Skip to main content

Advertisement

Log in

A Systematic Review on Bioelectrochemical Systems Research

  • Water Pollution (S Sengupta and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Bioelectrochemical systems (BESs) convert the energy present in wastewater to recover resources like bioelectricity, hydrogen, nutrients, heavy metals, minerals, and industrial chemicals. Various aspects of BES have been discussed here along with their applications and other advantages towards bioenergy recovery. More scientifically organized cross-discipline research efforts are required to scale-up these systems and to get benefit of recovering useful energy from waste materials. Full-scale implementation of bioelectrochemical wastewater treatment is complicated because certain microbiological, technological, and economic challenges need to be resolved that have not previously been encountered in any other wastewater treatment system. BES has higher prospects for in situ remediation of polluted water body or marshy soils and sediments. This technology is likely to evolve as a way of treating sewage, industrial, or agricultural wastewater, not only by lowering the amount of energy required, but at the same time producing electricity, hydrogen, or other chemicals of high value. Thus, after improving the performance of the BES, widening the scope for products recovery by developing better understanding of the process and with efforts to reduce its production cost, it can become a sustainable technology for treatment of wastewater with added advantage of recovery of resources and bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler CS, Clauwaert P, Green SJ, Verstraete W, Nerenberg R. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ Sci Technol. 2010;44(12):4685–91.

    Article  CAS  Google Scholar 

  2. Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol. 2009;43(10):3953–8.

    Article  CAS  Google Scholar 

  3. Clauwaert P, Toledo R, van der Ha D, Crab R, Verstraete W, Hu H, Udert K, Rabaey K. Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol. 2008;57(4):575–579.

  4. Cusick RD, Logan BE. Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresour Technol. 2012;107:110–5.

    Article  CAS  Google Scholar 

  5. De Schamphelaire L, Boeckx P, Verstraete W. Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl Microbiol Biotechnol. 2010;87(5):1675–87.

    Article  Google Scholar 

  6. Dekker A, Heijne AT, Saakes M, Hamelers HV, Buisman CJ. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ Sci Technol. 2009;43(23):9038–42.

    Article  CAS  Google Scholar 

  7. Erable B, Duţeanua NM, Ghangrekar MM, Dumas C, Scott K. Application of electro-active biofilms. Biofouling. 2010;26(1):57–71.

    Article  CAS  Google Scholar 

  8. Fan Y, Hu H, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol. 2007;41(23):8154–8.

    Article  CAS  Google Scholar 

  9. Feng Y, He W, Liu J, Wang X, Qu Y, Ren N. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol. 2014;156:132–8.

    Article  CAS  Google Scholar 

  10. Ghadge AN, Ghangrekar MM. Performance of low cost scalable air-cathode microbial fuel cell made from clayware separator using multiple electrodes. Bioresour Technol. 2015;182:373–7.

    Article  CAS  Google Scholar 

  11. Ghadge AN, Jadhav DA, Pradhan H, Ghangrekar MM. Enhancing waste activated sludge digestion and power production using hypochlorite as catholyte in clayware microbial fuel cell. Bioresour Technol. 2015;182:225–31.

    Article  CAS  Google Scholar 

  12. Ghosh Ray S, Ghangrekar MM. Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell. Bioresour Technol. 2015;176:8–14.

    Article  CAS  Google Scholar 

  13. Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol. 2005;39(22):8943–7.

    Article  CAS  Google Scholar 

  14. Helder M, Strik D, Hamelers H, Kuhn A, Blok C, Buisman C. Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol. 2010;101(10):3541–7.

    Article  CAS  Google Scholar 

  15. Holden JF, Adams MWW. Microbe–metal interactions in marine hydrothermal environments. Curr Opin Chem Biol. 2003;7(2):160–5.

    Article  CAS  Google Scholar 

  16. Huang L, Regan JM, Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol. 2011;102(1):316–23.

    Article  CAS  Google Scholar 

  17. Jadhav DA, Ghangrekar MM. Effective ammonium removal by anaerobic oxidation in microbial fuel cells. Environ Technol (United Kingdom). 2015;36(6):767–75.

    CAS  Google Scholar 

  18. Jadhav D, Ghadge A, Mondal D, Ghangrekar M. Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells. Bioresour Technol. 2014;154:330–5.

    Article  CAS  Google Scholar 

  19. Jiang D, Curtis M, Troop E, Scheible K, McGrath J, Hu B, et al. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrog Energy. 2011;36(1):876–84.

    Article  CAS  Google Scholar 

  20. Jiang M, Zhang Y, Zhou X, Su Y, Zhang M, Zhang K. Simultaneous carbon and nutrient removal in an airlift loop reactor under a limited filamentous bulking state. Bioresour Technol. 2013;130:406–11.

    Article  CAS  Google Scholar 

  21. Kim Y, Logan BE. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ Sci Technol. 2011;45(13):5840–5.

    Article  CAS  Google Scholar 

  22. Leech D, Kavanagh P, Schuhmann W. Enzymatic fuel cells: recent progress. Electrochim Acta. 2012;84:223–34.

    Article  CAS  Google Scholar 

  23. Li H, Feng Y, Zou X, Luo X. Study on microbial reduction of vanadium matallurgical waste water. Hydrometallurgy. 2009;99(1):13–7.

    Article  CAS  Google Scholar 

  24. Logan BE. Microbial fuel cell. Hoboken: Wiley; 2008.

    Google Scholar 

  25. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40(17):5181–92.

    Article  CAS  Google Scholar 

  26. Luo H, Jenkins PE, Ren Z. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol. 2010;45(1):340–4.

    Article  Google Scholar 

  27. Massoud MA, Tarhini A, Nasr JA. Decentralized approaches to wastewater treatment and management: applicability in developing countries. J Environ Manag. 2009;90(1):652–9.

    Article  Google Scholar 

  28. Mathuriya AS, Yakhmi JV. Microbial fuel cells to recover heavy metals. Environ Chem Lett. 2014;12(4):483–94.

    Article  CAS  Google Scholar 

  29. Meneses M, Pasqualino JC, Castells F. Environmental assessment of urban wastewater reuse: treatment alternatives and applications. Chemosphere. 2010;81(2):266–72.

    Article  CAS  Google Scholar 

  30. Miller, L, Blum, J, Oremland, R. 2006. Microbial fuel cell as life detector: arsenic cycling in hypersaline environments. AGU Fall Meeting Abstracts.

  31. Morris JM, Jin S. Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health A. 2007;43(1):18–23.

    Article  Google Scholar 

  32. Nevin KP, Richter H, Covalla S, Johnson J, Woodard T, Orloff A, et al. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol. 2008;10(10):2505–14.

    Article  CAS  Google Scholar 

  33. Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, et al. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012;2(4):1248–63.

    Article  CAS  Google Scholar 

  34. Park D, Laivenieks M, Guettler M, Jain M, Zeikus J. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol. 1999;65(7):2912–7.

    CAS  Google Scholar 

  35. Peguin S, Delorme P, Goma G, Soucaille P. Enhanced alcohol yields in batch cultures of Clostridium acetobutylicum using a three-electrode potentiometric system with methyl viologen as electron carrier. Biotechnol Lett. 1994;16(3):269–74.

    Article  CAS  Google Scholar 

  36. Pham T, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, et al. Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences. 2006;6(3):285–92.

    Article  CAS  Google Scholar 

  37. Pradhan H, Ghangrekar MM. Organic matter and dissolved salts removal in a microbial desalination cell with different orientation of ion exchange membranes. Desalin Water Treat. 2015;54(6):1568–76.

    CAS  Google Scholar 

  38. Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol. 2010;8(10):706–16.

    Article  CAS  Google Scholar 

  39. Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005;23(6):291–8.

    Article  CAS  Google Scholar 

  40. Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E. Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci. 2008;1(4):417–29.

    Article  CAS  Google Scholar 

  41. Rodríguez Arredondo M, Kuntke P, Jeremiasse AW, Sleutels THJA, Buisman CJN, Ter Heijne A. Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environ Sci Water Res Technol. 2015;1(1):22–33.

    Article  Google Scholar 

  42. Rosenbaum M, He Z, Angenent LT. Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol. 2010;21(3):259–64.

    Article  CAS  Google Scholar 

  43. Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008;26(8):450–9.

    Article  CAS  Google Scholar 

  44. Rozendal RA, Leone E, Keller J, Rabaey K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun. 2009;11(9):1752–5.

    Article  CAS  Google Scholar 

  45. Sajana TK, Ghangrekar MM, Mitra A. Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresour Technol. 2014;155:84–90.

    Article  CAS  Google Scholar 

  46. Schamphelaire LD, Bossche LVD, Dang HS, Höfte M, Boon N, Rabaey K, et al. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol. 2008;42(8):3053–8.

    Article  Google Scholar 

  47. Sonawane JM, Gupta A, Ghosh PC. Multi-electrode microbial fuel cell (MEMFC): a close analysis towards large scale system architecture. Int J Hydrog Energy. 2013;38(12):5106–14.

    Article  CAS  Google Scholar 

  48. Steinbusch KJ, Hamelers HV, Buisman CJ. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res. 2008;42(15):4059–66.

    Article  CAS  Google Scholar 

  49. Steinbusch KJ, Hamelers HV, Schaap JD, Kampman C, Buisman CJ. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol. 2009;44(1):513–7.

    Article  Google Scholar 

  50. Strik DPBTB, Timmers RA, Helder M, Steinbusch KJJ, Hamelers HVM, Buisman CJN. Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 2011;29(1):41–9.

    Article  CAS  Google Scholar 

  51. Suriyachan C, Nitivattananon V, Amin ATMN. Potential of decentralized wastewater management for urban development: case of Bangkok. Habitat Int. 2012;36(1):85–92.

    Article  Google Scholar 

  52. Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol. 2009;43(21):8159–65.

    Article  CAS  Google Scholar 

  53. Ter Heijne A, Liu F, Van Rijnsoever LS, Saakes M, Hamelers HV, Buisman CJ. Performance of a scaled-up microbial fuel cell with iron reduction as the cathode reaction. J Power Sources. 2011;196(18):7572–7.

    Article  Google Scholar 

  54. Wang H, Ren ZJ. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv. 2013;31(8):1796–807.

    Article  Google Scholar 

  55. Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014;66:219–32.

    Article  CAS  Google Scholar 

  56. Zhuang L, Yuan Y, Wang Y, Zhou S. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresour Technol. 2012;123:406–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding received from Department of Science and Technology, Government of India (File no. DST/INT/UK/P-101/2014) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ghangrekar.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghangrekar, M.M., Chatterjee, P. A Systematic Review on Bioelectrochemical Systems Research. Curr Pollution Rep 3, 281–288 (2017). https://doi.org/10.1007/s40726-017-0071-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-017-0071-7

Keywords

Navigation