Contamination, Fate and Management of Metals in Shooting Range Soils—a Review

Abstract

Pollution of shooting range soils by lead from bullets represents a widespread and potentially significant concern for impact on the environment. High concentrations of lead in particular are reported in bullet impact berms and shot fall zones. The other components of bullets used in shooting including antimony, copper and zinc may also be present at elevated concentrations. Antimony is a concern due to its mobility in the environment. It has been recognised that the status of contamination is important for the risk presented by shooting ranges. Lead bullets are subject to weathering in the soil, forming secondary minerals, which may be solubilised and may release lead and co-contaminants into the soil. The mobility and availability of contaminants in the soil affect their potential for spreading in the environment and for uptake and toxicity in organisms. Soil physicochemical properties affect bullet weathering and availability of contaminants in the soil. A number of strategies have been researched for management of shooting range pollution such as chemical stabilisation, phytoremediation and soil washing. This review considers the current state of knowledge and research of contamination and management of shooting ranges from recent literature (2014–2017) reflecting on new knowledge and novel management strategies for shooting range soil management. Ultimately, management of pollution in shooting range soils should seek to remove bullets from soil, reduce the weathering of bullets and reduce the mobility and bioavailability of contaminants. Adopted management practices should be based an understanding of site-specific condition, to achieve the most optimal outcome.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Adler A, Devarajan N, Wildi W, Poté J. Metal distribution and characterization of cultivable lead-resistant bacteria in shooting range soils. Soil Sed Contam. 2016; 18;25(4):378–94.

  2. 2.

    Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS. Role of assisted natural remediation in environmental cleanup. Geoderma. 2004;122(2–4):121–42. https://doi.org/10.1016/j.geoderma.2004.01.003.

    Article  CAS  Google Scholar 

  3. 3.

    Ahmad M, Lee SS, Lee SE, Al-Wabel MI, Tsang DCW, Ok YS. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J Soils Sed. 2017;17(3):717–30. https://doi.org/10.1007/s11368-015-1339-4.

    Article  CAS  Google Scholar 

  4. 4.

    Ahmad M, Lee SS, Lim JE, Lee S-E, Cho JS, Moon DH, et al. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere. 2014;95:433–41. https://doi.org/10.1016/j.chemosphere.2013.09.077.

    Article  CAS  Google Scholar 

  5. 5.

    Ahmad M, Lee SS, Moon DH, Yang JE, Ok YS. A review of environmental contamination and remediation strategies for heavy metals at shooting range soils. In: Malik A, Grohmann E, editors. Environmental protection strategies for sustainable development. Dordrecht: Springer Netherlands; 2012. p. 437–51.

    Google Scholar 

  6. 6.

    Ahmad M, Ok YS, Rajapaksha AU, Lim JE, Kim B-Y, Ahn J-H, et al. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J Hazard Mater. 2016;301:179–86. https://doi.org/10.1016/j.jhazmat.2015.08.029.

    Article  CAS  Google Scholar 

  7. 7.

    Almaroai YA, Usman AR, Ahmad M, Moon DH, Cho JS, Joo YK, Jeon C, Lee SS and Ok YS. Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environmental Earth Sciences. 2014;71(3), pp. 1289–1296

  8. 8.

    Arenas-Lago D, Rodríguez-Seijo A, Lago-Vila M, Couce LA, Vega FA. Using Ca 3 (PO4)2 nanoparticles to reduce metal mobility in shooting range soils. Sci Total Environ 2016;571:1136–1146. doi:https://doi.org/10.1016/j.scitotenv.2016.07.108, Using Ca 3 (PO 4 ) 2 nanoparticles to reduce metal mobility in shooting range soils

  9. 9.

    Ayanka Wijayawardena MA, Naidu R, Megharaj M, Lamb D, Thavamani P, Kuchel T. Using soil properties to predict in vivo bioavailability of lead in soils. Chemosphere. 2015;138:422–8.

    Article  CAS  Google Scholar 

  10. 10.

    Bandara T, Vithanage M. Phytoremediation of shooting range soils. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L, editors. Phytoremediation. Cham: Springer International Publishing; 2016. p. 469–488.

  11. 11.

    Bannon DI, Drexler JW, Fent GM, Casteel SW, Hunter PJ, Brattin WJ, et al. Evaluation of small arms range soils for metal contamination and lead bioavailability. Environ Sci Technol. 2009;43(24):9071–6. https://doi.org/10.1021/es901834h.

    Article  CAS  Google Scholar 

  12. 12.

    Bolan NS, Adriano DC, Naidu R. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol. New York, NY: Springer New York; 2003. p. 1–44.

  13. 13.

    Cao X, Ma L, Liang Y, Gao B, Harris W. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol. 2011;45(11):4884–9. https://doi.org/10.1021/es103752u.

    Article  CAS  Google Scholar 

  14. 14.

    Cao X, Ma LQ, Chen M, Hardison DW, Harris WG. Weathering of lead bullets and their environmental effects at outdoor shooting ranges. J Environ Qual. 2003;32(2):526. https://doi.org/10.2134/jeq2003.5260.

    Article  CAS  Google Scholar 

  15. 15.

    Conesa HM, Wieser M, Studer B, González-Alcaraz MN, Schulin R. A critical assessment of soil amendments (slaked lime/acidic fertilizer) for the phytomanagement of moderately contaminated shooting range soils. J Soils Sed. 2012;12(4):565–75. https://doi.org/10.1007/s11368-012-0478-0.

    Article  CAS  Google Scholar 

  16. 16.

    Etim EU. Distribution of soil-bound lead arising from rainfall-runoff events at impact berm of a military shooting range. J Environ Prot. 2016;7(05):623–34.

    Article  CAS  Google Scholar 

  17. 17.

    Etim EU. Lead removal from contaminated shooting range soil using acetic acid potassium chloride washing solutions and electrochemical reduction. J Health Pollut. 2017;7(13):22–31. https://doi.org/10.5696/2156-9614-7-13.22.

    Article  Google Scholar 

  18. 18.

    Fayiga AO, Saha U. The effect of bullet removal and vegetation on mobility of Pb in shooting range soils. Chemosphere. 2016a;160:252–7. https://doi.org/10.1016/j.chemosphere.2016.06.098.

    Article  CAS  Google Scholar 

  19. 19.

    Fayiga AO, Saha UK. Soil pollution at outdoor shooting ranges: health effects, bioavailability and best management practices. Environ Pollut. 2016b;216:135–45. https://doi.org/10.1016/j.envpol.2016.05.062.

    Article  CAS  Google Scholar 

  20. 20.

    Fayiga AO, Saha UK. Effect of phosphate treatment on Pb leachability in contaminated shooting range soils. Soil Sed Contam. 2017;26(1):115–26. https://doi.org/10.1080/15320383.2017.1245712.

    CAS  Article  Google Scholar 

  21. 21.

    Golden NH, Warner SE, Coffey MJ. A review and assessment of spent lead ammunition and its exposure and effects to scavenging birds in the United States. In: de Voogt WP, editor Rev Environ Contam 2016. Volume 237. Cham: Springer International Publishing; p. 123–191.

  22. 22.

    Guo J, Hua B, Li N, Yang J. Stabilizing lead bullets in shooting range soil by phosphate-based surface coating. AIMS Environ Sci. 2016;3(3):474–87.

    Article  CAS  Google Scholar 

  23. 23.

    Guemiza K, Mercier G, Blais JF. Pilot-scale counter-current acid leaching process for Cu, Pb, Sb, and Zn from small-arms shooting range soil. J Soils Sed. 2014;14(8):1359–69. https://doi.org/10.1007/s11368-014-0880-x.

    Article  CAS  Google Scholar 

  24. 24.

    Hockmann K, Tandy S, Lenz M, Reiser R, Conesa HM, Keller M, et al. Antimony retention and release from drained and waterlogged shooting range soil under field conditions. Chemosphere. 2015;134:536–43. https://doi.org/10.1016/j.chemosphere.2014.12.020.

    Article  CAS  Google Scholar 

  25. 25.

    Igalavithana AD, Lee S-E, Lee YH, Tsang DCW, Rinklebe J, Kwon EE, et al. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere. 2017;174:593–603. https://doi.org/10.1016/j.chemosphere.2017.01.148.

    Article  CAS  Google Scholar 

  26. 26.

    Islam MN, Nguyen XP, Jung HY, Park JH. Chemical speciation and quantitative evaluation of heavy metal pollution hazards in two army shooting range backstop soils. Bull Environ Contam Toxicol. 2016;96(2):179–85.

    Article  CAS  Google Scholar 

  27. 27.

    Islam MN, Park J-H. Immobilization and reduction of bioavailability of lead in shooting range soil through hydrothermal treatment. J Environ Manag. 2017;191:172–8. https://doi.org/10.1016/j.jenvman.2017.01.017.

    Article  CAS  Google Scholar 

  28. 28.

    Johnson CA, Moench H, Wersin P, Kugler P, Wenger C. Solubility of antimony and other elements in samples taken from shooting ranges. J Environ Qual. 2005 Jan 1;34(1):248–54.

    CAS  Google Scholar 

  29. 29.

    Katoh M, Hashimoto K, Sato T. Lead and antimony removal from contaminated soil by phytoremediation combined with an immobilization material. CLEAN–Soil, Air, Water. 2016 Dec 1;44(12):1717–24.

    Article  CAS  Google Scholar 

  30. 30.

    Kelebemang R, Dinake P, Sehube N, Daniel B, Totolo O, Laetsang M. Speciation and mobility of lead in shooting range soils. Chem Speciat Bioavailab. 2017;29(1):143–52.

    Article  CAS  Google Scholar 

  31. 31.

    Kilgour DW, Moseley RB, Barnett MO, Savage KS, Jardine PM. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil. J Environ Qual. 2008;37(5):1733. https://doi.org/10.2134/jeq2007.0409.

    Article  CAS  Google Scholar 

  32. 32.

    Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag. 2008;28(1):215–25. https://doi.org/10.1016/j.wasman.2006.12.012.

    Article  CAS  Google Scholar 

  33. 33.

    Lafond S, Blais J-F, Mercier G, Martel R. A counter-current acid leaching process for the remediation of contaminated soils from a small-arms shooting range. Soil Sed Contam. 2014;23(2):194–210. https://doi.org/10.1080/15320383.2014.808171.

    CAS  Article  Google Scholar 

  34. 34.

    Lewis J, Sjöström J, Skyllberg U, Hägglund L. Distribution, chemical speciation, and mobility of lead and antimony originating from small arms ammunition in a coarse-grained unsaturated surface sand. J Environ Qual. 2010;39(3):863. https://doi.org/10.2134/jeq2009.0211.

    Article  CAS  Google Scholar 

  35. 35.

    Lehmann J, Joseph S, editors. Biochar for environmental management: science, technology and implementation. Routledge; 2015 Feb 20.

  36. 36.

    Lewińska K, Karczewska A, Siepak M, Gałka B, Stysz M, Kaźmierowski C. Recovery and leachability of antimony from mine-and shooting range soils. Journal of Elementology. 2017 Mar 1;22(1):79–90.

    Google Scholar 

  37. 37.

    Li Y, Zhu Y, Zhao S, Liu X. The weathering and transformation process of lead in China’s shooting ranges. Environ Sci: Process Impacts. 2015;17(9):1620–33. https://doi.org/10.1039/C5EM00022J.

    CAS  Article  Google Scholar 

  38. 38.

    Liu Y, Fang Z, Xie C, Li J. Analysis of Existing Speciation and Evaluation of Heavy Metals Pollution of Soil in a Shooting Range. Nature Environment and Pollution Technology. 2014 Sep 1;13(3):449.

    CAS  Google Scholar 

  39. 39.

    Liu R, Gress J, Gao J, Ma LQ. Impacts of two best management practices on Pb weathering and leachability in shooting range soils. Environ Monit Assess. 2013;185(8):6477–84. https://doi.org/10.1007/s10661-012-3039-5.

    Article  CAS  Google Scholar 

  40. 40.

    Liu Y, Yan Y, Seshadri B, Qi F, Xu Y, Bolan N, et al. Immobilization of lead and copper in aqueous solution and soil using hydroxyapatite derived from flue gas desulphurization gypsum. J Geochem Explor. 2016;184:239–46.

    Article  CAS  Google Scholar 

  41. 41.

    Luo W, Verweij RA, van Gestel CAM. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods. Environ Pollut 2014;185:1–9. doi:https://doi.org/10.1016/j.envpol.2013.10.017.

  42. 42.

    Ma LQ, Hardison DW, Harris WG, Cao X, Zhou Q. Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water Air Soil Pollut. 2007;178(1–4):297–307. https://doi.org/10.1007/s11270-006-9198-7.

    Article  CAS  Google Scholar 

  43. 43.

    Mariussen E, Johnsen IV, Strømseng AE. Selective adsorption of lead, copper and antimony in runoff water from a small arms shooting range with a combination of charcoal and iron hydroxide. Journal of Environmental Management. 2015;150:281–7.

    Article  CAS  Google Scholar 

  44. 44.

    Mariussen E, Johnsen IV, Strømseng AE. Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires. Environ Sci Pollut Res. 2017a;24(11):10182–96. https://doi.org/10.1007/s11356-017-8647-8.

    Article  CAS  Google Scholar 

  45. 45.

    Mariussen E, Heier LS, Teien HC, Pettersen MN, Holth TF, Salbu B et al. Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range. Ecotoxicol Environ Saf 2017c;135:327–36.

  46. 46.

    Mariussen E, Johnsen IV, Strømseng AE. Application of sorbents in different soil types from small arms shooting ranges for immobilization of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb). J Soil Sed. 2017b:1–1.

  47. 47.

    Martin WA, Nestler CC, Wynter M, Larson SL. Bullet on bullet fragmentation profile in soils. J Environ Manag. 2014;15(146):369–72.

    Article  CAS  Google Scholar 

  48. 48.

    McGowen SL, Basta NT, Brown GO. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual. 2001;30(2):493. https://doi.org/10.2134/jeq2001.302493x.

    Article  CAS  Google Scholar 

  49. 49.

    McLaren RG, Rooney CP, Condron LM. Control of lead solubility in soil contaminated with lead shot: effect of soil moisture and temperature. Aust J Soil Res. 2009;47(3):296. https://doi.org/10.1071/SR08195.

    Article  CAS  Google Scholar 

  50. 50.

    McTee MR, Mummey DL, Ramsey PW, Hinman NW. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges. Sci Total Environ. 2016;539:546–50. https://doi.org/10.1016/j.scitotenv.2015.08.121.

    Article  CAS  Google Scholar 

  51. 51.

    Moseley RA, Barnett MO, Stewart MA, Mehlhorn TL, Jardine PM, Ginder-Vogel M, et al. Decreasing lead bioaccessibility in industrial and firing range soils with phosphate-based amendments. J Environ Qual. 2008;37(6):2116. https://doi.org/10.2134/jeq2007.0426.

    Article  CAS  Google Scholar 

  52. 52.

    Naidu, R. “Bioavailability: Definition, assessment and implications for risk assessment.” Chapter 3, Developments in soil science, Elsevier, Amsterdam, Netherlands, 39–51, 2008.

  53. 53.

    Ogawa S, Katoh M, Sato T. Simultaneous lead and antimony immobilization in shooting range soil by a combined application of hydroxyapatite and ferrihydrite. Environ Technol. 2015;36(20):2647–56. https://doi.org/10.1080/09593330.2015.1042071.

    Article  CAS  Google Scholar 

  54. 54.

    Okkenhaug G, Grasshorn Gebhardt K-A, Amstaetter K, Lassen Bue H, Herzel H, Mariussen E, et al. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. J Hazard Mater. 2016;307:336–43. https://doi.org/10.1016/j.jhazmat.2016.01.005.

    Article  CAS  Google Scholar 

  55. 55.

    Okkenhaug G, Smebye AB, Pabst T, Amundsen CE, Sævarsson H, Breedveld GD. Shooting range contamination: mobility and transport of lead (Pb), copper (Cu) and antimony (Sb) in contaminated peatland. J Soils Sed. 2017; https://doi.org/10.1007/s11368-017-1739-8.

  56. 56.

    Pain DJ, Cromie R, Green RE. Poisoning of birds and other wildlife from ammunition-derived lead in the UK. In Oxford Lead Symposium 2014 Dec 10 (p. 58).

  57. 57.

    Park JH, Bolan NS, Chung JW, Naidu R, Megharaj M. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils. J Environ Monit. 2011a;13(8):2234–42. https://doi.org/10.1039/c1em10275c.

    Article  CAS  Google Scholar 

  58. 58.

    Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011b;348(1–2):439–51. https://doi.org/10.1007/s11104-011-0948-y.

    Article  CAS  Google Scholar 

  59. 59.

    Peddicord RK, LaKind JS. Ecological and human health risks at an outdoor firing range. Environ Toxicol Chem. 2000;19(10):2602–13. https://doi.org/10.1002/etc.5620191029.

    Article  CAS  Google Scholar 

  60. 60.

    Perroy RL, Belby CS, Mertens CJ. Mapping and modeling three dimensional lead contamination in the wetland sediments of a former trap-shooting range. Sci Total Environ. 2014;487:72–81. https://doi.org/10.1016/j.scitotenv.2014.03.102.

    Article  CAS  Google Scholar 

  61. 61.

    Qi F, Dong Z, Lamb D, Naidu R, Bolan NS, Ok YS, et al. Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere. 2017;180:564–73. https://doi.org/10.1016/j.chemosphere.2017.04.014.

    Article  CAS  Google Scholar 

  62. 62.

    Rajapaksha AU, Ahmad M, Vithanage M, Kim K-R, Chang JY, Lee SS, et al. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environ Geochem Health. 2015;37(6):931–42. https://doi.org/10.1007/s10653-015-9694-z.

    Article  CAS  Google Scholar 

  63. 63.

    Rinklebe J, Shaheen SM, Frohne T. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere. 2016;142:41–7. https://doi.org/10.1016/j.chemosphere.2015.03.067.

    Article  CAS  Google Scholar 

  64. 64.

    Rodríguez-Seijo A, Alfaya MC, Andrade ML, Vega FA. Copper, chromium, nickel, lead and zinc levels and pollution degree in firing range soils. Land Degrad Dev. 2016a;27(7):1721–30.

    Article  Google Scholar 

  65. 65.

    Rodríguez-Seijo A, Lago-Vila M, Andrade ML, Vega FA. Pb pollution in soils from a trap shooting range and the phytoremediation ability of Agrostis capillaris L. Environ Sci Pollut Res. 2016b;23(2):1312–23. https://doi.org/10.1007/s11356-015-5340-7.

    Article  CAS  Google Scholar 

  66. 66.

    Rodríguez-Seijo A, Cachada A, Gavina A, Duarte AC, Vega FA, Andrade ML, et al. Lead and PAHs contamination of an old shooting range: a case study with a holistic approach. Sci Total Environ. 2017;575:367–77. https://doi.org/10.1016/j.scitotenv.2016.10.018.

    Article  CAS  Google Scholar 

  67. 67.

    Rubio M, Germanier A, Mera MF, Faudone SN, Sbarato RD, Campos JM, et al. Study of lead levels in soils by weathering of metallic Pb bullets used in dove hunting in CÃ3rdoba, Argentina. X-Ray Spectrometry. 2014;43(3):186–92.

    Article  CAS  Google Scholar 

  68. 68.

    Sanderson P, Naidu R, Bolan N, Bowman M. Critical review on chemical stabilization of metal contaminants in shooting range soils. J Hazard Toxic Radioact Waste. 2012a;16(3):258–72. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000113.

    Article  CAS  Google Scholar 

  69. 69.

    Sanderson P, Naidu R, Bolan N, Bowman M, McLure S. Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Sci Total Environ. 2012b;438:452–62. https://doi.org/10.1016/j.scitotenv.2012.08.014.

    Article  CAS  Google Scholar 

  70. 70.

    Sanderson P, Naidu R, Bolan N. Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils. Ecotoxicol Environ Saf. 2014;100:201–8. https://doi.org/10.1016/j.ecoenv.2013.11.003.

    Article  CAS  Google Scholar 

  71. 71.

    Sanderson P, Naidu R, Bolan N. Effectiveness of chemical amendments for stabilisation of lead and antimony in risk-based land management of soils of shooting ranges. Environ Sci Pollut Res. 2015a;22(12):8942–56.

    Article  CAS  Google Scholar 

  72. 72.

    Sanderson P, Naidu R, Bolan N, Lim JE, Ok YS. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: synchrotron investigation. J Hazard Mater. 2015b;299:395–403. https://doi.org/10.1016/j.jhazmat.2015.06.056.

    Article  CAS  Google Scholar 

  73. 73.

    Sanderson P, Naidu R, Bolan N. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils. J Environ Manag. 2016;170:123–30. https://doi.org/10.1016/j.jenvman.2016.01.017.

    Article  CAS  Google Scholar 

  74. 74.

    Sanderson P, Naidu R, Bolan N. Application of a biodegradable chelate to enhance subsequent chemical stabilisation of Pb in shooting range soils. J Soils Sed. 2017;17(6):1696–705. https://doi.org/10.1007/s11368-016-1608-x.

    Article  CAS  Google Scholar 

  75. 75.

    Scheetz CD, Donald Rimstidt J. Dissolution, transport, and fate of lead on a shooting range in the Jefferson National Forest near Blacksburg, VA, USA. Environ Geol. 2009;58(3):655–65. https://doi.org/10.1007/s00254-008-1540-5.

    Article  CAS  Google Scholar 

  76. 76.

    Sehube N, Kelebemang R, Totolo O, Laetsang M, Kamwi O, Dinake P. Lead pollution of shooting range soils. S Afr J Chem. 2017;70 https://doi.org/10.17159/0379-4350/2017/v70a4.

  77. 77.

    Seshadri B, Bolan NS, Choppala G, Kunhikrishnan A, Sanderson P, Wang H, et al. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere. 2017;184:197–206. https://doi.org/10.1016/j.chemosphere.2017.05.172.

    Article  CAS  Google Scholar 

  78. 78.

    Smith E, Weber J, Naidu R, McLaren RG, Juhasz AL. Assessment of lead bioaccessibility in peri-urban contaminated soils. J Hazard Mater. 2011;186(1):300–5. https://doi.org/10.1016/j.jhazmat.2010.10.111.

    Article  CAS  Google Scholar 

  79. 79.

    Sorvari J, Antikainen R, Pyy O. Environmental contamination at Finnish shooting ranges—the scope of the problem and management options. Sci Total Environ. 2006;366(1):21–31. https://doi.org/10.1016/j.scitotenv.2005.12.019.

    Article  CAS  Google Scholar 

  80. 80.

    Spuller C, Weigand H, Marb C. Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity. J Hazard Mater. 2007;141(2):378–87. https://doi.org/10.1016/j.jhazmat.2006.05.082.

    Article  CAS  Google Scholar 

  81. 81.

    Stauffer M, Pignolet A, Alvarado JC. Persistent mercury contamination in shooting range soils: the legacy from former primers. Bull Environ Contam Toxicol 2017; 1;98(1):14–21.

  82. 82.

    Tandy S, Meier N, Schulin R. Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils. J Hazard Mater. 2017;324:617–25. https://doi.org/10.1016/j.jhazmat.2016.11.034.

    Article  CAS  Google Scholar 

  83. 83.

    Tariq SR, Ashraf A. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arab J Chem. 2016. 1;9(6):806–14.

  84. 84.

    Uchimiya M, Bannon DI, Wartelle LH. Retention of heavy metals by carboxyl functional groups of Biochars in small arms range soil. J Agric Food Chem. 2012a;60(7):1798–809. https://doi.org/10.1021/jf2047898.

    Article  CAS  Google Scholar 

  85. 85.

    Uchimiya M, Bannon DI, Wartelle LH, Lima IM, Klasson KT. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature. J Agric Food Chem. 2012b;60(20):5035–44. https://doi.org/10.1021/jf300825n.

    Article  CAS  Google Scholar 

  86. 86.

    Urrutia-Goyes R, Mahlknecht J, Argyraki A, Ornelas-Soto N. Trace element soil contamination at a former shooting range in Athens, Greece. Geoderma Regional. 2017;10:191–9.

    Article  Google Scholar 

  87. 87.

    USEPA (2005): Best Management Practices for Lead at Outdoor Shooting Ranges. Division of Enforcement and Compliance Assistance, New York, NY, EPA 902/B-01-001

  88. 88.

    Valipour M, Shahbazi K, Khanmirzaei A. Chemical immobilization of lead, cadmium, copper, and nickel in contaminated soils by phosphate amendments: soil. CLEAN—Soil, Air, Water. 2016;44(5):572–8. https://doi.org/10.1002/clen.201300827.

    Article  CAS  Google Scholar 

  89. 89.

    Vantelon D, Lanzirotti A, Scheinost AC, Kretzschmar R. Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy. Environ Sci Technol. 2005;39(13):4808–15. https://doi.org/10.1021/es0482740.

    Article  CAS  Google Scholar 

  90. 90.

    Vithanage M, Herath I, Almaroai YA, Rajapaksha AU, Huang L, Sung J-K, et al. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil. Environmental Geochemistry and Health. 2017;39(6):1409–20.

    Article  CAS  Google Scholar 

  91. 91.

    Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, et al. Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol. 2015;177:308–17. https://doi.org/10.1016/j.biortech.2014.11.077.

    Article  CAS  Google Scholar 

  92. 92.

    Xie ZM, Chen J, Naidu R. Not all phosphate fertilizers immobilize lead in soils. Water Air Soil Pollut. 2013;224(12) https://doi.org/10.1007/s11270-013-1712-0.

  93. 93.

    Yan K, Dong Z, Wijayawardena MAA, Liu Y, Naidu R, Semple K. Measurement of soil lead bioavailability and influence of soil types and properties: a review. Chemosphere. 2017;184:27–42. https://doi.org/10.1016/j.chemosphere.2017.05.143.

    Article  CAS  Google Scholar 

  94. 94.

    Yan Y, Qi F, Seshadri B, Xu Y, Hou J, Ok YS, et al. Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil. Chemosphere. 2016;162:315–23. https://doi.org/10.1016/j.chemosphere.2016.07.068.

    Article  CAS  Google Scholar 

  95. 95.

    Yin X, Saha UK, Ma LQ. Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida. J Hazard Mater. 2010;179(1–3):895–900. https://doi.org/10.1016/j.jhazmat.2010.03.089.

    Article  CAS  Google Scholar 

  96. 96.

    Yoo J-C, Shin Y-J, Kim E-J, Yang J-S, Baek K. Extraction mechanism of lead from shooting range soil by ferric salts. Process Saf Environ Prot. 2016;103:174–82. https://doi.org/10.1016/j.psep.2016.07.002.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Sanderson.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Land Pollution

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanderson, P., Qi, F., Seshadri, B. et al. Contamination, Fate and Management of Metals in Shooting Range Soils—a Review. Curr Pollution Rep 4, 175–187 (2018). https://doi.org/10.1007/s40726-018-0089-5

Download citation

Keywords

  • Lead
  • Antimony
  • Shooting ranges
  • Chemical stabilisation