Skip to main content

Advertisement

Log in

Contamination of the Upper Class: Occurrence and Effects of Chemical Pollutants in Terrestrial Top Predators

  • Land Pollution (GM Hettiarachchi, K Scheckel, and G Toor, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Knowledge of the occurrence and effects of pollutants on terrestrial top predators will serve to better understand the issue and propose measurements to conserve biodiversity and ecosystems. We reviewed literature on the occurrence and effects of pollutants on terrestrial top predators, which was particularly scarce in comparison to the literature available on aquatic top predators. We have asked the following questions: Does chemical pollution affect terrestrial top predator population? What are the mechanisms (if known) behind chemical pollution effects on top predators? What types of chemical pollution most commonly affect top predator species?

Recent Findings

Pollutants present in the terrestrial top predators are industrial derived (PCBs), pesticides (insecticides and rodenticides), and trace metals (lead and mercury). Recent investigations on the effect of second-generation rodenticides (SGRs) are an emerging topic since these are causing deleterious effects on terrestrial top predator populations. On the other hand, eggshell thinning effects due to the old and known compounds such as DDT are still being observed in avian top predators. Further, lead pollution from spent ammunition affects predators after the hunting season.

Summary

This information demonstrates that the occurrence and effects of chemical pollutants on terrestrial top predators is a relevant issue for species and ecosystem conservation. Topics such as biomagnification of pollutants, the impact of SGRs on carnivore populations, and alternatives of lead ammunition for hunting are relevant topics that warrant further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, et al. Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu Rev Ecol Evol Syst. 2008;39:1–19. This paper critically assess the key elements in the use of top predators as biodiversity conservation tools.

  2. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, et al. Status and Ecological Effects of the World’s Largest Carnivores. Science [Internet]. 2014;343. Available from: http://science.sciencemag.org/content/343/6167/1241484.abstract

  3. Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, et al. The rise of the Mesopredator. Bioscience. 2009;59:779–91.

    Article  Google Scholar 

  4. Olsen BD. Understanding biology through evolution—fourth edition. Lulu.com; 2009.

  5. Sergio F, Schmitz OJ, Krebs CJ, Holt RD, Heithaus MR, Wirsing AJ, et al. Towards a cohesive, holistic view of top predation: a definition, synthesis and perspective. Oikos. 2014;123:1234–43.

    Article  Google Scholar 

  6. Rodriguez-Jorquera IA, Silva-Sanchez C, Strynar M, Denslow ND, Toor GS. Footprints of urban micro-pollution in protected areas: investigating the longitudinal distribution of Perfluoroalkyl acids in wildlife preserves. PLoS One. 2016;11:e0148654.

    Article  Google Scholar 

  7. Dhaliwal SS, Toor GS, Rodriguez-Jorquera IA, Osborne TZ, Newman S. Trace metals in the soils of water conservation area of Florida Everglades: considerations for ecosystem restoration. J Soils Sediments. 2016:1–10.

  8. Rodríguez-Jorquera IA, Siroski P, Espejo W, Nimptsch J, Choueri PG, Choueri RB, et al. Latin American Protected Areas: protected from chemical pollution? Integr Environ Assess Manag. 2016;13:360–370.

  9. Vos JG, Dybing E, Greim HA, Ladefoged O, Lambré C, Tarazona JV, et al. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol. 2000;30:71–133.

    Article  CAS  Google Scholar 

  10. Ogada DL. The power of poison: pesticide poisoning of Africa’s wildlife. Ann N Y Acad Sci. 2014;1322:1–20.

    Article  CAS  Google Scholar 

  11. Elliott JE, Hindmarch S, Albert CA, Emery J, Mineau P, Maisonneuve F. Exposure pathways of anticoagulant rodenticides to nontarget wildlife. Environ Monit Assess. 2014;186:895–906.

    Article  CAS  Google Scholar 

  12. Serieys LE. Critical effects of urbanization on a charismatic carnivore: genetic change, disease and toxicant exposure, and disease susceptibility in bobcat populations in an urban, fragmented landscape. 2014. UCLA Electronic Theses and Dissertations http://escholarship.org/uc/item/7xf8b9kp. Accessed 11 Dec 2016.

  13. Gobas FAPC, Zhang X, Wells R. Gastrointestinal magnification: the mechanism of biomagnification and food chain accumulation of organic chemicals. Environ. Sci. Technol. 1993;27:2855–63.

    Article  CAS  Google Scholar 

  14. Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FAPC. Food web–specific biomagnification of persistent organic pollutants. Science. 2007;317:236–9.

    Article  CAS  Google Scholar 

  15. Erikstad KE, Sandvik H, Reiertsen TK, Bustnes JO, Strøm H. Persistent organic pollution in a high-Arctic top predator: sex-dependent thresholds in adult survival. Proc R Soc Lond B Biol Sci. 2013;280:20131483.

    Article  Google Scholar 

  16. Bourgeon S, Leat EKH, Furness RW, Borgå K, Hanssen SA, Bustnes JO. Dietary versus maternal sources of organochlorines in top predator seabird chicks: an experimental approach. Environ Sci Technol. 2013;47:5963–70.

    Article  CAS  Google Scholar 

  17. Goutte A, Barbraud C, Meillère A, Carravieri A, Bustamante P, Labadie P, et al. Demographic consequences of heavy metals and persistent organic pollutants in a vulnerable long-lived bird, the wandering albatross. Proc R Soc Lond B Biol Sci. 2014;281:20133313.

    Article  Google Scholar 

  18. Naccan G, Giangrosso A, Macaluso E, BBillone A, Cicero C, D’Ascenzi V, et al. Red foxes (Vulpes vulpes) bioindicator of lead and copper pollution in Sicily (Italy). Ecotoxicol Environ Saf. 2013;90:41–5.

    Article  Google Scholar 

  19. Mizukawa H, Nomiyama K, Nakatsu S, Yachimori S, Hayashi T, Tashiro Y, et al. Species-specific differences in the accumulation features of organohalogen contaminants and their metabolites in the blood of Japanese terrestrial mammals. Environ Pollut. 2013;174:28–37.

    Article  CAS  Google Scholar 

  20. Kalisinska E, Lanocha-Arendarczyk N, Kosik-Bogacka D, Budis H, Podlasinska J, Popiolek M, et al. Brains of native and alien mesocarnivores in biomonitoring of toxic metals in Europe. PLoS One. 2016;11:e0159935.

    Article  Google Scholar 

  21. Dainowski BH, Duffy LK, McIntyre J, Jones P. Hair and bone as predictors of tissular mercury concentration in the western Alaska red fox. Vulpes vulpes Sci Total Environ. 2015;518–519:526–33.

    Article  Google Scholar 

  22. Pérez-López M, Rodríguez FS, Hernández-Moreno D, Rigueira L, Fidalgo LE, Beceiro AL. Bioaccumulation of cadmium, lead and zinc in liver and kidney of red fox (Vulpes vulpes) from NW Spain: influence of gender and age. Toxicol Environ Chem. 2016;98:109–17.

    Article  Google Scholar 

  23. Tashiro Y, Ogura G, Kunisue T, Tanabe S. Persistent organochlorines accumulated in small Asian mongoose (Herpestes javanicus) from the Yambaru Area, Okinawa, Japan. Japanese Journal of Zoo and Wildlife Medicine. 2011;16:65–70.

    Article  Google Scholar 

  24. Metal contamination in mammalian fauna of Sariska tiger reserve, Alwar, India [Internet]. [cited 2017 Jan 31]. Available from: http://connection.ebscohost.com/c/articles/89366384/metal-contamination-mammalian-fauna-sariska-tiger-reserve-alwar-india

  25. Gupta V, Bakre P. Metal contamination in mammalian fauna of Sariska tiger reserve, Alwar, India. Journal of Ecophysiology and occupational health. Lucknow. 2012;12:43–8.

    CAS  Google Scholar 

  26. Mercury in gray wolves (Canis Lupus) in Alaska: increased exposure through consumption of marine prey [Internet]. PubMed Journals. [cited 2017 Jan 31]. Available from: https://ncbi.nlm.nih.gov/labs/articles/24056451/

  27. •• Harley JR, Bammler TK, Farin FM, Beyer RP, Kavanagh TJ, Dunlap KL, et al. Using domestic and free-ranging Arctic canid models for environmental molecular toxicology research. Environ. Sci. Technol. 2016;50:1990–9. Used cutting edge techniques such as genomics combined with the use of domestic (dog) and wild (artic fox) predators as models to determine the effects of pollutant exposure

    Article  CAS  Google Scholar 

  28. Hernández-Moreno D, de la Casa RI, Fidalgo LE, Llaneza L, Soler Rodríguez F, Pérez-López M, et al. Noninvasive heavy metal pollution assessment by means of Iberian wolf (Canis lupus signatus) hair from Galicia (NW Spain): a comparison with invasive samples. Environ Monit Assess. 2013;185:10421–30.

    Article  Google Scholar 

  29. Mateo R, Millán J, Ridríguez-Estival J, Camarero PR, Palomares F, Ortíz-Santaliestra ME. Levels of organochlorine pesticides and polychlorinated biphenyls in the critically endangered Iberian lynx and other sympatric carnivores in Spain. 2012 [cited 2017 Jan 31]; Available from: https://digital.csic.es/handle/10261/51527

  30. de Curi NHA, CHH B, Antoniosi Filho NR, Talamoni SA. Heavy metals in hair of wild canids from the Brazilian Cerrado. Biol Trace Elem Res. 2012;147:97–102.

    Article  CAS  Google Scholar 

  31. Ciliberti A, Berny P, Delignette-Muller M-L, de Buffrénil V. The Nile monitor (Varanus niloticus; Squamata: Varanidae) as a sentinel species for lead and cadmium contamination in sub-Saharan wetlands. Sci Total Environ. 2011;409:4735–45.

    Article  CAS  Google Scholar 

  32. Ciliberti A, Berny P, Vey D, de Buffrénil V. Assessing environmental contamination around obsolete pesticide stockpiles in West Africa: using the Nile monitor (Varanus niloticus) as a sentinel species. Environ Toxicol Chem. 2012;31:387–94.

    Article  CAS  Google Scholar 

  33. Bocharova N, Treu G, Czirják GÁ, Krone O, Stefanski V, Wibbelt G, et al. Correlates between feeding ecology and mercury levels in historical and modern Arctic foxes (Vulpes Lagopus). PLoS One. 2013;8:e60879.

    Article  CAS  Google Scholar 

  34. Skibniewska E, Skibniewski M, Kosla T, Urbańska-Słomka G. Hair zinc levels in pet and feral cats (Felis catus). Journal of Elementology [Internet]. 2011 [cited 2017 Jan 31];16. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.dl-catalog-d30c8504-dda4-4959-8b65-1fe332d1e654

  35. Rzymski P, Niedzielski P, Poniedziałek B, Rzymski P, Pacyńska J, Kozak L, et al. Free-ranging domestic cats are characterized by increased metal content in reproductive tissues. Reprod Toxicol. 2015;58:54–60.

    Article  CAS  Google Scholar 

  36. Mateo R, Millán J, Rodríguez-Estival J, Camarero PR, Palomares F, Ortiz-Santaliestra ME. Levels of organochlorine pesticides and polychlorinated biphenyls in the critically endangered Iberian lynx and other sympatric carnivores in Spain. Chemosphere. 2012;86:691–700.

    Article  CAS  Google Scholar 

  37. Lazarus M, Sekovanić A, Reljić S, Kusak J, Kovačić J, Orct T, et al. Selenium in brown bears (Ursus Arctos) from Croatia: relation to cadmium and mercury. J Environ Sci Health A. 2014;49:1392–401.

    Article  CAS  Google Scholar 

  38. Julian P, Cunningham M. Total mercury concentrations in Florida black bears (Ursus americanus floridanus). Florida Scientist. 2013;76

  39. Serieys LEK, Foley J, Owens S, Woods L, Boydston EE, Lyren LM, et al. Serum chemistry, hematologic, and post-mortem findings in free-ranging bobcats (Lynx rufus) with Notoedric mange. J Parasitol. 2013;99:989–96.

    Article  CAS  Google Scholar 

  40. Bartos M, Dao S, Douk D, Falzone S, Gumerlock E, Hoekstra S, et al. Use of anticoagulant rodenticides in single-family neighborhoods along an urban-wildland interface in California. Cities and the Environment (CATE) [Internet]. 2012;4. Available from: http://digitalcommons.lmu.edu/cate/vol4/iss1/12

  41. Steinberg RM, Morzillo AT, Riley SPD, Clark SG. People, predators and place: rodenticide impacts in a wildland-urban interface. Rural Soc. 2015;24:1–23.

    Article  Google Scholar 

  42. Serieys LEK, Armenta TC, Moriarty JG, Boydston EE, Lyren LM, Poppenga RH, et al. Anticoagulant rodenticides in urban bobcats: exposure, risk factors and potential effects based on a 16-year study. Ecotoxicology. 2015;24:844–62.

  43. Rogers TA, Bedrosian B, Graham J, Foresman KR. Lead exposure in large carnivores in the greater Yellowstone ecosystem. J Wildl Manag. 2012;76:575–82.

    Article  Google Scholar 

  44. •• Burco J, Myers AM, Schuler K, Gillin C. Acute lead toxicosis via ingestion of spent ammunition in a free-ranging cougar (Puma concolor). J Wildl Dis. 2012;48:216–9. This article shows the effects of lead from spent ammunition used in hunting activities.

    Article  Google Scholar 

  45. Poessel SA, Breck SW, Fox KA, Gese EM. Anticoagulant rodenticide exposure and toxicosis in coyotes (Canis latrans) in the Denver metropolitan area. J Wildl Dis. 2014;51:265–8.

    Article  Google Scholar 

  46. Thompson C, Sweitzer R, Gabriel M, Purcell K, Barrett R, Poppenga R. Impacts of rodenticide and insecticide toxicants from marijuana cultivation sites on fisher survival rates in the Sierra National Forest. California Conservation Letters. 2014;7:91–102.

    Article  Google Scholar 

  47. Bilandžić N, Dežđek D, Sedak M, Đokić M, Šimić B, Rudan N, et al. Trace elements in tissues of wild carnivores and omnivores in Croatia. Bull Environ Contam Toxicol. 2012;88:94–9.

    Article  Google Scholar 

  48. Gabriel M, Higley JM, Wengert G, Woods L, Poppenga R. Intentional poisoning of a fisher (martes pennant) with a carbamate insecticide laced bait at an illegal marijuana trespass cultivation site. Unpublished data retrieved from http://www.iercecology.org/wpcontent/uploads/2013/08/Fisher_Poisoning_July_2013.pdf. 2013.

  49. Gabriel MW, Woods LW, Wengert GM, Stephenson N, Higley JM, Thompson C, et al. Patterns of natural and human-caused mortality factors of a rare forest carnivore, the fisher (Pekania pennanti) in California. PLoS One. 2015;10:e0140640.

    Article  Google Scholar 

  50. Gabriel MW, Woods LW, Poppenga R, Sweitzer RA, Thompson C, Matthews SM, et al. Anticoagulant rodenticides on our public and community lands: spatial distribution of exposure and poisoning of a rare forest carnivore. PLoS One. 2012;7:e40163.

    Article  CAS  Google Scholar 

  51. Eulaers I, Covaci A, Herzke D, Eens M, Sonne C, Moum T, et al. A first evaluation of the usefulness of feathers of nestling predatory birds for non-destructive biomonitoring of persistent organic pollutants. Environ Int. 2011;37:622–30.

    Article  CAS  Google Scholar 

  52. • Watson JW, Davies RW. Lead, mercury, and DDE in the blood of nesting golden eagles in the Columbia Basin, Washington. Journal of Raptor Research. 2015;49:217–21. This article shows the occurrence of DDT metabolites on avian top predators decades after the ban of the pesticide use.

    Article  Google Scholar 

  53. Walker LA, Grant HK, Hughes D, Lawlor AJ, Dos Santos Pereira G, Potter ED, et al. Mercury (Hg) concentrations and stable isotope signatures in golden eagle eggs 2009–2013: a predatory bird monitoring scheme (PBMS) report [Internet]. 2015 [cited 2016 Dec 11]. Available from: https://wiki.ceh.ac.uk/download/attachments/134414860/PBMS_Golden_eagle_report_2013_FINAL.pdf?version=1&modificationDate=1424860901000&api=v2

  54. Legagneux P, Suffice P, Messier J-S, Lelievre F, Tremblay JA, Maisonneuve C, et al. High risk of lead contamination for scavengers in an area with high moose hunting success. PLoS One. 2014;9:e111546.

    Article  Google Scholar 

  55. • Espín S, Martínez-López E, León-Ortega M, Martínez JE, García-Fernández AJ. Oxidative stress biomarkers in Eurasian eagle owls (Bubo bubo) in three different scenarios of heavy metal exposure. Environ Res. 2014;131:134–44. This is one of the few articles that demonstrate the effects of chemical pollution, particularly heavy metals, on land top predators.

    Article  Google Scholar 

  56. •• Gómez-Ramírez P, Martínez-López E, García-Fernández AJ, Zweers AJ, van den Brink NW. Organohalogen exposure in a Eurasian eagle owl (Bubo Bubo) population from southeastern Spain: temporal–spatial trends and risk assessment. Chemosphere. 2012;88:903–11. This article found DDT in avian top predator eggs and related high levels of DDT with eggshell thinning effects.

    Article  Google Scholar 

  57. Carneiro M, Colaço B, Brandão R, Ferreira C, Santos N, Soeiro V, et al. Biomonitoring of heavy metals (Cd, Hg, and Pb) and metalloid (As) with the Portuguese common buzzard (Buteo buteo). Environ Monit Assess. 2014;186:7011–21.

    Article  CAS  Google Scholar 

  58. Luzardo OP, Ruiz-Suárez N, Henríquez-Hernández LA, Valerón PF, Camacho M, Zumbado M, et al. Assessment of the exposure to organochlorine pesticides, PCBs and PAHs in six species of predatory birds of the Canary Islands. Spain Science of The Total Environment. 2014;472:146–53.

    Article  CAS  Google Scholar 

  59. Walker LA, Beith SJ, Lawlor AJ, Moeckel C, Dos Santos Pereira G, Potter ED, et al. Persistent Organic Pollutants (POPs) and inorganic elements in predatory bird livers and eggs 2007 to 2009: a predatory bird monitoring scheme (PBMS) Report [Internet]. 2011 [cited 2016 Dec 11]. Available from: http://www.pbms.ceh.ac.uk

  60. Jaspers VLB, Sonne C, Soler-Rodriguez F, Boertmann D, Dietz R, Eens M, et al. Persistent organic pollutants and methoxylated polybrominated diphenyl ethers in different tissues of white-tailed eagles (Haliaeetus albicilla) from West Greenland. Environ Pollut. 2013;175:137–46.

    Article  CAS  Google Scholar 

  61. Tucker RK, Haegele HA. Eggshell thinning as influenced by method of DDT exposure. Bull Environ Contam Toxicol. 1970;5:191–4.

    Article  CAS  Google Scholar 

  62. •• Serieys LEK, Lea A, Pollinger JP, Riley SPD, Wayne RK. Disease and freeways drive genetic change in urban bobcat populations. Evol Appl. 2015;8:75–92. This article demonstrates that second-generation rodenticides are able to cause changes on terrestrial top predator populations including lower genetic diversity.

    Article  Google Scholar 

  63. Ordiz A, Bischof R, Swenson JE. Saving large carnivores, but losing the apex predator? Biol Conserv. 2013;168:128–33.

    Article  Google Scholar 

  64. Ripple WJ, Wirsing AJ, Wilmers CC, Letnic M. Widespread mesopredator effects after wolf extirpation. Biol Conserv. 2013;160:70–9.

    Article  Google Scholar 

  65. Köhler H-R, Triebskorn R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science. 2013;341:759–65.

    Article  Google Scholar 

  66. Kelly TR, Bloom PH, Torres SG, Hernandez YZ, Poppenga RH, Boyce WM, et al. Impact of the California lead ammunition ban on reducing lead exposure in golden eagles and Turkey vultures. PLoS One. 2011;6:e17656.

    Article  CAS  Google Scholar 

  67. •• Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, et al. Collapse of a fish population after exposure to a synthetic estrogen. PNAS. 2007;104:8897–901. This article is a seminal work in ecotoxicology since it was one of the first articles demonstrating that environmental levels of pollution (low levels) are able to exert chronic deleterious effects on wild population of vertebrates.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Rodríguez-Jorquera.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Land Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Jorquera, I.A., Vitale, N., Garner, L. et al. Contamination of the Upper Class: Occurrence and Effects of Chemical Pollutants in Terrestrial Top Predators. Curr Pollution Rep 3, 206–219 (2017). https://doi.org/10.1007/s40726-017-0061-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-017-0061-9

Keywords

Navigation