supply smart cities with smart noise solutions. This paper presents three examples which are considered by the authors among the most interesting and promising ones, i.e. dynamic noise mapping, smart sensors (and in particular, the use of smartphones in environmental noise assessment) and soundscape approach.

Keywords

Environmental noise Smart city Dynamic noise mapping Smartphone Crowdsensing Soundscape 

Notes

Compliance with Ethical Standards

Conflict of Interest

The Authors declare no conflict of interest.

References

  1. 1.
    Aletta F, Margaritis E, Filipan K, Romero VP, Axelsson Ö, Kang J. Characterization of the soundscape in Valley Gardens, Brighton, by a soundwalk prior to an urban design intervention. Proceedings of Euronoise 2015. Maastricht, The Netherlands, 31 May- 3 June 2015.Google Scholar
  2. 2.
    Aletta F, Kang J, Astolfi A, Fuda S. Differences in soundscape appreciation of walking sounds from different footpath materials in urban parks. Sustain Cities Soc. 2016;27:367–76.CrossRefGoogle Scholar
  3. 3.
    Alías F, Socoró JC. Description of anomalous noise events for reliable dynamic traffic noise mapping in real-life urban and suburban soundscapes. Appl Sci. 2017;7:146–67.CrossRefGoogle Scholar
  4. 4.
    Anderson LM, Mulligan BE, Goodman LS, Regen HZ. Effects of sounds on preferences for outdoor settings. Environ Behav. 1983;15:539–66.CrossRefGoogle Scholar
  5. 5.
    Asdrubali F, Guattari C, Evangelisti L, Marrone P, Orsini F, Grazieschi G. Urban soundscape analysis: the case study of the department of human arts of Roma Tre university. Proceedings of the 24th International Congress on Sound and Vibration ICSV24, London, United Kingdom, 23–27 July 2017.Google Scholar
  6. 6.
    Axelsson Ö. How to measure soundscape quality. Proceedings of Euronoise 2015. Maastricht, The Netherlands, 31 May- 3 June 2015.Google Scholar
  7. 7.
    Axelsson Ö, Nilsson ME, Berglund B. A principal components model of soundscape perception. J Acoust Soc Am. 2010;128:2836–46.CrossRefGoogle Scholar
  8. 8.
    Barham R, Chan M, Cand M. Practical experience in noise mapping with a MEMS microphone based distributed noise measurement system, Proceedings of Internoise 2010, Lisbon, Portugal, 13–16 June 2010.Google Scholar
  9. 9.
    Bartalucci C, Borchi F, Carfagni M, Furferi R, Governi L, Silvaggio R, Curcuruto S, Nencini L. Design of a prototype of a smart noise monitoring system. Proceedings of the 24th International Congress on Sound and Vibration ICSV24, London, United Kingdom, 23–27 July 2017.Google Scholar
  10. 10.
    Bellucci P, Peruzzi L, Zambon G. LIFE DYNAMAP project: the case study of Rome. Appl Acoust. 2017;117:193–206.CrossRefGoogle Scholar
  11. 11.
    Bertrand A. Applications and trends in wireless acoustic sensor networks: a signal processing perspective. Proceedings of the 18th IEEE symposium on communications and vehicular technology in the Benelux (SCVT), Ghent, Belgium, 22–23 November 2011.Google Scholar
  12. 12.
    Brambilla G, Cerniglia A, Verardi P. New potential of long term real time noise monitoring systems, Proocedings of EuroNoise 2006, Tampere, Finland, May 30 – June 1 2006.Google Scholar
  13. 13.
    Brambilla G, Gallo V, Asdrubali F, D’Alessandro F. The perceived quality of soundscape in three urban parks in Rome. J Acoust Soc Am. 2013;134:832–9.CrossRefGoogle Scholar
  14. 14.
    Brown AL. Rethinking “Quiet Areas” as “Areas of High Acoustic Quality”. Proceedings of Internoise 2006, Honolulu, Hawaii, USA, 3–6 December 2006.Google Scholar
  15. 15.
    Brown AL, Kang J, Gjestland T. Towards standardization in soundscape preference assessment. Appl Acoust. 2011;72:387–92.CrossRefGoogle Scholar
  16. 16.
    Bruce NS, Davies WJ. The effects of expectation on the perception of soundscapes. Appl Acoust. 2014;85:1–11.CrossRefGoogle Scholar
  17. 17.
    Camps J. Barcelona noise monitoring network. Proceedings of EuroNoise 2015, Maastrich, The Netherlands, 31 May– 3 June 2015.Google Scholar
  18. 18.
    Cerniglia A, Lenti M, Monitoraggio acustico continuo sul lungo periodo: sintesi dei risultati (in Italian), Proocedings of 14th CIRIAF National Conference, Perugia, Italy, April 4–5 2014.Google Scholar
  19. 19.
    Cerniglia A, Petz M, Geberstein R, Sevillano X, Socoró JC, Alías F. State of the art on real time noise mapping systems, deliverable A1 of project LIFE – DYNAMAP, 2015. http://www.life-dynamap.eu/wp-content/uploads/2015/04/A1-Report-on-the-state-of-the-art-of-dynamic-noise-mapping.pdf. Accessed 12 Feb 2018.
  20. 20.
    Crichton F, Dodd G, Schmid G, Petrie KJ. Framing sound: using expectations to reduce environmental noise annoyance. Environ Res. 2015;142:609–14.CrossRefGoogle Scholar
  21. 21.
    D’Alessandro F, Schiavoni S. A review and comparative analysis of European priority indices for noise action plans. Sci Total Environ. 2015;518–519:290–301.CrossRefGoogle Scholar
  22. 22.
    Davies WJ, Adams MD, Bruce NS, Cain R, Carlyle A, Cusack P, et al. Perception of soundscapes: an interdisciplinary approach. Appl Acoust. 2013;74:224–31.CrossRefGoogle Scholar
  23. 23.
    De Coensel B, Botteldooren D. Smart sound monitoring for sound event detection and characterization, Proceedings of Internoise 2014, Melbourne, Australia, 16–19 November 2014.Google Scholar
  24. 24.
    Fusaro G, D’Alessandro F, Baldinelli G, Kang J. Design of urban furniture to enhance the soundscape: a case study. Building Acoustics. 2018;25(1):61–75.CrossRefGoogle Scholar
  25. 25.
    Guillaume G, Can A, Petit G, Fortin N, Palominos S, Gauvreau B, et al. Noise mapping based on participative measurements. Noise Mapping. 2016;3:140–56.CrossRefGoogle Scholar
  26. 26.
    Hammer MS, Swinburn TK, Neitzel RL. Environmental noise pollution in the United States: developing an effective public health response. Environ Health Perspect. 2014;122(2):115–9.Google Scholar
  27. 27.
    Hong JY, Jeon JY. Designing sound and visual components for enhancement of urban soundscapes. J Acoust Soc Am. 2013;134:2026–36.CrossRefGoogle Scholar
  28. 28.
    Hong J, Lam B, Ong Z, Gupta R, Gan W, Chong SH, Feng J. Appropriate levels of natural sounds to enhance soundscapes in urban areas, Proceedings of Internoise 2017, Hong Kong, China, 27- 30 August 2017.Google Scholar
  29. 29.
    International Organization of Standardization. ISO 12913-1, acoustics—soundscape—part 1: definition and conceptual Framework; 2014.Google Scholar
  30. 30.
    Jennings P, Cain R. A framework for improving urban soundscapes. Appl Acoust. 2013;74:293–9.CrossRefGoogle Scholar
  31. 31.
    Kardous CA, Shaw PB. Evaluation of smartphone sound measurement applications. J Acoust Soc Am. 2014;135(4):EL186–92.CrossRefGoogle Scholar
  32. 32.
    Kardous CA, Shaw PB. Evaluation of smartphone sound measurement applications (apps) using external microphones—a follow-up study. J Acoust Soc Am. 2016;140(4):EL327–33.CrossRefGoogle Scholar
  33. 33.
    Kogan P, Turra B, Arenas JP, Hinalaf M. A comprehensive methodology for the multidimensional and synchronic data collecting in soundscape. Sci Total Environ. 2017;580:1068–77.CrossRefGoogle Scholar
  34. 34.
    Kuwano S, Kato N, Hellbrueck J. Memory of the loudness of sounds and its relation to overall impression. Proceedings of Forum Acusticum 2002, Seville, Spain, 6–20 September 2002.Google Scholar
  35. 35.
    Lavandier C, Delaitre P. Individual and shared representations on “zones calmes” (“quiet areas”) among the French population in urban context. Appl Acoust. 2015;99:135–44.CrossRefGoogle Scholar
  36. 36.
    Laze K. Findings from measurements of noise levels in indoor and outdoor environments in an expanding urban area: a case of Tirana. Noise Mapping. 2017;4:45–56.CrossRefGoogle Scholar
  37. 37.
    Lee PJ, Hong JY, Jeon JY. Assessment of rural soundscapes with high-speed train noise. Sci Total Environ. 2014;482-483:432–9.CrossRefGoogle Scholar
  38. 38.
    Leung TM, Xu JM, Chau CK, Tang SK. Effects of visual environment with multiple environmental features on noise annoyance induced by road traffic noise. Proceedings of Internoise 2017, Hong Kong, China, 27- 30 August 2017.Google Scholar
  39. 39.
    Liu J, Kang J, Luo T, Behm H. Landscape effects on soundscape experience in city parks. Sci Total Environ. 2013;454-455:474–81.CrossRefGoogle Scholar
  40. 40.
    Ma Alsina-Pagès R, Hernandez-Jayo U, Alías F, Angulo I. Design of a Mobile low-cost sensor network using urban buses for real-time ubiquitous noise monitoring. Sensors. 2017;17:57–77.CrossRefGoogle Scholar
  41. 41.
    Maffei L, Masullo M, Aletta F, Di Gabriele M. The influence of visual characteristics of barriers on railway noise perception. Sci Total Environ. 2013;445-446:41–7.CrossRefGoogle Scholar
  42. 42.
    Manvell D, Ballarin Marcos L, Stapelfeldt H, Sanz R. SADMAM—combining measurements and calculations to map noise in Madrid. Proocedings of Internoise 2004, Prague, Czech Republic, 22–25 August 2004.Google Scholar
  43. 43.
    Maria G, Sanchez E, Van Renterghem T, Sun K, De Coensel B, Botteldooren D. Personal factors affecting the audio-visual perception of the urban public space. Proceedings of Internoise 2017, Hong Kong, China, 27- 30 August 2017.Google Scholar
  44. 44.
    Meng Q, Kang J. Effect of sound-related activities on human behaviours and acoustic comfort in urban open spaces. Sci Total Environ. 2016;573:481–93.CrossRefGoogle Scholar
  45. 45.
    Mietlicki F, Mietlicki C, Sineau M. An innovative approach for long-term environmental noise measurement: RUMEUR network. Proceedings of EuroNoise 2015, Maastrich, The Netherlands, 31 May– 3 June 2015.Google Scholar
  46. 46.
    Murphy E, King EA. Environmental noise pollution: noise mapping, public health and policy. Amsterdam: Elsevier; 2014.CrossRefGoogle Scholar
  47. 47.
    Murphy E, King EA. Smartphone-based noise mapping: integrating sound level meter app data into the strategic noise mapping process. Sci Total Environ. 2016;562:852–9.CrossRefGoogle Scholar
  48. 48.
    Murphy E, King EA. Testing the accuracy of smartphones and sound level meter applications for measuring environmental noise. Appl Acoust. 2016;106:16–22.CrossRefGoogle Scholar
  49. 49.
    Nast DR, Speer WS, Le Prell CG. Sound level measurements using smartphone “apps”: useful or inaccurate? Noise Health. 2014;16:251–6.CrossRefGoogle Scholar
  50. 50.
    Nencini L, Dynamap monitoring network hardware development, proceedings of the 22nd International Congress on Sound and Vibration ICSV22, Florence, Italy, 12–16 July 2015.Google Scholar
  51. 51.
    Ottoz E, Rizzi L, Nastasi F. Recreational noise: impact and costs for annoyed residents in Milan and Turin. Appl Acoust. 2018;133:173–81.CrossRefGoogle Scholar
  52. 52.
    Pheasant RJ, Fisher MN, Watts GR, Whitaker DJ, Horoshenkov KV. The importance of auditory-visual interaction in the construction of “tranquil space”. J Environ Psychol. 2010;30:501–9.CrossRefGoogle Scholar
  53. 53.
    Preis A, Kociński J, Hafke-Dys H, Wrzosek M. Audio-visual interactions in environment assessment. Sci Total Environ. 2015;523:191–200.CrossRefGoogle Scholar
  54. 54.
    Radicchi A, Henckel D, Memmel M. Citizens as smart, active sensors for the quiet and just city. The case of the “open source soundscapes” approach to identify, assess and plan “everyday quiet areas” in cities. Noise Mapping. 2018;5:1–20.CrossRefGoogle Scholar
  55. 55.
    Rana R, Chou CT, Bulusu N, Kanhere S, Hu W. Ear-phone: a context-aware noise mapping using smart phones. Pervasive Mob Comput. 2015;17 Part A:1–22.CrossRefGoogle Scholar
  56. 56.
    Schafer RM. The soundscape: our sonic environment and the tuning of the world. Toronto: McClelland & Stewart Ltd; 1977.Google Scholar
  57. 57.
    Sevillano X, Socoró JC, Alías F, Bellucci P, Peruzzi L, Radaelli S, et al. DYNAMAP—development of low cost sensors networks for real time noise mapping. Noise Mapping. 2016;3:172–89.CrossRefGoogle Scholar
  58. 58.
    Socoró JC, Alías F, Ma Alsina-Pagès R. An anomalous noise events detector for dynamic road traffic noise mapping in real-life urban and suburban environments. Sensors. 2017;17:2323–47.CrossRefGoogle Scholar
  59. 59.
    Statista. Number of smartphone users worldwide from 2014 to 2020 (in billions) https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide. Accessed 12 Feb 2018.
  60. 60.
    Szczodrak M, Czyzewski A, Kotus A, Kostek A. Frequently updated noise threat maps created with use of supercomputing grid. Noise Mapping. 2014;1:32–9.CrossRefGoogle Scholar
  61. 61.
    Szeremeta B, Zannin PH. Analysis and evaluation of soundscapes in public parks through interviews and measurement of noise. Sci Total Environ. 2009;407:6143–9.CrossRefGoogle Scholar
  62. 62.
    United Nations, Department of Economic and Social Affairs, Population Division World Urbanization Prospects: The 2014 revision, Highlights (ST/ESA/SER.A/352), 2014.Google Scholar
  63. 63.
    Van Renterghem T, Botteldooren D. View on outdoor vegetation reduces noise annoyance for dwellers near busy roads. Landscape Urban Plan. 2016;148:203–15.CrossRefGoogle Scholar
  64. 64.
    Vinci B, Tonacci A, Caudai C, De Rosa P, Nencini L, Pratali L. The SENSEable Pisa Project: citizen-participation in monitoring acoustic climate of Mediterranean city centers. Clean—Soil, Air, Water. 2017;45(7):1600137. 8 pagesCrossRefGoogle Scholar
  65. 65.
    Viollon S, Lavandier C, Drake C. Influence of visual setting on sound ratings in an urban environment. Appl Acoust. 2002;63:493–511.CrossRefGoogle Scholar
  66. 66.
    Wei W, Van Renterghem T, De Coensel B, Botteldooren D. Dynamic noise mapping: a map-based interpolation between noise measurements with high temporal resolution. Appl Acoust. 2016;101:127–40.CrossRefGoogle Scholar
  67. 67.
    World Health Organization, Regional Office for Europe, Burden of disease from environmental noise, 2011.Google Scholar
  68. 68.
    Yang W, Kang J. Acoustic comfort evaluation in urban open public spaces. Appl Acoust. 2005;66(2):211–29.CrossRefGoogle Scholar
  69. 69.
    Yu CJ, Kang J. Soundscape in the sustainable living environment: a cross-cultural comparison between the UK and Taiwan. Sci Total Environ. 2014;482-483:501–9.CrossRefGoogle Scholar
  70. 70.
    Zambon G, Benocci R, Bisceglie A, Roman HE, Bellucci P. The LIFE DYNAMAP project: towards a procedure for dynamic noise mapping in urban areas. Appl Acoust. 2017;124:52–60.CrossRefGoogle Scholar
  71. 71.
    Zamora W, Calafate CT, Cano JC, Manzoni P. A survey on smartphone-based crowdsensing solutions. Mob Inf Syst. 2016, Article ID 9681842, 26 pages.Google Scholar
  72. 72.
    Zamora W, Calafate CT, Cano JC, Manzoni P. Accurate ambient noise assessment using smartphones. Sensors. 2017;17:917–34.CrossRefGoogle Scholar
  73. 73.
    Zuo J, Xia H, Liu S, Qiao Y. Mapping urban environmental noise using smartphones. Sensors. 2016;16:1692–709.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EngineeringUniversity Roma TreRomeItaly
  2. 2.Metexis srlPerugiaItaly

Personalised recommendations