Skip to main content

Advertisement

Log in

Gain Insight into Chemical Components Driving New Particle Growth on a Basis of Particle Hygroscopicity and Volatility Measurements: a Short Review

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Atmospheric new particle formation and growth play important roles in climate change and air quality. Aiming at better understanding the particle growth mechanisms, the measurements on chemical composition of new particles are imperative. However, the instruments directly detecting chemical composition of nanoparticles (<30 nm) are very rare due to the tiny particle masses involved and low transmission efficiency. Alternatively, the hygroscopicity and volatility of nanoparticles were measured to infer chemical composition of the particle. Here, we summarized the progresses in studying the new particle growth processes on a basis of particle hygroscopicity and volatility measurements. Compared to clean environments, such as in boreal forest, the water soluble components contribute a larger fraction of newly formed particles (below 50 nm) in the polluted environments, such as in the sulfur-rich atmosphere of North China Plain. The extreme low volatility components in new particles were observed in both clean and polluted environments and contributed to 1/4 of particle growth in a rural site of Melpitz, Germany. In the future, the instruments capable of precisely detecting the hygroscopicity and volatility of particles below 10 nm are needed. Except for differential mobility analyzer, other novel methods without limitation of charging and transmission efficiency should be considered. The hygroscopicity and volatility of atmospheric relevant compounds should be investigated in the laboratory in order to provide supportive information to explain the hygroscopicity and volatility of new particle in the ambient air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A, Kerminen VM, et al. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci. 2004;35(2):143–76.

    Article  CAS  Google Scholar 

  2. Kulmala M, Arola A, Nieminen T, Riuttanen L, Sogacheva L, de Leeuw G, et al. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements. Atmos Chem Phys. 2011;11(21):10791–801.

    Article  CAS  Google Scholar 

  3. Spracklen DV, Carslaw KS, Kulmala M, Kerminen V-M, Sihto S-L, Riipinen I, et al. Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys Res Lett. 2008;35(6):L06808.

    Article  Google Scholar 

  4. Wiedensohler A, Cheng YF, Nowak A, Wehner B, Achtert P, Berghof M, et al. Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China. J Geophys Res. 2009;114(D2):D00G08.

    Google Scholar 

  5. Wang M, Penner JE. Aerosol indirect forcing in a global model with particle nucleation. Atmos Chem Phys. 2009;9(1):239–60.

    Article  CAS  Google Scholar 

  6. Laaksonen A, Hamed A, Joutsensaari J, Hiltunen L, Cavalli F, Junkermann W, et al. Cloud condensation nucleus production from nucleation events at a highly polluted region. Geophys Res Lett. 2005;32(6):L06812.

    Article  Google Scholar 

  7. Yue DL, Hu M, Zhang RY, Wu ZJ, Su H, Wang ZB, et al. Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmos Environment. 2011;45(33):6070–7.

    Article  CAS  Google Scholar 

  8. Kazil J, Stier P, Zhang K, Quaas J, Kinne S, O’Donnell D, et al. Aerosol nucleation and its role for clouds and Earth’s radiative forcing in the aerosol-climate model ECHAM5-HAM. Atmos Chem Phys. 2010;10:10733–52. doi.10.5194/acp-10-10733-2010. Accessed 15 July 2017.

  9. Guo S, Hu M, Zamora ML, Peng J, Shang D, Zheng J, et al. Elucidating severe urban haze formation in China. Proc Natl Acad Sci USA. 2014;111(49):17373–8.

    Article  CAS  Google Scholar 

  10. Wiedensohler A, Cheng YF, Nowak A, Wehner B, Achtert P, Berghof M, et al. Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China. J Geophys Res Atmos. 2009;114(D2):D00G08.

    Google Scholar 

  11. Xiao S, Wang MY, Yao L, Kulmala M, Zhou B, Yang X, et al. Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmos Chem Phys. 2015;15(4):1769–81.

    Article  Google Scholar 

  12. An J, Wang H, Shen L, Zhu B, Zou J, Gao J, et al. Characteristics of new particle formation events in Nanjing, China: effect of water-soluble ions. Atmos Environ. 2015;108:32–40.

    Article  CAS  Google Scholar 

  13. Qi XM, Ding AJ, Nie W, Petäjä T, Kerminen VM, Herrmann E, et al. Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmos Chem Phys. 2015;15(21):12445–64.

    Article  CAS  Google Scholar 

  14. Smith JN, Moore KF, McMurry PH, Eisele FL. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry. Aerosol Sci Technol. 2004;38(2):100–10.

    Article  CAS  Google Scholar 

  15. Smith JN, Barsanti KC, Friedli HR, Ehn M, Kulmala M, Collins DR, et al. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc Natl Acad Sci U S A. 2010;107:6634–9.

    Article  CAS  Google Scholar 

  16. Wang S, Johnston MV. Airborne nanoparticle characterization with a digital ion trap–reflectron time of flight mass spectrometer. Int J Mass Spectrom. 2006;258(1–3):50–7.

    Article  CAS  Google Scholar 

  17. Väkevä M, Kulmala M, Stratmann F, Hämeri K. Field measurements of hygroscopic properties and state of mixing of nucleation mode particles. Atmos Chem Phys. 2002;2(1):55–66.

    Article  Google Scholar 

  18. Sakurai H, Fink MA, McMurry PH, Mauldin L, Moore KF, Smith JN, et al. Hygroscopicity and volatility of 4–10 nm particles during summertime atmospheric nucleation events in urban Atlanta. J Geophys Res. 2005;110(D22):D22S04.

    Article  Google Scholar 

  19. Wehner B, Petäjä T, Boy M, Engler C, Birmili W, Tuch T, et al. The contribution of sulfuric acid and non-volatile compounds on the growth of freshly formed atmospheric aerosols. Geophys Res Lett. 2005;32(17):L17810.

    Article  Google Scholar 

  20. Ehn M, Petäjä T, Aufmhoff H, Aalto P, Hämeri K, Arnold F, et al. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid. Atmos Chem Phys. 2007;7(1):211–22.

    Article  CAS  Google Scholar 

  21. Petäjä T, Kerminen VM, Dal Maso M, Junninen H, Koponen IK, Hussein T, et al. Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: physical characterization and new particle formation. Atmos Chem Phys. 2007;7(10):2705–20.

    Article  Google Scholar 

  22. Asmi E, Frey A, Virkkula A, Ehn M, Manninen HE, Timonen H, et al. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmos Chem Phys. 2010;10(9):4253–71.

    Article  CAS  Google Scholar 

  23. Ristovski ZD, Suni T, Kulmala M, Boy M, Meyer NK, Duplissy J, et al. The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest. Atmos Chem Phys. 2010;10(6):2919–26.

    Article  CAS  Google Scholar 

  24. Modini RL, Ristovski ZD, Johnson GR, He C, Surawski N, Morawska L, et al. New particle formation and growth at a remote, sub-tropical coastal location. Atmos Chem Phys. 2009;9(19):7607–21.

    Article  CAS  Google Scholar 

  25. Virkkula A, Van Dingenen R, Raes F, Hjorth J. Hygroscopic properties of aerosol formed by oxidation of limonene, α-pinene, and β-pinene. J Geophys Res. 1999;104(D3):3569–79.

    Article  CAS  Google Scholar 

  26. Varutbangkul V, Brechtel FJ, Bahreini R, Ng NL, Keywood MD, Kroll JH, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds. Atmos Chem Phys. 2006;6(9):2367–88.

    Article  CAS  Google Scholar 

  27. Tang IN, Munkelwitz HR. Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J Geophys Res. 1994;99(D9):18801–8.

    Article  Google Scholar 

  28. Hämeri K, Väkevä M, Aalto PP, Kulmala M, Swietlicki E, Zhou J, et al. Hygroscopic and CCN properties of aerosol particles in boreal forests. Tellus B. 2001;53(4):359–79.

    Article  Google Scholar 

  29. Cappa CD, Wilson KR. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior. Atmos Chem Phys. 2011;11(5):1895–911.

    Article  CAS  Google Scholar 

  30. Wu ZJ, Nowak A, Poulain L, Herrmann H, Wiedensohler A. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate. Atmos Chem Phys. 2011;11(24):12617–26.

    Article  CAS  Google Scholar 

  31. Massling A, Wiedensohler A, Busch B, Neusüß C, Quinn P, Bates T, et al. Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans. Atmos Chem Phys. 2003;3(5):1377–97.

    Article  CAS  Google Scholar 

  32. Zdanovskii B. Novyi Metod Rascheta Rastvorimostei Elektrolitov v Mnogokomponentnykh Sistema. ZhFiz Khim+. 1948;22(12):1478–85. 1486-1495

    Google Scholar 

  33. Stokes RH, Robinson RA. Interactions in aqueous nonelectrolyte solutions. I Solute-Solvent Equilibria. J Phys Chem. 1966;70:2126–30.

    Article  CAS  Google Scholar 

  34. Malm WC, Kreidenweis SM. The effects of models of aerosol hygroscopicity on the apportionment of extinction. Atmos Environment. 1997;31(13):1965–76.

    Article  CAS  Google Scholar 

  35. Swietlicki E, Zhou J, Berg OH, Martinsson BG, Frank G, Cederfelt S-I, et al. A closure study of sub-micrometer aerosol particle hygroscopic behaviour. Atmos Res. 1999;50(3–4):205–40.

    Article  CAS  Google Scholar 

  36. Potukuchi S, Wexler AS. Identifying solid-aqueous phase transitions in atmospheric aerosols—I. Neutral-acidity solutions. Atmos Environment. 1995;29(14):1663–76.

    Article  CAS  Google Scholar 

  37. Wehner, B.; Petäjä, T.; Boy, M.; Engler, C.; Birmili, W.; Tuch, T.; Wiedensohler, A.; Kulmala, M., The contribution of sulfuric acid and non-volatile compounds on the growth of freshly formed atmospheric aerosols. Geophys Res lett 2005;32(17).

  38. Philippin S, Wiedensohler A, Stratmann F. Measurements of non-volatile fractions of pollution aerosols with an eight-tube volatility tandem differential mobility analyzer (VTDMA-8). J Aerosol Sci. 2004;35(2):185–203.

    Article  CAS  Google Scholar 

  39. Johnson GR, Ristovski Z, Morawska L. Method for measuring the hygroscopic behaviour of lower volatility fractions in an internally mixed aerosol. J Aerosol Sci. 2004;35(4):443–55.

    Article  CAS  Google Scholar 

  40. Laaksonen A, Kulmala M, O'Dowd CD, Joutsensaari J, Vaattovaara P, Mikkonen S, et al. The role of VOC oxidation products in continental new particle formation. Atmos Chem Phys. 2008;8(10):2657–65.

    Article  CAS  Google Scholar 

  41. Wang Z, Su H, Wang X, Ma N, Wiedensohler A, Pöschl U, et al. Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles. Atmos Meas Tech. 2015;8(5):2161–72.

    Article  CAS  Google Scholar 

  42. Dusek, U.; Frank, G. P.; Curtius, J.; Drewnick, F.; Schneider, J.; Kürten, A.; Rose, D.; Andreae, M. O.; Borrmann, S.; Pöschl, U., Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophys Res Lett. 2010;37(3):L03804.

  43. Wu ZJ, Poulain L, Birmili W, Größ J, Niedermeier N, Wang ZB, et al. Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements. Atmos Chem Phys. 2015;15(22):13071–83.

    Article  CAS  Google Scholar 

  44. Wu ZJ, Ma N, Größ J, Kecorius S, Lu KD, Shang DJ, et al. Thermodynamic properties of nanoparticles during new particle formation events in the atmosphere of North China Plain. Atmos Res. 2017;188:55–63.

    Article  CAS  Google Scholar 

  45. Sakurai H, Fink MA, McMurry PH, Mauldin L, Moore KF, Smith JN, et al. Hygroscopicity and volatility of 4–10 nm particles during summertime atmospheric nucleation events in urban Atlanta. J Geophys Res Atmos. 2005;110(D22):3033–43.

    Article  Google Scholar 

  46. Jung J, Kawamura K. Hygroscopic properties of newly formed ultrafine particles at an urban site surrounded by deciduous forest (Sapporo, northern Japan) during the summer of 2011. Atmos Chem Phys. 2014;14(14):7519–31.

    Article  Google Scholar 

  47. Väkevä M, Hämeri K, Aalto PP. Hygroscopic properties of nucleation mode and Aitken mode particles during nucleation bursts and in background air on the west coast of Ireland. J Geophys Res Atmos. 2002;107(D19):PAR 9–1–PAR 9–11.

    Article  Google Scholar 

  48. Stolzenburg MR, McMurry PH, Sakurai H, Smith JN, Mauldin RL, Eisele FL, et al. Growth rates of freshly nucleated atmospheric particles in Atlanta. J. Geophys. Res. Atmos. 2005;110(D22):D22S05.

    Article  Google Scholar 

  49. Yue DL, Hu M, Zhang RY, Wang ZB, Zheng J, Wu ZJ, et al. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing. Atmos Chem Phys. 2010;10(10):4953–60.

    Article  CAS  Google Scholar 

  50. Vakkari V, Tiitta P, Jaars K, Croteau P, Beukes JP, Josipovic M, et al. Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth. Geophys Res Lett. 2015;42(23):10,486–93.

    Article  CAS  Google Scholar 

  51. Ehn M, Petäjä T, Birmili W, Junninen H, Aalto P, Kulmala M. Non-volatile residuals of newly formed atmospheric particles in the boreal forest. Atmos Chem Phys. 2007;7(3):677–84.

    Article  CAS  Google Scholar 

  52. Wang, Z.; Birmili, W.; Hamed, A.; Wehner, B.; Spindler, G.; Pei, X.; Wu, Z.; Cheng, Y.; Su, H.; Wiedensohler, A., Contributions of volatile and non-volatile compounds (at 300 °C) to condensational growth of atmospheric nanoparticles: an assessment based on 8.5 years of observations at the Central Europe background site Melpitz. J Geophys Res-Atmos.2016.

  53. Wang Z, Birmili W, Hamed A, Wehner B, Spindler G, Pei X, et al. Contributions of volatile and nonvolatile compounds (at 300°C) to condensational growth of atmospheric nanoparticles: an assessment based on 8.5 years of observations at the Central Europe background site Melpitz. J. Geophys. Res Atmos. 2017;122(1):485–97.

    Article  Google Scholar 

  54. Huffman JA, Ziemann PJ, Jayne JT, Worsnop DR, Jimenez JL. Development and characterization of a fast-stepping/scanning thermodenuder for chemically-resolved aerosol volatility measurements. Aerosol Sci Technol. 2008;42(5):395–407.

    Article  CAS  Google Scholar 

  55. Lee B-H, Pierce JR, Engelhart GJ, Pandis SN. Volatility of secondary organic aerosol from the ozonolysis of monoterpenes. Atmos Environment. 2011;45(14):2443–52.

    Article  CAS  Google Scholar 

  56. Kalberer M, Paulsen D, Sax M, Steinbacher M, Dommen J, Prevot ASH, et al. Identification of polymers as major components of atmospheric organic aerosols. Science. 2004;303(5664):1659–62.

    Article  CAS  Google Scholar 

  57. Wang L, Khalizov AF, Zheng J, Xu W, Ma Y, Lal V, et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nat Geosci. 2010;3(4):238–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the following projects: National Natural Science Foundation of China (41475127, 41571130021). The authors would like to greatly thank Zhibin Wang for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Wu.

Additional information

This article is part of the Topical Collection on Air Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z. Gain Insight into Chemical Components Driving New Particle Growth on a Basis of Particle Hygroscopicity and Volatility Measurements: a Short Review. Curr Pollution Rep 3, 175–181 (2017). https://doi.org/10.1007/s40726-017-0064-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-017-0064-6

Keywords

Navigation