Skip to main content

Desalination of Water: a Review

Abstract

Purpose of Review

In the face of rising water demands and dwindling freshwater supplies, alternative water sources are needed. Desalination of water has become a key to helping meet increasing water needs, especially in water-stressed countries where water obtained by desalination far exceeds supplies from the freshwater sources.

Recent Findings

Recent technological advancements have enabled desalination to become more efficient and cost-competitive on a global scale. This has become possible due to the  improvement in the materials used in membrane-based desalination, incorporation of energy-recovery devices to reduce electricity demands, and combining different desalination methods into hybrid designs. Further, there has been a gradual phasing-in of renewable energy sources to power desalination plants, which will help ensure the long-term sustainability of desalination. However, there are still challenges of reducing energy demands and managing waste products from the desalination to prevent adverse environmental effects.

Summary

This article reviews the history, location, components, costs, and other facets of desalination and summarizes the  new technologies that are set to improve the overall efficiency of the desalination process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Ibrahim AGM, Rashad AM, Dincer I. Exergoeconomic analysis for cost optimization of a solar distillation system. Solar Energy. 2017;151:22–32.

    Article  Google Scholar 

  2. 2.

    Shahzad MW, Burhan M, Ng KC. Pushing desalination recovery to the maximum limit: membrane and thermal processes integration. Desalination. 2017;416:54–64.

    Article  CAS  Google Scholar 

  3. 3.

    Richter BD, Abell D, Bacha A, et al. Tapped out: how can cities secure their water future? Water Policy. 2013;15(3):335–63.

    Article  Google Scholar 

  4. 4.

    Rabinowitz O. Nuclear energy and desalination in Israel. Bull At Sci. 2017;72(1):32–8.

    Article  Google Scholar 

  5. 5.

    Sepehr M, Fatemi SMR, Danehkar M, Moradi AM. Application of Delphi method in site selection of desalination plants. Glob J Environ Sci Manag. 2017;3(1):89–102.

    CAS  Google Scholar 

  6. 6.

    Esfahani IJ, Rashidi J, Ifaei P, Yoo C. Efficient thermal desalination technologies with renewable energy systems: a state-of-the-art review. Korean J Chem Eng. 2016;33(2):351–87.

    Article  CAS  Google Scholar 

  7. 7.

    Nair M, Kumar D. Water desalination and challenges: the Middle East perspective: a review. Desalin Water Treat. 2012;51:10–2.

    Google Scholar 

  8. 8.

    Judd SJ. Membrane technology costs and me. Water Res. 2017;122:1–9.

    Article  CAS  Google Scholar 

  9. 9.

    Nriagu J, Darroudi F, Shomar B. Health effects of desalinated water: role of electrolyte disturbance in cancer development. Environ Res. 2016;150:191–204.

    Article  CAS  Google Scholar 

  10. 10.

    He W, Wang J. Feasibility study of energy storage by concentrating/desalinating water: concentrated water energy storage. Appl Energy. 2017;185(Pt. 1):872–84.

    Article  CAS  Google Scholar 

  11. 11.

    Frank H, Rahav E, Bar-Zeev E. Short-term effects of SWRO desalination brine on benthic heterotrophic microbial communities. Desalination. 2017;417:52–9.

    Article  CAS  Google Scholar 

  12. 12.

    DeNicola E, Aburizaiza OS, Siddique A, Khwaja H, Carpenter DO. Climate change and water scarcity: the case of Saudi Arabia. Ann Globe Health. 2015;81(3):342–53.

    Article  Google Scholar 

  13. 13.

    Blanco-Marigota AM, Lozano-Medina A, Marcos JD. The exergetic efficiency as a performance evaluation tool in reverse osmosis desalination plants in operation. Desalination. 2017;413:19–28.

    Article  CAS  Google Scholar 

  14. 14.

    Xu P, Cath TY, Robertson AP, Reinhard M, Leckie JO, Drewes JE. Critical review of desalination concentrate management, treatment and beneficial use. Environ Eng Sci. 2013;30(8):502–14.

    Article  CAS  Google Scholar 

  15. 15.

    Harandi HB, Rahnama M, Javaran EJ, Asadi A. Performance optimization of a multi stage flash desalination unit with thermal vapor compression using genetic algorithm. Appl Therm Eng. 2017;123:1106–19.

    Article  Google Scholar 

  16. 16.

    Eveloy V, Rodgers P, Qui L. Hybrid gas turbine–organic Rankine cycle for seawater desalination by reverse osmosis in a hydrocarbon production facility. Energy Convers Manag. 2015;106:1134–48.

    Article  CAS  Google Scholar 

  17. 17.

    Jiang SX, Li YN, Ladewig BP. A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ. 2017;595:567–83.

    Article  CAS  Google Scholar 

  18. 18.

    Kämpf J, Clarke B. How robust is the environmental impact assessment process in South Australia? Behind the scenes of the Adelaide seawater desalination project. Mar Policy. 2013;38:500–6.

    Article  Google Scholar 

  19. 19.

    Garud RM, Kore SV, Kore VS, Kulkarni GS. A short review on process and applications of reverse osmosis. Univers J Environ Res Technol. 2011;1(3):233–8.

    Google Scholar 

  20. 20.

    Chong TH, Loo S, Fane AG, Krantz WB. Energy-efficient reverse osmosis desalination: effect of retentate recycle and pump and energy recovery device efficiencies. Desalination. 2015;366:15–31.

    Article  CAS  Google Scholar 

  21. 21.

    Wei QJ, McGovern RK, Lienhard VJH. Saving energy with an optimized two-stage reverse osmosis system. Environ Sci Water Resour Technol. 2017;3:659–70.

    Article  CAS  Google Scholar 

  22. 22.

    Aliewi A, El-Sayed E, Akbar A, Hadi K, Al-Rashed M. Evaluation of desalination and other strategic management options using multi-criteria decision analysis in Kuwait. Desalination. 2017;413:40–51.

    Article  CAS  Google Scholar 

  23. 23.

    Chen X, Zhang Z, Liu L, Cheng R, Shi L, Zheng X. RO applications in China: history, current status, and driving forces. Desalination. 2016;39:185–93.

    Article  CAS  Google Scholar 

  24. 24.

    Wu JN, Jin Q, Wang Y, Tandon P. Theoretical analysis and auxiliary experiment of the optimization of energy recovery efficiency of a rotary energy recovery device. Desalination. 2017;415:1–7.

    Article  CAS  Google Scholar 

  25. 25.

    Sim VST, She Q, Chon TH, Tang CY, Fane AG, Krants WB. Strategic co-location in a hybrid process involving desalination and pressure retarded osmosis (PRO). Membranes. 2013;3(3):98–125.

    Article  CAS  Google Scholar 

  26. 26.

    Zhou J, Wang Y, Duan YW, Tian JJ, Xu SC. Capacity flexibility evaluation of a reciprocating-switcher energy recovery device for SWRO desalination system. Desalination. 2017;416:45–53.

    Article  CAS  Google Scholar 

  27. 27.

    Ning L, Zhongliang L, Li Y, Lixia S. Studies on leakage characteristics and efficiency of a fully-rotary valve energy recovery device by CFD simulation. Desalination. 2017;415:40–8.

    Article  CAS  Google Scholar 

  28. 28.

    Heck N, Adina P, Potts D, et al. Predictors of local support for a seawater desalination plant in a small coastal community. Environ Sci Pol. 2016;66:101–11.

    Article  Google Scholar 

  29. 29.

    Petrik L, Green L, Abegunde AP, Zackon M, Sanusi CY, Barnes J. Desalination and seawater quality at green point, cape town: a study on the effects of marine sewage outfalls. S Afr J Sci. 2017;113(11/12):1–10.

    Article  Google Scholar 

  30. 30.

    Alshahri F. Heavy metal contamination in sand and sediments near to disposal site of reject brine from desalination plant, Arabian Gulf: assessment of environmental pollution. Environ Sci Pollut Res. 2017;24:1821–34.

    Article  CAS  Google Scholar 

  31. 31.

    Alharbi T, Alfaifi H, Almadani SA, El-Sorogy A. Spatial distribution and metal contamination in the coastal sediments of Al-Khafji area, Arabian Gulf, Saudi Arabia. Environ Monit Assess. 2017;189:634–48.

    Article  CAS  Google Scholar 

  32. 32.

    Naser HA. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull. 2013;72:6–13.

    Article  CAS  Google Scholar 

  33. 33.

    Jenkins S, Paduan J, Robets P, Schlenk D, Weis J. Management of brine discharges to coastal waters: recommendations of a Science Advisory Panel (Tech. Report No.694). Southern California Coastal Water Research Project. 2012.

  34. 34.

    Subramani A, Jacangelo JG. Treatment technologies for reverse osmosis concentrate volume minimization: a review. Sep Purif Technol. 2014;122:472–89.

    Article  CAS  Google Scholar 

  35. 35.

    Sanchez AS, Nogueira ABR, Kalid RA. Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops. Desalin. 2015;364:96–107.

    Article  CAS  Google Scholar 

  36. 36.

    Del-Pilar-Ruso Y, Martinez-Garcia E, Gimenews-Casalduero F, Loya-Fernandez A, et al. Benthic community recovery from brine impact after the implementation of mitigation measures. Water Res. 2015;70:325–36.

    Article  CAS  Google Scholar 

  37. 37.

    Ameri M, Eshaghi MS. A novel configuration of reverse osmosis, humidification–dehumidification and flat plate collector: modeling and exergy analysis. Appl Therm Eng. 2016;103:855–73.

    Article  CAS  Google Scholar 

  38. 38.

    Kaner A, Tripler E, Hadas E, Ben-Gal A. Feasibility of desalination as an alternative to irrigation with water high in salts. Desalination. 2017;416:122–8.

    Article  CAS  Google Scholar 

  39. 39.

    Warsinger DM, Tow EW, Nayar KG, Maswadeh LA, Lienhard JH. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Res. 2016;106(1):272–82.

    Article  CAS  Google Scholar 

  40. 40.

    Zhang S, Chung T. Osmotic power production from seawater brine by hollow fiber membrane modules: net power output and optimum operating conditions. AIChE J. 2016;62(4):1216–25.

    Article  CAS  Google Scholar 

  41. 41.

    Husnil YA, Gregorius RH, Riezqa A, Yus DC, Moonyong L. Conceptual designs of integrated process for simultaneous production of potable water, electricity, and salt. Desalination. 2017;409:96–107.

    Article  CAS  Google Scholar 

  42. 42.

    Lin S, Elimelech M. Kinetics and energetics trade-off in reverse osmosis desalination with different configurations. Desalination. 2012;401:42–52.

    Article  CAS  Google Scholar 

  43. 43.

    Blair D, Alexander DT, Couperthwaite SJ, Darestani M, Millar GJ. Enhanced water recovery in the coal seam gas industry using a dual reverse osmosis system. Environ Sci Water Res Technol. 2017;3:278–92.

    Article  CAS  Google Scholar 

  44. 44.

    Shalaby SM. Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: a review. Renew Sust Energ Rev. 2017;73:789–97.

    Article  CAS  Google Scholar 

  45. 45.

    Shukla A, Kant K, Sharma A. Solar still with latent heat energy storage: a review. Innovative Food Sci Emerg Technol. 2017;41:34–46.

    Article  Google Scholar 

  46. 46.

    Sawar J, Mansoor B. Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application. Energy Convers Manag. 2016;120:247–56.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

N.D. wrote the first draft, and G.S.T. contributed to the revision.

Corresponding author

Correspondence to Natasha C. Darre.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the Topical Collection on Water Pollution

Electronic Supplementary Material

ESM 1

(DOCX 742 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darre, N.C., Toor, G.S. Desalination of Water: a Review. Curr Pollution Rep 4, 104–111 (2018). https://doi.org/10.1007/s40726-018-0085-9

Download citation

Keywords

  • Desalination
  • Reverse osmosis
  • Membrane fouling
  • Brine management