Skip to main content

Advertisement

Log in

Causes, Assessment, and Treatment of Nutrient (N and P) Pollution in Rivers, Estuaries, and Coastal Waters

  • Sediment Pollution (P Zhang, Section Editor)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

As a consequence of industrialization, urbanization, and population growth in the past decades, high nutrient concentrations from point and non-point sources in aquatic systems have caused major problems to the water quality in rivers, estuaries, and coastal waters. Although the nutrient pollution due to land use change cannot be ignored, the combined sewer overflows and discharging sites have been important point sources of nutrient pollution. Integrated hydrodynamic, chemical, and biological models developed in recent years, which simulate the nutrient transportation from both point and non-point sources, are useful tools to assist in identifying the transport and fate of nutrients from both point and non-point sources. In this paper, water quality data from published literature were reviewed and analyzed to evaluate nutrient (N and P) pollution in aquatic systems. An integrated monitoring and management plan should be continuously developed in the future to monitor and regulate nutrient discharges from point and non-point sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimassu Z, Langan S, Johnston R, Mekuria W, Amede T. Impacts of soil and water conservation practices on crop yield, run-off, soil loss and nutrient loss in Ethiopia: review and synthesis. Environ Manag. 2017;59(1):87–101.

    Article  Google Scholar 

  2. Allen JI, Holt JT, Blackford J, Proctor R. Error quantification of a high-resolution coupled hydrodynamic-ecosystem coastal-ocean model: part 2. Chlorophyll-a, nutrients and SPM. J Mar Syst. 2007;68(3):381–404.

    Article  Google Scholar 

  3. Amar M, Bauter N, Bonomo J, Burchell A, Dua K, Granton C, et al. Bringing the city of Newark’s stormwater management system into the 21st century. (2014).

  4. Anderson NM, Germain RH, Hall MH. An assessment of forest cover and impervious surface area on family forests in the New York City Watershed. North J Appl For. 2012;29(2):67–73. https://doi.org/10.5849/njaf.11-009.

    Article  Google Scholar 

  5. Antweiler RC, Goolsby DA, Taylor HE. Nutrients in the Mississippi river. Us Geolog Surv Circ Usgs Circ. 1996:73–86.

  6. Appelo CAJ, Postma D. (2004). Geochemistry, groundwater and pollution: CRC press.

  7. Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C. Nutrient dynamics and phytoplankton development along an estuary–coastal zone continuum: a model study. J Mar Syst. 2011;84(3):49–66.

    Article  Google Scholar 

  8. Becouze-Lareure C, Thiebaud L, Bazin C, Namour P, Breil P, Perrodin Y. Dynamics of toxicity within different compartments of a peri-urban river subject to combined sewer overflow discharges. Sci Total Environ. 2016;539:503–14.

    Article  CAS  Google Scholar 

  9. Bonnet M, Wessen K. ELMO, a 3-D water quality model for nutrients and chlorophyll: first application on a lacustrine ecosystem. Ecol Model. 2001;141(1):19–33.

    Article  CAS  Google Scholar 

  10. Brabec E, Schulte S, Richards PL. Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. J Plan Lit. 2002;16(4):499–514.

    Article  Google Scholar 

  11. Cerco CF, Cole T. Three-dimensional eutrophication model of Chesapeake Bay. J Environ Eng. 1993;119(6):1006–1025.

  12. Chaudhary M, Mishra S, Kumar A. Estimation of water pollution and probability of health risk due to imbalanced nutrients in River Ganga, India. Int J River Basin Manag. 2017;15(1):53–60.

    Article  Google Scholar 

  13. Chesworth, W. (2008). Encyclopedia of soil science.

    Book  Google Scholar 

  14. Cooper SR. Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecol Appl. 1995;5:703–23.

    Article  Google Scholar 

  15. Crawford D, Bonnevie N, Gillis C, Wenning R. Historical changes in the ecological health of the Newark Bay Estuary, New Jersey. Ecotoxicol Environ Saf. 1994;29(3):276–303.

    Article  CAS  Google Scholar 

  16. Crawford DW, Bonnevie NL, Wenning RJ. Sources of pollution and sediment contamination in Newark Bay, New Jersey. Ecotoxicol Environ Saf. 1995;30(1):85–100.

    Article  CAS  Google Scholar 

  17. Dean J, Webb J, Jacobsen G, Chisari R, Dresel P. Biomass uptake and fire as controls on groundwater solute evolution on a southeast Australian granite: aboriginal land management hypothesis. Biogeosciences. 2014;11(15):4099–114.

    Article  Google Scholar 

  18. Downing J, McClain M, Twilley R, Melack J, Elser J, Rabalais N, et al. The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry. 1999;46(1–3):109–48.

    Google Scholar 

  19. Eberl H, Picioreanu C, Heijnen J, Van Loosdrecht M. A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chem Eng Sci. 2000;55(24):6209–6222.

  20. Farnham DJ, Gibson RA, Hsueh DY, McGillis WR, Culligan PJ, Zain N, et al. Citizen science-based water quality monitoring: constructing a large database to characterize the impacts of combined sewer overflow in New York City. Sci Total Environ. 2017;580:168–77.

    Article  CAS  Google Scholar 

  21. Fillos J, Swanson WR. The release rate of nutrients from river and lake sediments. J (Water Pollut Control Federation). 1975:1032–42.

  22. Friedman CL, Lohmann R. Comparing sediment equilibrium partitioning and passive sampling techniques to estimate benthic biota PCDD/F concentrations in Newark Bay, New Jersey (USA). Environ Pollut. 2014;186:172–9.

    Article  CAS  Google Scholar 

  23. Garcia AM, Alexander RB, Arnold JG, Norfleet L, White MJ, Robertson DM, et al. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin. Environ Sci Technol. 2016;50(13):6991–7000.

    Article  CAS  Google Scholar 

  24. Gaspar R, Marques L, Pinto L, Baeta A, Pereira L, Martins I, et al. Origin here, impact there—the need of integrated management for river basins and coastal areas. Ecol Indic. 2017;72:794–802.

    Article  CAS  Google Scholar 

  25. Group, N. J. H. D. (2008). Nutrients reduction cost estimation study summary report.

  26. Hamilton DP, Schladow SG. Prediction of water quality in lakes and reservoirs. Part I—Model description. Ecol Model. 1997;96(1-3):91–110.

  27. Helminen H, Juntura E, Koponen J, Laihonen P, Ylinen H. Assessing of long-distance background nutrient loading to the Archipelago Sea, northern Baltic, with a hydrodynamic model. Environ Model Softw. 1998;13(5):511–8.

    Article  Google Scholar 

  28. Huang X, Huang L, Yue W. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar Pollut Bull. 2003;47(1):30–6.

    Article  CAS  Google Scholar 

  29. Jacobs S, Weeser B, Breuer L, Butterbach-Bahl K, Rufino M. Identifying the impacts of land use on water and nutrient cycling in the South-West Mau, Kenya. 2016. Paper presented at the EGU General Assembly Conference Abstracts.

  30. Ji Z-G. Hydrodynamics and water quality: modeling rivers, lakes, and estuaries: John Wiley & Sons. 2017.

  31. Jin Y, Wang Y, Wang W, Shang Q, Cao C, Erwin D. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 2000;289(5478):432–436.

  32. Johnes PJ. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. J Hydrol. 1996;183(3–4):323–49.

    Article  CAS  Google Scholar 

  33. Kalnejais LH, Martin WR, Bothner MH. The release of dissolved nutrients and metals from coastal sediments due to resuspension. Mar Chem. 2010;121(1):224–35.

    Article  CAS  Google Scholar 

  34. Kim K, Kim B, Knorr KH, Eum J, Choi Y, Jung S, et al. Potential effects of sediment processes on water quality of an artificial reservoir in the Asian monsoon region. Inland Waters. 2016;6(3):423–35.

    Article  CAS  Google Scholar 

  35. Krauskopf KB. Introduction to geochemistry: McGraw-Hill. 1979.

  36. Lathrop RG, Tulloch DL, Hatfield C. Consequences of land use change in the New York–New Jersey highlands, USA: landscape indicators of forest and watershed integrity. Landsc Urban Plan. 2007;79(2):150–9. https://doi.org/10.1016/j.landurbplan.2006.02.008.

    Article  Google Scholar 

  37. León LF, Imberger J, Smith RE, Hecky RE, Lam DC, Schertzer WM. Modeling as a tool for nutrient management in Lake Erie: a hydrodynamics study. J Great Lakes Res. 2005;31:309–18.

    Article  Google Scholar 

  38. Li S, Liu W, Gu S, Cheng X, Xu Z, Zhang Q. Spatio-temporal dynamics of nutrients in the upper Han River basin, China. J Hazard Mater. 2009;162(2):1340–6.

    Article  CAS  Google Scholar 

  39. Ludwig W, Dumont E, Meybeck M, Heussner S. River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr. 2009;80(3):199–217.

    Article  Google Scholar 

  40. Lung W-S. Assessing phosphorus control in the James River Basin. J Environ Eng. 1986;112(1):44–60.

    Article  CAS  Google Scholar 

  41. Lung W-S, Testerman N. Modeling fate and transport of nutrients on the James Estuary. J Environ Eng. 1989;115(5):978–91.

    Article  CAS  Google Scholar 

  42. Masi F, Rizzo A, Bresciani R, Conte G. Constructed wetlands for combined sewer overflow treatment: ecosystem services at Gorla Maggiore, Italy. Ecol Eng. 2017;98:427–38.

    Article  Google Scholar 

  43. Mauriello, M. N. (2009). New Jersey nutrient criteria enhancement plan.

    Google Scholar 

  44. Mehdi B, Lehner B, Gombault C, Michaud A, Beaudin I, Sottile MF, et al. Simulated impacts of climate change and agricultural land use change on surface water quality with and without adaptation management strategies. Agric Ecosyst Environ. 2015;213:47–60. https://doi.org/10.1016/j.agee.2015.07.019.

    Article  CAS  Google Scholar 

  45. Melton F, Xiong J, Wang W, Milesi C, Li S, Quackenbush A, et al. Potential impacts of climate and land use change on ecosystem processes in the Great Northern and Appalachian Landscape Conservation Cooperatives Climate Change in Wildlands (pp. 119–150): Springer. 2016

  46. Miao S, DeLaune R, Jugsujinda A. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci Total Environ. 2006;371(1):334–43.

    Article  CAS  Google Scholar 

  47. Morgan D, Xiao L, McNabola A. Evaluation of combined sewer overflow assessment methods: case study of Cork City. Water and Environment Journal: Ireland; 2017.

    Google Scholar 

  48. Moriarty J, Harris CK, Fennel K, Xu K, Rabouille C and Friedrichs MA. (2017). A model archive for a coupled hydrodynamic-sediment transport-biogeochemistry model for the Rhône River sub-aqueous delta, France.

  49. Moustafa M, Hamrick J. Calibration of the wetland hydrodynamic model to the Everglades Nutrient Removal Project. Water Quality Ecosyst Model. 2000;1(1):141–67.

    Article  Google Scholar 

  50. Mulholland PJ. Regulation of nutrient concentrations in a temperate forest stream: roles of upland, riparian, and instream processes. Limnol Oceanogr. 1992;37(7):1512–26.

    Article  CAS  Google Scholar 

  51. Ofiara DD. The New York Bight 25years later: use impairments and policy challenges. Mar Pollut Bull. 2015;90(1):281–98.

    Article  CAS  Google Scholar 

  52. Pálfy T, Molle P, Langergraber G, Troesch S, Gourdon R, Meyer D. Simulation of constructed wetlands treating combined sewer overflow using HYDRUS/CW2D. Ecol Eng. 2016;87:340–7.

    Article  Google Scholar 

  53. Parette R, Pearson WN. 2, 4, 6, 8-Tetrachlorodibenzothiophene in the Newark Bay Estuary: the likely source and reaction pathways. Chemosphere. 2014;111:157–63.

    Article  CAS  Google Scholar 

  54. Park K, Jung H-S, Kim H-S, Ahn S-M. Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. Mar Environ Res. 2005;60(2):171–93.

    Article  CAS  Google Scholar 

  55. Proctor R, Holt JT, Allen JI, Blackford J. Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model. Sci Total Environ. 2003;314:769–85.

    Article  CAS  Google Scholar 

  56. NJDEP (New Jersey Department of Environmental Protection) (2000). CSO communites cost. http://www.wnjpin.net/OneStopCareerCenter/LaborMarketInformation/lmi25/pub/index.html.

  57. Qualls RG, Haines BL. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci Soc Am J. 1991;55(4):1112–23. https://doi.org/10.2136/sssaj1991.03615995005500040036x.

    Article  Google Scholar 

  58. Quijano JC, Zhu Z, Morales V, Landry BJ, Garcia MH. Three-dimensional model to capture the fate and transport of combined sewer overflow discharges: a case study in the Chicago Area Waterway System. Sci Total Environ. 2017;576:362–73.

    Article  CAS  Google Scholar 

  59. Reemtsma T, Gnirß R, Jekel M. Infiltration of combined sewer overflow and tertiary municipal wastewater: an integrated laboratory and field study on nutrients and dissolved organics. Water Res. 2000;34(4):1179–86.

    Article  CAS  Google Scholar 

  60. Romero J, Antenucci J, Imberger J. One-and three-dimensional biogeochemical simulations of two differing reservoirs. Ecol Model. 2004;174(1):143–60.

    Article  CAS  Google Scholar 

  61. Saba T, Su S. Tracking polychlorinated biphenyls (PCBs) congener patterns in Newark Bay surface sediment using principal component analysis (PCA) and positive matrix factorization (PMF). J Hazard Mater. 2013;260:634–43.

    Article  CAS  Google Scholar 

  62. Shin JY, Artigas F, Hobble C, Lee Y-S. Assessment of anthropogenic influences on surface water quality in urban estuary, northern New Jersey: multivariate approach. Environ Monit Assess. 2013;185(3):2777–94.

    Article  CAS  Google Scholar 

  63. Tengberg A, Almroth E, Hall P. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology. J Exp Mar Biol Ecol. 2003;285:119–42.

    Article  Google Scholar 

  64. Testa JM, Li Y, Lee YJ, Li M, Brady DC, Di Toro DM, et al. Quantifying the effects of nutrient loading on dissolved O 2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic–biogeochemical model. J Mar Syst. 2014;139:139–58.

    Article  Google Scholar 

  65. Trang NTT, Shrestha S, Shrestha M, Datta A, Kawasaki A. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: a case study in the 3S River Basin (Sekong, Sesan, and Srepok). Sci Total Environ. 2017;576:586–98.

    Article  CAS  Google Scholar 

  66. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl. 1997;7(3):737–50.

    Google Scholar 

  67. Weigel D, Vilhena L, Woods P, Tonina D, Tranmer A, Benjankar R, et al. Aquatic habitat response to climate-driven hydrologic regimes and water operations in a montane reservoir in the Pacific Northwest, USA. Aquat Sci, 2017;1–14.

  68. Wickham JD, Stehman SV, Gass L, Dewitz J, Fry JA, Wade TG. Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens Environ. 2013;130:294–304.

    Article  Google Scholar 

  69. Wu G, Xu Z. Prediction of algal blooming using EFDC model: case study in the Daoxiang Lake. Ecol Model. 2011;222(6):1245–52.

    Article  CAS  Google Scholar 

  70. Xu F-L, Dawson RW, Tao S, Cao J, Li B-G. A method for lake ecosystem health assessment: an Ecological Modeling Method (EMM) and its application. Hydrobiologia. 2001;443(1-3):159–175.

  71. Zhao T, Poe GL, Boisvert RN. Management areas and fixed costs in the economics of water quality trading. 2015. Retrieved from.

  72. Zhu W, Tian YQ, Yu Q, Becker BL. Using Hyperion imagery to monitor the spatial and temporal distribution of colored dissolved organic matter in estuarine and coastal regions. Remote Sens Environ. 2013;134:342–54.

    Article  Google Scholar 

  73. Zou Z-H, Yi Y, Sun J-N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci. 2006;18(5):1020–1023.

Download references

Acknowledgments

The authors would like to thank Dr. Pengfei Zhang, Section Editor of Current Pollution Reports, Ms. Lauren Greaves, Associate Editor of Current Pollution Reports, and two anonymous reviewers whose comments and suggestions have improved the quality of an early version of this manuscript.

Funding

This work was supported in part by Montclair State University’s Graduate Assistantship (JN), Montclair State University’s Faculty Scholarship Program (HF), and the State Key Laboratory of Estuarine and Coastal Research Open Research Fund (SKLEC-KF201607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Feng.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

This article is part of the Topical Collection on Sediment Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, J., Feng, H., Witherell, B.B. et al. Causes, Assessment, and Treatment of Nutrient (N and P) Pollution in Rivers, Estuaries, and Coastal Waters. Curr Pollution Rep 4, 154–161 (2018). https://doi.org/10.1007/s40726-018-0083-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-018-0083-y

Keywords