Skip to main content

Advertisement

Log in

Atmospheric Nitrogen Emission, Deposition, and Air Quality Impacts in China: an Overview

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

An Erratum to this article was published on 18 April 2017

Abstract

Atmospheric reactive nitrogen (N) has induced large impacts on air pollution and ecosystem health worldwide. Atmospheric reactive N emission and deposition have largely increased in China since 1980 due to rapid agricultural, industrial, and urban development. But scientific gaps still remain in the regional and temporal variability in atmospheric N emissions and deposition. Meanwhile, the environmental impacts of N pollution and deposition are of great concern in China. This paper overviews the status of anthropogenic N emissions and deposition and their linkages to air pollution in China. The major findings include two aspects: (1) anthropogenic reactive N (e.g., NH3 and NOx) emissions contribute greatly to secondary inorganic aerosol formation and haze pollution and (2) dry N deposition is comparable in importance to wet N deposition, suggesting that both dry and wet deposition should be quantified simultaneously. Future research challenges on atmospheric N emission and deposition are discussed as well. China needs to (1) reduce the uncertainties of national emission inventory of various N species, especially organic N compounds; (2) establish national networks for atmospheric N concentration and deposition monitoring; and (3) evaluate ecological and environmental impacts of N pollution and deposition in typical ecosystems. Last but not least, N deposition modeling tools should be improved based on localized parameters and further used in future N regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, et al. Nitrogen cycles: past, present, and future. Biogeochem. 2004;70(2):153–226.

    Article  CAS  Google Scholar 

  2. •• Liu XJ, Zhang Y, Han WX, Tang A, Shen JL, Cui ZL, et al. Enhanced nitrogen deposition over China. Nature. 2013;494(7438):459–62. This article systematically evaluates long-term trends of bulk N deposition across China between 1980 and 2010 using nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils). The results provide strong evidence that average annual bulk N deposition increased between the 1980s and 2000s .

    Article  CAS  Google Scholar 

  3. • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol App. 2010;20(1):30–59. This article overviews N deposition effects on global terrestrial plant diversity and reviews that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types .

    Article  CAS  Google Scholar 

  4. Li KH, Gong YM, Song W, Lv JL, Chang YH, Hu YK, et al. No significant nitrous oxide emissions during spring thaw under grazing and nitrogen addition in an alpine grassland. Glob Chang Biol. 2012;18(8):2546–54.

    Article  Google Scholar 

  5. Yang YH, Li P, He HL, Zhao X, Datta A, Ma WH, et al. Long-term changes in soil pH across major forest ecosystems in China. Geophys Res Lett. 2015;42(3):933–40.

    Article  Google Scholar 

  6. Holland EA, Braswell BH, Sulzman J, Lamarque JF. Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecol Appl. 2005;15(1):38–57.

    Article  Google Scholar 

  7. • Du EZ, de Vries W, Galloway JN, Hu X, Fang J. Changes in wet nitrogen deposition in the United States between 1985 and 2012. Environ Res Lett. 2014;9(9):095004. This article analyzes changes in observed wet deposition of dissolved inorganic N (ammonium + nitrate) in the US between 1985 and 2012. The results suggest the needs to control N emissions by species and regions to avoid negative effects of N deposition on ecosystem health and function in the US.

    Article  CAS  Google Scholar 

  8. Li Y, Schichtel BA, Walker JT, Schwede DB, Chen X, Lehmann CMB, et al. Increasing importance of deposition of reduced nitrogen in the United States. P Natl Acad Sci USA. 2016;113(21):5874–9.

    Article  CAS  Google Scholar 

  9. Xing J, Wang SX, Chatani S, Zhang CY, Wei W, Hao JM, et al. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020. Atmos Chem Phys. 2011;11(7):3119–36.

    Article  CAS  Google Scholar 

  10. Wu Y, Gu B, Erisman JW, Reis S, Fang Y, Lu X, et al. PM2.5 pollution is substantially affected by ammonia emissions in China. Environ Pollut. 2016;216:86–94.

    Article  CAS  Google Scholar 

  11. • Xu W, Luo XS, Pan YP, Zhang L, Tang AH, Shen JL, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos Chem Phys. 2015;15(13):12345–60. The paper reports wet/bulk and dry deposition of inorganic N fluxes simultaneously based on a nationwide monitoring network containing 43 sites across China and proved the equal importance of dry deposition and wet/bulk deposition.

    Article  CAS  Google Scholar 

  12. Zhu J, He NP, Wang QF, Yuan GF, Wen D, Yu GR, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Sci Total Environ. 2015;511(4):777–85.

    Article  CAS  Google Scholar 

  13. Jia YL, Yu GR, Gao YN, He NP, Wang QF, Jiao CC, et al. Global inorganic nitrogen dry deposition inferred from ground and space-based measurements. Sci Rep. 2016;6:19810.

    Article  CAS  Google Scholar 

  14. Matson P, Lohse KA, Hall SJ. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio. 2002;31(2):113–9.

    Article  Google Scholar 

  15. Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, et al. Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut. 2011;159(10):2251–64.

    Article  CAS  Google Scholar 

  16. Zhao YH, Zhang L, Chen YF, Liu XJ, Xu W, Pan YP, et al. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmos Environ. 2017;153:32–40.

    Article  CAS  Google Scholar 

  17. Pan YP, Wang YS, Tang GQ, Wu D. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmos Chem Phys. 2012;12(14):6515–35.

    Article  CAS  Google Scholar 

  18. Wang Y, Zhang QQ, He K, Zhang Q, Chai L. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos Chem Phys. 2013;13(5):2635–52.

    Article  CAS  Google Scholar 

  19. Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophy Res-Atmos. 2003;108:8809.

    Article  CAS  Google Scholar 

  20. • Clarisse L, Clerbaux C, Dentener F, Hurtmans D, Coheur PF. Global ammonia distribution derived from infrared satellite observations. Nat Geosci. 2009;2:479–83. This article concludes that ammonia emissions could have been underestimated, and satellite monitoring of ammonia from space will improve the understanding of global N cycle.

    Article  CAS  Google Scholar 

  21. Van Damme M, Clarisse L, Dammers E, Liu X, Nowak JB, Clerbaux C, et al. Towards validation of ammonia (NH3) measurements from the IASI satellite. Atmos Meas Tech. 2015;8(12):1575–91.

    Article  CAS  Google Scholar 

  22. Pinder RW, Adams PJ, Pandis SN. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the eastern United States. Environ Sci Technol. 2007;41(2):380–6.

    Article  CAS  Google Scholar 

  23. Kang Y, Liu M, Song Y, Huang X, Yao H, Cai X, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos Chem Phys. 2016;16(4):2043–58.

    Article  CAS  Google Scholar 

  24. Xu W, Zheng K, Liu XJ, Meng LM, Huaitalla RM, Shen JL, Hartung E, Gallmann E, Roelcke M, Zhang FS. Atmospheric NH3 dynamics at a typical pig farm in China and their implications. Atmos Pollut Res. 2014;5(3):455–63.

    Article  CAS  Google Scholar 

  25. Gu BJ, Ju XT, Chang J, Ge Y, Vitousek PM. Integrated reactive nitrogen budgets and future trends in China. P Natl Acad Sci USA. 2015;112(28):8792–7.

    Article  CAS  Google Scholar 

  26. Zhang Y, Dore AJ, Ma L, Liu XJ, Ma WQ, Cape JN, et al. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ Pollut. 2010;158(2):490–501.

    Article  CAS  Google Scholar 

  27. Wang H, Yang F, Shi G, Tian M, Zhang L, Zhang L, et al. Ambient concentration and dry deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China. Environ Pollut. 2016;219:235–44.

    Article  CAS  Google Scholar 

  28. Cao JJ, Zhang T, Chow JC, Watson JG, Wu F, Li H. Characterization of atmospheric ammonia over Xi’an, China. Aerosol Air Qual Res. 2009;9(2):277–89.

    CAS  Google Scholar 

  29. Koerkamp PWGG, Metz JHM, Uenk GH, Phillips VR, Holden MR, Sneath RW, et al. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J Agric Eng Res. 1998;70(1):79–95.

    Article  Google Scholar 

  30. Liu XJ, Vitousek PM, Chang YH, Zhang WF, Matson P, Zhang FS. Evidence for a historic change occurring in China. Environ Sci Technol. 2016;50(2):505–6.

    Article  CAS  Google Scholar 

  31. Chang YH, Liu XJ, Dore A, Li KH. Stemming PM2.5 pollution in China: re-evaluating the role of ammonia, aviation and non-exhaust road traffic emissions. Environ Sci Technol. 2012;46(24):13035–6.

    Article  CAS  Google Scholar 

  32. Sun K, Tao L, Miller DJ, Pan D, Golston LM, Zondlo MA, et al. Vehicle emissions as an important urban ammonia source in the United States and China. Environ Sci Technol. 2016; in press doi:10.1021/acs.est.6b02805.

    Google Scholar 

  33. Chang YH, Liu XJ, Deng C, Zhuang GS. Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures. Atmos Chem Phys. 2016;16(18):11635–47.

    Article  CAS  Google Scholar 

  34. • Pan YP, Pan YP, Tian SL, Liu DW, Fang YT, Zhu FF, Zhang Q, et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from 15N-stable isotope in size-resolved aerosol ammonium. Environ Sci Technol. 2016;50(15):8049–56. This article describes a promising new tool for partitioning atmospheric NH 3 sources using the analysis of δ 15 N values of aerosol NH 4 +.

    Article  CAS  Google Scholar 

  35. Wang YL, Liu XY, Song W, Yang W, Han B, Dou XY, et al. Isotopic partitioning of nitrogen in PM2.5 at Beijing and a background site of China. Atmos Chem Phys Discuss. 2016;16:1–33.

    Article  CAS  Google Scholar 

  36. Sun YL, Jiang Q, Wang ZF, Fu P, Li J, Yang T, et al. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J Geophyl Res. 2014;119(7):4380–98.

    Google Scholar 

  37. Xu W, Song W, Zhang YY, Liu XJ, Zhang L, Zhao YH, et al. Air quality improvement in a megacity: implications from 2015 Beijing parade blue pollution-control actions. Atmos Chem Phys. 2016;17(1):31–46.

    Article  CAS  Google Scholar 

  38. • Gu BJ, Ge Y, Ren Y, Xu B, Luo WD, Jiang H, et al. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ Sci Technol. 2012;46(17):9420–7. This article assesses ammonia, nitrogen oxides, and nitrous oxide emissions in China based on a full life cycle analysis. The results provide an integrated view of Nr sources and health damage .

    Article  CAS  Google Scholar 

  39. Galloway JN. Acid deposition: perspectives in time and space. Water Air Soil Poll. 1995;85(1):15–24.

    Article  CAS  Google Scholar 

  40. Waldner P, Marchetto A, Thimonier A, Schmitt M, Rogora M, Granke O, et al. Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmos Environ. 2014;95(1):363–74.

    Article  CAS  Google Scholar 

  41. Du EZ. Rise and fall of nitrogen deposition in the United States. P Natl Acad Sci USA. 2016;113(26):E3594–5.

    Article  CAS  Google Scholar 

  42. • Jickells T, Baker AR, Cape JN, Cornell SE, Nemitz E. The cycling of organic nitrogen through the atmosphere. Phil Trans R Soc B. 2013;368(1621):20130115. This article systematically reviews the sources, concentration, deposition and potential impacts of atmospheric organic N in precipitation and aerosols according to publications up to 2012.

    Article  CAS  Google Scholar 

  43. Zhang Y, Song L, Liu XJ, Li WQ, Lü SH, Zheng LX, Bai ZC, Cai GY, Zhang FS. Atmospheric organic nitrogen deposition in China. Atmos Environ. 2012;46:195–204.

    Article  CAS  Google Scholar 

  44. Du EZ, Liu XJ. High rates of wet nitrogen deposition in China: a synthesis. In: Sutton MA, Mason KE, Sheppard LJ, Sverdrup H, Haeuber R, Hicks WK, editors. Nitrogen deposition, critical loads and biodiversity. Amsterdam: Springer; 2014. p. 49–56.

  45. Kanakidou M, Duce RA, Prospero JM, Baker AR, Claudia B, Dentener FJ, Hunter KA, Liss PS, Natalie M, Okin GS, Sarin M, Tsigaridis K, Uematsu M, Zamora LM, Zhu T. Atmospheric fluxes of organic N and P to the global ocean. Glob Biogeochem Cycles. 2012;26(3):GB2022.

    Article  CAS  Google Scholar 

  46. Zhao D, Sun B. Air-pollution and acid-rain in China. Ambio. 1986;15(1):2–5.

    CAS  Google Scholar 

  47. Ding GA, Xu XB, Wang SF, Yu XL, Cheng HB. Database from the acid rain network of China meteorological administration and its preliminary analyses. Quarterly Journal of Applied Meteorology. 2004;15(1):85–94.

    Google Scholar 

  48. Lü CQ, Tian HQ. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data. J Geophys Res. 2007;112(D22):229–38.

    Article  Google Scholar 

  49. Boersma KF, Eskes HJ, Brinksma EJ. Error analysis for tropospheric NO2 retrieval from space. J Geophys Res. 2004;109(D4):385–9.

    Article  CAS  Google Scholar 

  50. Boersma KF, Eskes HJ, Dirksen RJ, van der ARJ, Veefkind JP, Stammes P, et al. An improved tropospheric NO2 column retrieval algorithm for the ozone monitoring instrument. Atmos Meas Tech. 2011;4(9):1905–28.

    Article  CAS  Google Scholar 

  51. Cheng MM, Jiang H, Guo Z, Zhang XY, Lu XH. Estimating NO2 dry deposition using satellite data in eastern China. Int J Remote Sens. 2013;34(7):2548–65.

    Article  Google Scholar 

  52. Lu XH, Jiang H, Zhang XY, Liu JX, Zhang Z, Jin JX, et al. Estimated global nitrogen deposition using NO2 column density. Int J Remote Sens. 2013;34(24):8893–906.

    Article  Google Scholar 

  53. Nowlan CR, Martin RV, Philip S, Lamsal LN, Krotkov NA, Marais EA, et al. Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space-based measurements. Global Biogeochem Cy. 2014;28(10):1025–43.

    Article  CAS  Google Scholar 

  54. Shephard MW, Cady-Pereira KE, Luo M, Henze DK, Pinder RW, Walker JT, et al. TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia. Atmos Chem Phys. 2011;11(20):10743–63.

    Article  CAS  Google Scholar 

  55. Warner JX, Wei ZG, Strow LL, Dickerson RR, Nowak JB. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record. Atmos Chem Phys. 2016;16(8):5467–79.

    Article  CAS  Google Scholar 

  56. Pan Y, Li Y, Wang Y. Comments on “Half-century nitrogen deposition increase across China: A gridded time-series dataset for regional environmental assessments” by Chaoqun Lu and Hanqin Tian. Atmos Environ. 2014;97:68–74.

    Article  CAS  Google Scholar 

  57. Pan Y, Liu Y, Wentworth GR, Zhang L, Zhao Y, Li Y, et al. Letter to the editor: critical assessments of the current state of scientific knowledge, terminology, and research needs concerning the ecological effects of elevated atmospheric nitrogen deposition in China. Atmos Environ. 2017;153:109–16.

    Article  CAS  Google Scholar 

  58. Liu XJ, Xu W, Pan Y, Du E. Liu et al. suspect that Zhu et al. (2015) may have underestimated dissolved organic nitrogen (N) but overestimated total particulate N in wet deposition in China. Sci Total Environ. 2015;520:300–1.

    Article  CAS  Google Scholar 

  59. Zhang G, Pan Y, Tian S, Cheng M, Xie Y, Wang H, et al. Limitations of passive sampling technique of rainfall chemistry and wet deposition flux characterization. Res Environ Sci. 2015;28(5):684–90.

    Google Scholar 

  60. Goulding KWT. Nitrogen deposition to land from the atmosphere. Soil Use Manage. 1990;6(2):61–3.

    Article  Google Scholar 

  61. Liu XJ, Ju XT, Zhang Y, He CE, Kopsch J, Zhang FS. Nitrogen deposition in agroecosystems in the Beijing area. Agric Ecosyst Environ. 2006;113(1):370–7.

    Article  CAS  Google Scholar 

  62. Jia YL, Yu GR, He NP, Zhan XY, Fang HJ, Sheng WP, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci Rep. 2014;4(1):3763.

    Article  CAS  Google Scholar 

  63. • Lü CQ, Tian HQ. Half-century nitrogen deposition increase across China: a gridded time-series data set for regional environmental assessments. Atmos Environ. 2014;97:68–74. The authors combined site-level monitoring gridded precipitation data and atmospheric transport modeling results to generate annual N bulk deposition in China from 1961 to 2008 (10 km × 10 km spatial resolution) and reported 59% increase in N deposition from the 1960s.

    Article  CAS  Google Scholar 

  64. Fowler D, Coyle M, Flechard C, Hargreaves K, Nemitz E, Storeton-West R, et al. Advances in micrometeorological methods for the measurement and interpretation of gas and particle nitrogen fluxes. Plant Soil. 2001;228(1):117–29.

    Article  CAS  Google Scholar 

  65. • Flechard CR, Nemitz E, Smith RI, Fowler D, Vermeulen AT, Bleeker A, et al. Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmos Chem Phys. 2011;11(6):2703–28. This article compares inferential models on European atmospheric reactive nitrogen (Nr) based on the inferential network. Results suggest the validation of inferential models at the ecosystem scale is best achieved by comparison with direct long-term micrometeorological Nr flux measurements.

    Article  CAS  Google Scholar 

  66. Rummel U, Ammann C, Gut A, Meixner FX, Andreae MO. Eddy covariance measurements of nitric oxide flux within an Amazonian rain forest. J Geophys Res. 2002;107(D20):8050.

    Article  CAS  Google Scholar 

  67. Trebs I, Lara LL, Zeri LMM, Gatti LV, Artaxo P, Dlugi R, et al. Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondonia, Brazil). Atmos Chem Phys. 2006;6(2):447–69.

    Article  CAS  Google Scholar 

  68. Shen JL, Tang AH, Liu XJ, Fangmeier A, Goulding KT, Zhang FS. High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain. Environ Pollut. 2009;157(11):3106–13.

    Article  CAS  Google Scholar 

  69. Qi JH, Shi JH, Gao HW, Sun Z. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China. Atmos Environ. 2013;81(2):600–8.

    Article  CAS  Google Scholar 

  70. Shen JL, Li Y, Liu XJ, Luo XS, Tang H, Zhang YZ, et al. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China. Atmos Environ. 2013;67(2):415–24.

    Article  CAS  Google Scholar 

  71. Flechard CR, Massad RS, Loubet B, Personne E, Simpson D, Bash JO, et al. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange. Biogeosciences. 2013;10(7):5183–225.

    Article  Google Scholar 

  72. Sutton MA, Reis S, Riddick SN, Dragosits U, Nemitz E, Theobald MR, et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Phil Trans R Soc B. 2013;368:20130166.

    Article  CAS  Google Scholar 

  73. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science. 2008;320(5878):893–7.

    Article  CAS  Google Scholar 

  74. • Cape JN, Tang SM, González-Benitez JM, Mitošinková M, Makkonen U, Jocher M, et al. Organic nitrogen in precipitation across Europe. Biogeosci. 2012;9(11):4401–9. This article presents the absolute and relative contributions of organic N to wet N deposition across Europe, and examines seasonal trends of wet deposition of organic N.

    Article  CAS  Google Scholar 

  75. Benítez JMG, Cape JN, Heal MR, van Dijk N, Díez AV. Atmospheric nitrogen deposition in south-east Scotland: quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmos Environ. 2009;43(26):4087–94.

    Article  CAS  Google Scholar 

  76. Benedict KB, Kreidenweis SM, Schichtel B, Malm WC, Carrico C, Collett Jr JL. A seasonal nitrogen deposition budget for Rocky Mountain National Park. Ecol Appl. 2013;23(5):1156–69.

    Article  CAS  Google Scholar 

  77. Shi J, Gao H, Qi J, Zhang J, Yao X. Sources, compositions, and distributions of water-soluble organic nitrogen in aerosols over the China Sea. J Geophys Res. 2010;115(D17):1383–92.

    Google Scholar 

  78. Lin M, Walker J, Geron C, Khlystov A. Organic nitrogen in PM2.5 aerosol at a forest site in the southeast US. Atmos Chem Phys. 2010;10(5):2145–57.

    Article  CAS  Google Scholar 

  79. Matsumoto K, Yamamoto Y, Kobayashi H, Kaneyasu N, Nakano T. Water-soluble organic nitrogen in the ambient aerosols and its contribution to the dry deposition of fixed nitrogen species in Japan. Atmos Environ. 2014;95:334–43.

    Article  CAS  Google Scholar 

  80. Chen YX, Chen HY, Wang W, Yeh JX, Chou WC, Gong GC, et al. Dissolved organic nitrogen in wet deposition in a coastal city (Keelung) of the southern East China Sea: origin, molecular composition and flux. Atmos Environ. 2015;112:20–31.

    Article  CAS  Google Scholar 

  81. Zhang Y, Zheng L, Liu X, Jickells T, Cape JN, Goulding K, et al. Evidence for organic N deposition and its anthropogenic sources in China. Atmos Environ. 2008;42(5):1035–41.

    Article  CAS  Google Scholar 

  82. Altieri KE, Hastings MG, Gobel AR, Peters AJ, Sigman DM. Isotopic composition of rainwater nitrate at Bermuda: the influence of air mass source and chemistry in the marine boundary layer. J Geophys Res. 2013;118(19):11304–16.

    CAS  Google Scholar 

  83. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohlke JK. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem. 2011;73(17):4145–53.

    Article  CAS  Google Scholar 

  84. Fang YT, Koba K, Wang XM, Wen DZ, Li J, Takebayashi Y. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China. Atmos Chem Phys. 2011;11(3):1313–25.

    Article  CAS  Google Scholar 

  85. Liu XY, Koba K, Makabe A, Li XD, Yoh M, Liu CQ. Ammonium first: natural mosses prefer atmospheric ammonium but vary utilization of dissolved organic nitrogen depending on habitat and nitrogen deposition. New Phytol. 2013;199(2):407–19.

    Article  CAS  Google Scholar 

  86. Zhang Y, Liu XJ, Fangmeier A, Goulding KTW, Zhang FS. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmos Environ. 2008;42(7):1436–48.

    Article  CAS  Google Scholar 

  87. Xiao HW, Xiao HY, Long AM, Wang YL. Who controls the monthly variations of NH4 + nitrogen isotope composition in precipitation? Atmos Environ. 2012;54(5):201–6.

    Article  CAS  Google Scholar 

  88. Liu JY, Zhang Y, Liu XJ, Tang AH, Qiu HS, Zhang FS. Concentrations and isotopic characteristics of atmospheric reactive nitrogen around typical sources in Beijing, China. J Arid Land. 2016;8(6):910–20.

    Article  Google Scholar 

  89. Knapp AN, Hastings MG, Sigman DM, Lipschultz F, Galloway JN. The flux and isotopic composition of reduced and total nitrogen in Bermuda rain. Mar Chem. 2010;120(1–4):83–9.

    Article  CAS  Google Scholar 

  90. • Altieri KE, Fawcett SE, Peters AJ, Sigman DM, Hastings MG. Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic. P Natl Acad Sci USA. 2016;113(4):925–30. This article indicates the major source of the organic nitrogen in marine aerosols. The findings imply that the contribution of atmospheric nitrogen deposition to ocean fertility, oceanic CO 2 removal, and nitrous oxide emissions may have been overestimated.

    Article  CAS  Google Scholar 

  91. Elliott EM, Kendall C, Boyer EW, Burns DA, Lear GG, Golden HE, et al. Dual nitrate isotopes in dry deposition: utility for partitioning NOx source contributions to landscape nitrogen deposition. J Geophys Res. 2009;114(G4):425–53.

    Article  Google Scholar 

  92. Koba K, Fang YT, Mo JM, Zhang W, Lu XK, Liu L, et al. The 15N natural abundance of the N lost from an N-saturated subtropical forest in southern China. J Geophys Res. 2012;117(G2):1–8.

    Article  CAS  Google Scholar 

  93. Zheng D, Wang X, Xie S, Duan L, Chen D. Simulation of atmospheric nitrogen deposition in China in 2010. China Environ Sci. 2014;34(5):1089–97.

    CAS  Google Scholar 

  94. Huang Z, Wang S, Zheng J, Yuan Z, Ye S, Kang D. Modeling inorganic nitrogen deposition in Guangdong province, China. Atmos Environ. 2015;109:147–60.

    Article  CAS  Google Scholar 

  95. Gu F, Huang M, Zhang Y, Yan H, Li J, Guo R, et al. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961-2010. Acta Ecol Sin. 2016;36(12):3591–600.

    Google Scholar 

  96. Wesely ML. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ. 1989;23(6):1293–304.

    Article  CAS  Google Scholar 

  97. Wu ZY, Wang XM, Chen F, Turnipseed AA, Guenther AB, Niyogi D, et al. Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. Atmos Environ. 2011;45(16):2663–74.

    Article  CAS  Google Scholar 

  98. Wu ZY, Wang XM, Turnipseed AA, Chen F, Zhang LM, Guenther AB, et al. Evaluation and improvements of two community models in simulating dry deposition velocities for peroxyacetyl nitrate (PAN) over a coniferous forest. J Geophys Res. 2012;117(D04):183–204.

    Google Scholar 

  99. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhaut B, Fiore AM, et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cy. 2006;20(4):GB4003.

    Article  CAS  Google Scholar 

  100. Zhang Y, Dore AJ, Liu XJ, Zhang FS. Simulation of nitrogen deposition in the North China Plain by the FRAME model. Biogeosci. 2011;8(11):3319–29.

    Article  CAS  Google Scholar 

  101. Zhao Y, Duan L, Xing J, Larssen T, Nielsen CP, Hao J. Soil acidification in China: is controlling SO2 emissions enough? Environ Sci Technol. 2009;43(21):8021–6.

    Article  CAS  Google Scholar 

  102. Yan H, Gao H, Yao X, Wang Z. Simulating dry deposition fluxes of PM10 and particulate inorganic nitrogen over the eastern China seas during a severe Asian dust event using WRF-Chem model. J Ocean Univ China. 2012;11(3):301–14.

    Article  CAS  Google Scholar 

  103. Zhao Y, Zhang L, Pan Y, Wang Y, Paulot F, Henze DK. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution. Atmos Chem Phys. 2015;15(18):10905–24.

    Article  CAS  Google Scholar 

  104. Luo XS, Tang AH, Shi K, Wu LH, Li WQ, Shi WQ. Chinese coastal seas are facing heavy atmospheric nitrogen deposition. Environ Res Lett. 2014;9(9):095007.

    Article  CAS  Google Scholar 

  105. Zhang Y, Yu Q, Ma WC, Chen LM. Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry. J Geophys Res. 2010;115:D00K10.

    Article  Google Scholar 

  106. Griffith SM, Huang XH, Louie PK, Yu JZ. Characterizing the thermodynamic and chemical composition factors controlling PM2.5 nitrate: insights gained from two years of online measurements in Hong Kong. Atmos Environ. 2015;122:864–75.

    Article  CAS  Google Scholar 

  107. Qin MM, Wang XS, Hu YT, Huang XF, He LY, Zhong LJ, et al. Formation of particulate sulfate and nitrate over the Pearl River Delta in the fall: diagnostic analysis using the Community Multiscale Air Quality model. Atmos Environ. 2015;112:81–9.

    Article  CAS  Google Scholar 

  108. •• Huang RJ, Zhang YL, Bozzetti C, Ho KF, Cao JJ, Han YM, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 2014;514(7521):218–22. This article investigates the chemical nature and sources of PM 2.5 in four big cities in China during the haze episodes on January 2013 by a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques. The research indicates the importance of secondary aerosol precursors in serious PM 2.5 pollution over China.

    CAS  Google Scholar 

  109. Tian SL, Pan YP, Liu Z, Wen T, Wang Y. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. J Hazard Mater. 2014;279:452–60.

    Article  CAS  Google Scholar 

  110. Tian SL, Pan YP, Wang YS. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes. Atmos Chem Phys. 2016;16(1):1–19.

    Article  CAS  Google Scholar 

  111. Yang F, Tan J, Zhao Q, Du Z, He K, Ma Y, et al. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos Chem Phys. 2011;11(11):5207–19.

    Article  CAS  Google Scholar 

  112. Felix JD, Elliott EM, Gish T, Maghirang R, Cambal L, Clougherty J. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios. Atmos Environ. 2014;95:563–70.

    Article  CAS  Google Scholar 

  113. Wang Y, Yao L, Wang L, Liu Z, Ji D, Tang G, et al. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci China Earth Sci. 2014;57(1):14–25.

    Article  CAS  Google Scholar 

  114. Ma Q, He H, Liu Y. In situ DRIFTS study of hygroscopic behavior of mineral aerosol. J Environ Sci. 2010;22(4):555–60.

    Article  CAS  Google Scholar 

  115. Cheng Y, He KB, Du ZY, Zheng M, Duan FK, Ma YL. Humidity plays an important role in the PM2.5 pollution in Beijing. Environ Pollut. 2015;197:68–75.

    Article  CAS  Google Scholar 

  116. Wang SX, Xing J, Jang C, Zhu Y, Fu JS, Hao JM. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ Sci Technol. 2011;45(21):9293–300.

    Article  CAS  Google Scholar 

  117. Paulot F, Fan S, Horowitz LW. Contrasting seasonal responses of sulfate aerosols to declining SO2 emissions in the Eastern US: implications for the efficacy of SO2 emission controls. Geophy Res Lett. 2016; in press doi:10.1002/2016GL070695.

    Google Scholar 

  118. Cheng Y, Zheng G, Wei C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Adv. 2016;2(12):e1601530.

    Article  Google Scholar 

  119. Copper OR, Parrish DD, Ziemke J. Global distribution and trends of tropospheric ozone: an observation-based review. Elementa Science of the Anthropocene. 2014;2:000029.

    Article  Google Scholar 

  120. Zhang Q, Yuan B, Shao M, Wang X, Lu S, Lu K, et al. Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011. Atmos Chem Phys. 2014;14(12):6089–101.

    Article  CAS  Google Scholar 

  121. Sun YL, Wang ZF, Wild O, Xu WQ, Chen C, Fu PQ, et al. “APEC Blue”: secondary aerosol reductions from emission controls in Beijing. Sci Rep. 2016;6:20668.

    Article  CAS  Google Scholar 

  122. Tang G, Wang Y, Li X, Ji D, Hsu S, Gao X. Spatial-temporal variations in surface ozone in Northern China as observed during 2009-2010 and possible implications for future air quality control strategies. Atmos Chem Phys. 2012;12(5):2757–76.

    Article  CAS  Google Scholar 

  123. Tie X, Geng F, Guenther A, et al. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign. Atmos Chem Phys. 2013;13(11):5655–69.

    Article  CAS  Google Scholar 

  124. Xue LK, Wang T, Gao J, et al. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes. Atmos Chem Phys. 2014;14(23):13175–88.

    Article  CAS  Google Scholar 

  125. Wang S, Zhao M, Xing J, Wu Y, Zhou Y, Lei Y, et al. Quantifying the air pollutants emission reduction during the 2008 Olympic Games in Beijing. Environ Sci Technol. 2010;44(7):2490–6.

    Article  CAS  Google Scholar 

  126. Shen JL, Liu JY, Li Y, Li YY, Wang Y, Liu XJ, et al. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China. J Environ Sci. 2014;26(9):1797–805.

    Article  Google Scholar 

  127. Song W, Chang YH, Liu XJ, Li KH, Gong YM, He GX, et al. A multiyear assessment of air quality benefits from China's emerging shale gas revolution: Urumqi as a case study. Environ Sci Technol. 2015;49(4):2066–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41425007) and the State Basic Research Program (2014CB954200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

All authors contributed equally to this work.

This article is part of the Topical Collection on Air Pollution

An erratum to this article is available at http://dx.doi.org/10.1007/s40726-017-0056-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xu, W., Duan, L. et al. Atmospheric Nitrogen Emission, Deposition, and Air Quality Impacts in China: an Overview. Curr Pollution Rep 3, 65–77 (2017). https://doi.org/10.1007/s40726-017-0053-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-017-0053-9

Keywords

Navigation