Skip to main content

Advertisement

Log in

Challenges to Managing Microbial Fecal Pollution in Coastal Environments: Extra-Enteric Ecology and Microbial Exchange Among Water, Sediment, and Air

  • Sediment and Other Pollutions (R Datta and P Zhang, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Human population growth, especially in coastal urban cities, increases the potential for fecal pollution of adjacent waterways, requiring continued advances in pollution monitoring and management. Infections remain the largest health risk from contact with fecal- and sewage-polluted waters, and a small number of fecal indicator bacteria (FIB) are used as primary pollution assessment tools. While FIB continue to be useful tools, some of the assumptions about the behavior of FIB in the environment, and the associated pathways for pathogen exposure, have come into question. Research into the extra-enteric ecology of these indicators has identified management-relevant complexities including particle association, prolonged environmental persistence, and multidirectional microbial exchange among water, sediment, and air. These complexities provide opportunities for improving current monitoring and modeling strategies and to better understand exposure pathways for sewage-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Association for the Advancement of Science. Rise of the city. Science. 2016;352(6288):906–7.

    Article  Google Scholar 

  2. Vermeulen LC, de Kraker J, Hofstra N, Kroeze C, Medema G. Modelling the impact of sanitation, population growth and urbanization on human emissions of cryptosporidium to surface waters—a case study for Bangladesh and India. Environ Res Lett. 2015;10(9):094017.

    Article  Google Scholar 

  3. Hetling LJ, Stoddard A, Brosnan TM, Hammerman DA, Norris TM. Effect of water quality management efforts on wastewater loadings during the past century. Water Environ Res. 2003;75(1):30–8.

    Article  CAS  Google Scholar 

  4. Passerat J, Ouattara NK, Mouchel J-M, Rocher V, Servais P. Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res. 2011;45(2):893–903.

    Article  CAS  Google Scholar 

  5. Eaton T, O’Mullan GD, Rouff AA. Assessing continuous contamination discharge from a combined sewer outfall (CSO) into a tidal wetland creek: bacteriological and heavy metals indicators. Annals of Env Sci. 2013;7:79–92. 

  6. • Young S, Juhl A, O’Mullan GD. Antibiotic-resistant bacteria in the Hudson River Estuary linked to wet weather sewage contamination. J Water Health. 2013;11(2):297–310. This article describes the correlated abundances of FIB and antibiotic-resistant bacteria in the Hudson River Estuary and their increased abundance following precipitation, demonstrating a linkage to wet weather sewage discharge.

  7. Mailhot A, Talbot G, Lavallée B. Relationships between rainfall and combined sewer overflow (CSO) occurrences. J Hydrol. 2015;523:602–9.

    Article  Google Scholar 

  8. Shuval H. Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment. J Water Health. 2003;1(2):53–64.

    Google Scholar 

  9. Campos CJA, Kershaw SR, Lee RJ. Environmental influences on faecal indicator organisms in coastal waters and their accumulation in bivalve shellfish. Estuar Coasts. 2013;36(4):834–53.

    Article  CAS  Google Scholar 

  10. Cabelli VJ, Dufour AP, McCabe LJ, Levin MA. Swimming-associated gastroenteritis and water quality. Am J Epidemiol. 1982;115(4):606–16.

    Article  CAS  Google Scholar 

  11. Fleisher JM, Kay D, Salmon RL, Jones F, Wyer MD, Godfree AF. Marine waters contaminated with domestic sewage: nonenteric illnesses associated with bather exposure in the United Kingdom. Am J Public Health. 1996;86(9):1228–34.

    Article  CAS  Google Scholar 

  12. Leclerc H, Schwartzbrod L, Dei-Cas E. Microbial agents associated with waterborne diseases. Crit Rev Microbiol. 2002;28(4):371–409.

    Article  CAS  Google Scholar 

  13. Prüss A. Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol. 1998;27(1):1–9.

    Article  Google Scholar 

  14. Wade TJ, Calderon RL, Brenner KP, Sams E, Beach M, Haugland R, et al. High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality. Epidemiology. 2008;19(3):375–83.

    Article  Google Scholar 

  15. World Health O. Guidelines for safe recreational water environments: coastal and fresh waters: World Health Organization; 2003.

  16. US-EPA. Recreational water quality criteria. Office of Water 820-F-12-058. 2012.

  17. Dufour A, Schaub S. The evolution of water quality criteria in the United States. Statistical Framework for Recreational Water Quality Criteria and Monitoring. 2007;65:1.

    Article  Google Scholar 

  18. Dorfman MH, Stoner N, Rosselot KS. Testing the waters: a guide to water quality at vacation beaches: Natural Resources Defense Council San Francisco; 2009.

  19. Wade TJ, Sams E, Brenner KP, Haugland R, Chern E, Beach M, et al. Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environ Health. 2010;9(1):1.

    Article  CAS  Google Scholar 

  20. Lamparelli CC, Pogreba-Brown K, Verhougstraete M, Sato MIZ, de Castro BA, Wade TJ, et al. Are fecal indicator bacteria appropriate measures of recreational water risks in the tropics: a cohort study of beach goers in Brazil? Water Res. 2015;87:59–68.

    Article  CAS  Google Scholar 

  21. Wade TJ, Pai N, Eisenberg JNS, Colford Jr JM. Do US Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environ Health Perspect. 2003;111(8):1102.

    Article  Google Scholar 

  22. Yau V, Wade TJ, de Wilde CK, Colford Jr JM. Skin-related symptoms following exposure to recreational water: a systematic review and meta-analysis. Water Qual Expo Health. 2009;1(2):79–103.

    Article  Google Scholar 

  23. Arnold BF, Wade TJ, Benjamin-Chung J, Schiff KC, Griffith JF, Dufour AP, et al. Acute gastroenteritis and recreational water: highest burden among young US children. Am J Public Health. 2016;106(9):1690–7.

    Article  Google Scholar 

  24. Boehm AB, Keymer DP, Shellenbarger GG. An analytical model of enterococci inactivation, grazing, and transport in the surf zone of a marine beach. Water Res. 2005;39(15):3565–78.

    Article  CAS  Google Scholar 

  25. Davies CM, Long JA, Donald M, Ashbolt NJ. Survival of fecal microorganisms in marine and freshwater sediments. Appl Environ Microbiol. 1995;61(5):1888–96.

    CAS  Google Scholar 

  26. Anderson KL, Whitlock JE, Harwood VJ. Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol. 2005;71(6):3041–8.

    Article  CAS  Google Scholar 

  27. Stewart JR, Gast RJ, Fujioka RS, Solo-Gabriele HM, Meschke JS, Amaral-Zettler LA, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environ Health. 2008;7(2):1.

    Google Scholar 

  28. Boehm AB, Ashbolt NJ, Colford JM, Dunbar LE, Fleming LE, Gold MA, et al. A sea change ahead for recreational water quality criteria. J Water Health. 2009;7(1):9–20.

    Article  Google Scholar 

  29. Byappanahalli MN, Roll BM, Fujioka RS. Evidence for occurrence, persistence, and growth potential of Escherichia coli and enterococci in Hawaii’s soil environments. Microbes Environ. 2012;27(2):164–70.

    Article  Google Scholar 

  30. •• Fujioka RS, Solo-Gabriele HM, Byappanahalli MN, Kirs M. US recreational water quality criteria: a vision for the future. Int J Environ Res Public Health. 2015;12(7):7752–76. This review article describes limitations to the 2012 EPA recreational water quality criteria, including arguments for why beach sand regulations are needed.

    Article  CAS  Google Scholar 

  31. Whitman RL, Harwood VJ, Edge TA, Nevers MB, Byappanahalli M, Vijayavel K, et al. Microbes in beach sands: integrating environment, ecology and public health. Rev Environ Sci Biotechnol. 2014;13(3):329–68.

    Article  CAS  Google Scholar 

  32. Solo-Gabriele HM, Harwood VJ, Kay D, Fujioka RS, Sadowsky MJ, Whitman RL, et al. Beach sand and the potential for infectious disease transmission: observations and recommendations. J Mar Biol Assoc U K. 2016;96(01):101–20.

    Article  Google Scholar 

  33. Crump BC, Baross JA, Simenstad CA. Dominance of particle-attached bacteria in the Columbia River Estuary. USA Aquat Microb Ecol. 1998;14(1):7–18.

    Article  Google Scholar 

  34. Bouvier TC, del Giorgio PA. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr. 2002;47(2):453–70.

    Article  CAS  Google Scholar 

  35. Campbell BJ, Kirchman DL. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 2013;7(1):210–20.

    Article  CAS  Google Scholar 

  36. Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 1980;25:943–8.

    Article  Google Scholar 

  37. Caron DA, Davis PG, Madin LP, Sieburth JM. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science. 1982;218(4574):795–7.

    Article  CAS  Google Scholar 

  38. Feng F, Goto D, Yan T. Effects of autochthonous microbial community on the die-off of fecal indicators in tropical beach sand. FEMS Microbiol Ecol. 2010;74(1):214–25.

    Article  CAS  Google Scholar 

  39. Zhang Q, He X, Yan T. Differential decay of wastewater bacteria and change of microbial communities in beach sand and seawater microcosms. Environ Sci Technol. 2015;49(14):8531–40.

    Article  CAS  Google Scholar 

  40. Gonzalez JM, Iriberri J, Egea L, Barcina I. Characterization of culturability, protistan grazing, and death of enteric bacteria in aquatic ecosystems. Appl Environ Microbiol. 1992;58(3):998–1004.

    CAS  Google Scholar 

  41. Korajkic A, Wanjugi P, Harwood VJ. Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Appl Environ Microbiol. 2013;79(17):5329–37.

    Article  CAS  Google Scholar 

  42. Arana I, Irizar A, Seco C, Muela A, Fernández-Astorga A, Barcina I. gfp-tagged cells as a useful tool to study the survival of Escherichia coli in the presence of the river microbial community. Microb Ecol. 2003;45(1):29–38.

    Article  CAS  Google Scholar 

  43. Topp E, Scott A, Lapen DR, Lyautey E, Duriez P. Livestock waste treatment systems for reducing environmental exposure to hazardous enteric pathogens: some considerations. Bioresour Technol. 2009;100(22):5395–8.

    Article  CAS  Google Scholar 

  44. Kay D, Aitken M, Crowther J, Dickson I, Edwards AC, Francis C, et al. Reducing fluxes of faecal indicator compliance parameters to bathing waters from diffuse agricultural sources: the Brighouse Bay study, Scotland. Environ Pollut. 2007;147(1):138–49.

    Article  CAS  Google Scholar 

  45. Alderisio KA, DeLuca N. Seasonal enumeration of fecal coliform bacteria from the feces of ring-billed gulls (Larus delawarensis) and Canada geese (Branta canadensis). Appl Environ Microbiol. 1999;65(12):5628–30.

    CAS  Google Scholar 

  46. Grant SB, Sanders BF, Boehm AB, Redman JA, Kim JH, Mrše RD, et al. Generation of enterococci bacteria in a coastal saltwater marsh and its impact on surf zone water quality. Environ Sci Technol. 2001;35(12):2407–16.

    Article  CAS  Google Scholar 

  47. Schoen ME, Ashbolt NJ. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ Sci Technol. 2010;44(7):2286–91.

    Article  CAS  Google Scholar 

  48. Guber AK, Fry J, Ives RL, Rose JB. Escherichia coli survival in, and release from, white-tailed deer feces. Appl Environ Microbiol. 2015;81(3):1168–76.

    Article  CAS  Google Scholar 

  49. Wright ME, Solo-Gabriele HM, Elmir S, Fleming LE. Microbial load from animal feces at a recreational beach. Mar Pollut Bull. 2009;58(11):1649–56.

    Article  CAS  Google Scholar 

  50. Wang JD, Solo-Gabriele HM, Abdelzaher AM, Fleming LE. Estimation of enterococci input from bathers and animals on a recreational beach using camera images. Mar Pollut Bull. 2010;60(8):1270–8.

    Article  CAS  Google Scholar 

  51. Whitlock JE, Jones DT, Harwood VJ. Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis. Water Res. 2002;36(17):4273–82.

    Article  CAS  Google Scholar 

  52. Yan T, Sadowsky MJ. Determining sources of fecal bacteria in waterways. Environ Monit Assess. 2007;129(1–3):97–106.

    Article  CAS  Google Scholar 

  53. Bernhard AE, Field KG. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol. 2000;66(10):4571–4.

    Article  CAS  Google Scholar 

  54. Santo Domingo JW, Bambic DG, Edge TA, Wuertz S. Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res. 2007;41(16):3539–52.

    Article  CAS  Google Scholar 

  55. •• McLellan SL, Eren AM. Discovering new indicators of fecal pollution. Trends Microbiol. 2014;22(12):697–706. This review article evaluates emerging tools to study fecal pollution in aquatic environments, including DNA sequencing-based microbial signature tools and quantitative PCR-based MST approaches.

    Article  CAS  Google Scholar 

  56. Fisher JC, Eren AM, Green HC, Shanks OC, Morrison HG, Vineis JH, et al. Comparison of sewage and animal fecal microbiomes by using oligotyping reveals potential human fecal indicators in multiple taxonomic groups. Appl Environ Microbiol. 2015;81(20):7023–33.

    Article  CAS  Google Scholar 

  57. McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol. 2010;12(2):378–92.

    Article  CAS  Google Scholar 

  58. Shanks OC, Newton RJ, Kelty CA, Huse SM, Sogin ML, McLellan SL. Comparison of the microbial community structures of untreated wastewaters from different geographic locales. Appl Environ Microbiol. 2013;79(9):2906–13.

    Article  CAS  Google Scholar 

  59. • Newton RJ, Bootsma MJ, Morrison HG, Sogin ML, McLellan SL. A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb Ecol. 2013;65(4):1011–23. Demonstrates the use of DNA sequencing microbial signature approaches to study fecal and sewage pollution, including low concentration pollution signals in offshore water.

    Article  Google Scholar 

  60. VandeWalle JL, Goetz GW, Huse SM, Morrison HG, Sogin ML, Hoffmann RG, et al. Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure. Environ Microbiol. 2012;14(9):2538–52.

    Article  CAS  Google Scholar 

  61. Anumol T, Vijayanandan A, Park M, Philip L, Snyder SA. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai. India Environ Int. 2016;92:33–42.

    Article  CAS  Google Scholar 

  62. Spoelstra J, Schiff SL, Brown SJ. Artificial sweeteners in a large Canadian river reflect human consumption in the watershed. PLoS One. 2013;8(12):e82706.

    Article  CAS  Google Scholar 

  63. Cantwell MG, Katz DR, Sullivan JC, Borci T, Chen RF. Caffeine in Boston Harbor past and present, assessing its utility as a tracer of wastewater contamination in an urban estuary. Mar Pollut Bull. 2016.

  64. Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G. Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography–triple quadrupole mass spectrometry method. J Chromatogr A. 2009;1216(7):1126–31.

    Article  CAS  Google Scholar 

  65. Tran NH, Li J, Hu J, Ong SL. Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Environ Sci Pollut Res. 2014;21(6):4727–40.

    Article  CAS  Google Scholar 

  66. Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5(10):782–91.

    Article  CAS  Google Scholar 

  67. Lyons MM, Ward JE, Gaff H, Hicks RE, Drake JM, Dobbs FC. Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquat Microb Ecol. 2010;60(1).

  68. Simon M, Grossart H-P, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 2002;28(2):175–211.

    Article  Google Scholar 

  69. Shanks AL, Reeder ML. Reducing microzones and sulfide production in marine snow. Mar Ecol Prog Ser. 1993;96:43–7.

    Article  Google Scholar 

  70. DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr. 1993;38(5):924–34.

    Article  Google Scholar 

  71. Bidle KD, Fletcher M. Comparison of free-living and particle-associated bacterial communities in the Chesapeake Bay by stable low-molecular-weight RNA analysis. Appl Environ Microbiol. 1995;61(3):944–52.

    CAS  Google Scholar 

  72. Jamieson R, Gordon R, Joy D, Lee H. Assessing microbial pollution of rural surface waters: a review of current watershed scale modeling approaches. Agric Water Manag. 2004;70(1):1–17.

    Article  Google Scholar 

  73. Walters E, Graml M, Behle C, Müller E, Horn H. Influence of particle association and suspended solids on UV inactivation of fecal indicator bacteria in an urban river. Water Air Soil Pollut. 2014;225(1):1–9.

    Article  CAS  Google Scholar 

  74. Fries JS, Characklis GW, Noble RT. Attachment of fecal indicator bacteria to particles in the Neuse River Estuary. NC J Enviro Eng. 2006;132(10):1338–45.

    Article  CAS  Google Scholar 

  75. Fries JS, Characklis GW, Noble RT. Sediment–water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA. Water Res. 2008;42(4):941–50.

    Article  CAS  Google Scholar 

  76. • Suter E, Juhl AR, O’Mullan GD. Particle association of Enterococcus and total bacteria in the lower Hudson River Estuary, USA. J Water Resour Protect. 2011;3(10):715. This article quantifies the abundance of particle-associated FIB and total bacteria in the Hudson River Estuary and changes in abundance from the nearshore environment to mid-channel, including wastewater inputs and tributary mixing zones.

    Article  CAS  Google Scholar 

  77. Mote BL, Turner JW, Lipp EK. Persistence and growth of the fecal indicator bacteria enterococci in detritus and natural estuarine plankton communities. Appl Environ Microbiol. 2012;78(8):2569–77.

    Article  CAS  Google Scholar 

  78. Krometis L-AH, Characklis GW, Simmons OD, Dilts MJ, Likirdopulos CA, Sobsey MD. Intra-storm variability in microbial partitioning and microbial loading rates. Water Res. 2007;41(2):506–16.

    Article  CAS  Google Scholar 

  79. Characklis GW, Dilts MJ, Simmons OD, Likirdopulos CA, Krometis L-AH, Sobsey MD. Microbial partitioning to settleable particles in stormwater. Water Res. 2005;39(9):1773–82.

    Article  CAS  Google Scholar 

  80. Cizek AR, Characklis GW, Krometis L-A, Hayes JA, Simmons OD, Di Lonardo S, et al. Comparing the partitioning behavior of Giardia and Cryptosporidium with that of indicator organisms in stormwater runoff. Water Res. 2008;42(17):4421–38.

    Article  CAS  Google Scholar 

  81. Jeng HC, England AJ, Bradford HB. Indicator organisms associated with stormwater suspended particles and estuarine sediment. J Environ Sci Health. 2005;40(4):779–91.

    Article  CAS  Google Scholar 

  82. Garcia-Armisen T, Servais P. Partitioning and fate of particle-associated E. coli in river waters. Water Environ Res. 2009;81(1):21–8.

    CAS  Google Scholar 

  83. Jamieson R, Joy DM, Lee H, Kostaschuk R, Gordon R. Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Res. 2005;39(12):2665–75.

    Article  CAS  Google Scholar 

  84. Auer MT, Niehaus SL. Modeling fecal coliform bacteria—I. Field and laboratory determination of loss kinetics. Water Res. 1993;27(4):693–701.

    Article  Google Scholar 

  85. Schillinger JE, Gannon JJ. Bacterial adsorption and suspended particles in urban stormwater. J Water Pollut Control Fed. 1985:384–9.

  86. Atwill R, Lewis D, Pereira M, Huerta M, Bond R, Ogata S, et al. Characterizing freshwater inflows and sediment reservoirs of fecal coliforms and E. coli at five estuaries in Northern California. University of California School of Veterinary Medicine and Cooperative Extension in Sonoma and Marin Counties, Davis, CA. University of California School of Veterinary Medicine and Cooperative Extension in Sonoma and Marin Counties, Davis, CA. 2007.

  87. Pachepsky YA, Shelton DR. Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Crit Rev Environ Sci Technol. 2011;41(12):1067–110.

    Article  CAS  Google Scholar 

  88. Jamieson RC, Joy DM, Lee H, Kostaschuk R, Gordon RJ. Resuspension of sediment-associated in a natural stream. J Environ Qual. 2005;34(2):581–9.

    Article  CAS  Google Scholar 

  89. Fugate DC, Friedrichs CT. Controls on suspended aggregate size in partially mixed estuaries. Estuar Coast Shelf Sci. 2003;58(2):389–404.

    Article  Google Scholar 

  90. Fries JS, Noble RT, Paerl HW, Characklis GW. Particle suspensions and their regions of effect in the Neuse River Estuary: implications for water quality monitoring. Estuar Coasts. 2007;30(2):359–64.

    Article  Google Scholar 

  91. Davies CM, Bavor HJ. The fate of stormwater-associated bacteria in constructed wetland and water pollution control pond systems. J Appl Microbiol. 2000;89(2):349–60.

    Article  CAS  Google Scholar 

  92. Ahn JH, Grant SB, Surbeck CQ, DiGiacomo PM, Nezlin NP, Jiang S. Coastal water quality impact of stormwater runoff from an urban watershed in southern California. Environ Sci Technol. 2005;39(16):5940–53.

    Article  CAS  Google Scholar 

  93. Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol. 2000;66(2):578–87.

    Article  CAS  Google Scholar 

  94. Griffith P, Shiah F-K, Gloersen K, Ducklow HW, Fletcher M. Activity and distribution of attached bacteria in Chesapeake Bay. Mar Ecol Prog Ser. 1994;108:1.

    Article  Google Scholar 

  95. Hess-Erga O-K, Attramadal KJK, Vadstein O. Biotic and abiotic particles protect marine heterotrophic bacteria during UV and ozone disinfection. Aquat Biol. 2008;4(2):147–54.

    Article  Google Scholar 

  96. Perkins TL, Perrow K, Rajko-Nenow P, Jago CF, Jones DL, Malham SK, et al. Decay rates of faecal indicator bacteria from sewage and ovine faeces in brackish and freshwater microcosms with contrasting suspended particulate matter concentrations. Sci Total Environ. 2016.

  97. •• Halliday E, McLellan SL, Amaral-Zettler LA, Sogin ML, Gast RJ. Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations. PLoS One. 2014;9(3):e90815. This article demonstrates the dry weather association of levels of FIB between beach sand and water, including tidal controls on dynamics of FIB at the beach and the role of the beach sand as a reservoir of FIB.

    Article  CAS  Google Scholar 

  98. Goyal SM, Gerba CP, Melnick JL. Occurrence and distribution of bacterial indicators and pathogens in canal communities along the Texas coast. Appl Environ Microbiol. 1977;34(2):139–49.

    CAS  Google Scholar 

  99. Shiaris MP, Rex AC, Pettibone GW, Keay K, McManus P, Rex MA, et al. Distribution of indicator bacteria and Vibrio parahaemolyticus in sewage-polluted intertidal sediments. Appl Environ Microbiol. 1987;53(8):1756–61.

    CAS  Google Scholar 

  100. Halliday E, Ralston DK, Gast RJ. Contribution of sand-associated enterococci to dry weather water quality. Environ Sci Technol. 2014;49(1):451–8.

    Article  CAS  Google Scholar 

  101. Roslev P, Bastholm S, Iversen N. Relationship between fecal indicators in sediment and recreational waters in a Danish estuary. Water Air Soil Pollut. 2008;194(1–4):13–21.

    Article  CAS  Google Scholar 

  102. Vogel LJ, O’Carroll DM, Edge TA, Robinson CE. Release of Escherichia coli from foreshore sand and pore water during intensified wave conditions at a recreational beach. Environ Sci Technol. 2016;50(11):5676–84.

    Article  CAS  Google Scholar 

  103. Feng Z, Reniers A, Haus BK, Solo-Gabriele HM, Kelly EA. Wave energy level and geographic setting correlate with Florida beach water quality. Mar Pollut Bull. 2016;104(1):54–60.

    Article  CAS  Google Scholar 

  104. Surbeck CQ. Factors influencing the challenges of modelling and treating fecal indicator bacteria in surface waters. Ecohydrology. 2009;2(4):399–403.

    Article  Google Scholar 

  105. Whitman RL, Nevers MB, Byappanahalli MN. Examination of the watershed-wide distribution of Escherichia coli along southern Lake Michigan: an integrated approach. Appl Environ Microbiol. 2006;72(11):7301–10.

    Article  CAS  Google Scholar 

  106. Feng Z, Reniers A, Haus BK, Solo-Gabriele HM, Wang JD, Fleming LE. A predictive model for microbial counts on beaches where intertidal sand is the primary source. Mar Pollut Bull. 2015;94(1):37–47.

    Article  CAS  Google Scholar 

  107. Kim J-W, Pachepsky YA, Shelton DR, Coppock C. Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT. Ecol Model. 2010;221(12):1592–604.

    Article  Google Scholar 

  108. Rehmann CR, Soupir ML. Importance of interactions between the water column and the sediment for microbial concentrations in streams. Water Res. 2009;43(18):4579–89.

    Article  CAS  Google Scholar 

  109. Litsky W, Rosenbaum MJ, France RL. A comparison of the most probable numbers of coliform bacteria and enterococci in raw sewage. Appl Microbiol. 1953;1(5):247.

    CAS  Google Scholar 

  110. Mitchell R. Factors affecting the decline of non-marine micro-organisms in seawater. Water Res. 1968;2(8):535–43.

    Article  Google Scholar 

  111. Greenberg AE. Survival of enteric organisms in sea water: a review of the literature. Public Health Rep. 1956;71(1):77.

    Article  CAS  Google Scholar 

  112. Troussellier M, Bonnefont J-L, Courties C, Derrien A, Dupray E, Gauthier M, et al. Responses of enteric bacteria to environmental stresses in seawater. Oceanol Acta. 1998;21(6):965–81.

    Article  Google Scholar 

  113. Rozen Y, Belkin S. Survival of enteric bacteria in seawater. FEMS Microbiol Rev. 2001;25(5):513–29.

    Article  CAS  Google Scholar 

  114. Flint KP. The long-term survival of Escherichia coli in river water. J Appl Bacteriol. 1987;63(3):261–70.

    Article  CAS  Google Scholar 

  115. Craig DL, Fallowfield HJ, Cromar NJ. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J Appl Microbiol. 2004;96(5):922–30.

    Article  CAS  Google Scholar 

  116. Rhodes MW, Kator H. Survival of Escherichia coli and Salmonella spp. in estuarine environments. Appl Environ Microbiol. 1988;54(12):2902–7.

    CAS  Google Scholar 

  117. Gerba CP, McLeod JS. Effect of sediments on the survival of Escherichia coli in marine waters. Appl Environ Microbiol. 1976;32(1):114–20.

    CAS  Google Scholar 

  118. Orlob GT. Viability of sewage bacteria in sea water. Sewage Ind Wastes. 1956;28(9):1147–67.

    Google Scholar 

  119. Lim CH, Flint KP. The effects of nutrients on the survival of Escherichia coli in lake water. J Appl Bacteriol. 1989;66(6):559–69.

    Article  CAS  Google Scholar 

  120. Boualam M, Mathieu L, Fass S, Cavard J, Gatel D. Relationship between coliform culturability and organic matter in low nutritive waters. Water Res. 2002;36(10):2618–26.

    Article  CAS  Google Scholar 

  121. Bolster CH, Bromley JM, Jones SH. Recovery of chlorine-exposed Escherichia coli in estuarine microcosms. Environ Sci Technol. 2005;39(9):3083–9.

    Article  CAS  Google Scholar 

  122. Bordalo AA, Onrassami R, Dechsakulwatana C. Survival of faecal indicator bacteria in tropical estuarine waters (Bangpakong River, Thailand). J Appl Microbiol. 2002;93(5):864–71.

    Article  CAS  Google Scholar 

  123. Tassoula EA. Growth possibilities of E. coli in natural waters. Int J Environ Stud. 1997;52(1–4):67–73.

    Article  Google Scholar 

  124. Davies CM, Evison LM. Sunlight and the survival of enteric bacteria in natural waters. J Appl Bacteriol. 1991;70(3):265–74.

    Article  CAS  Google Scholar 

  125. Sinton LW, Finlay RK, Lynch PA. Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl Environ Microbiol. 1999;65(8):3605–13.

    CAS  Google Scholar 

  126. Boehm AB, Grant SB, Kim JH, Mowbray SL, McGee CD, Clark CD, et al. Decadal and shorter period variability of surf zone water quality at Huntington Beach. Calif Environ Sci Technol. 2002;36(18):3885–92.

    Article  CAS  Google Scholar 

  127. Gutiérrez-Cacciabue D, Cid AG, Rajal VB. How long can culturable bacteria and total DNA persist in environmental waters? The role of sunlight and solid particles. Sci Total Environ. 2016;539:494–502.

    Article  CAS  Google Scholar 

  128. Cho KH, Cha SM, Kang J-H, Lee SW, Park Y, Kim J-W, et al. Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach. Water Res. 2010;44(7):2189–202.

    Article  CAS  Google Scholar 

  129. Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl Environ Microbiol. 2002;68(3):1122–31.

    Article  CAS  Google Scholar 

  130. Kay D, Stapleton CM, Wyer MD, McDonald AT, Crowther J, Paul N, et al. Decay of intestinal enterococci concentrations in high-energy estuarine and coastal waters: towards real-time T 90 values for modelling faecal indicators in recreational waters. Water Res. 2005;39(4):655–67.

    Article  CAS  Google Scholar 

  131. Noble RT, Lee IM, Schiff KC. Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater. J Appl Microbiol. 2004;96(3):464–72.

    Article  CAS  Google Scholar 

  132. Evison LM. Comparative studies on the survival of indicator organisms and pathogens in fresh and sea water. Water Sci Technol. 1988;20(11–12):309–15.

    CAS  Google Scholar 

  133. Sinton LW. Biotic and abiotic effects. Oceans and health: pathogens in the marine environment: Springer; 2005. pp. 69–92.

  134. LaLiberte P, Grimes DJ. Survival of Escherichia coli in lake bottom sediment. Appl Environ Microbiol. 1982;43(3):623–8.

    CAS  Google Scholar 

  135. Erkenbrecher CW. Sediment bacterial indicators in an urban shellfishing subestuary of the lower Chesapeake Bay. Appl Environ Microbiol. 1981;42(3):484–92.

    Google Scholar 

  136. Van Donsel DJ, Geldreich EE. Relationships of salmonellae to fecal coliforms in bottom sediments. Water Res. 1971;5(11):1079IN31081–10801087.

    Article  Google Scholar 

  137. Mallin MA, Cahoon LB, Toothman BR, Parsons DC, McIver MR, Ortwine ML, et al. Impacts of a raw sewage spill on water and sediment quality in an urbanized estuary. Mar Pollut Bull. 2007;54(1):81–8.

    Article  CAS  Google Scholar 

  138. Haller L, Poté J, Loizeau J-L, Wildi W. Distribution and survival of faecal indicator bacteria in the sediments of the Bay of Vidy, Lake Geneva. Switzerland Ecol Indic. 2009;9(3):540–7.

    Article  Google Scholar 

  139. Lee CM, Lin TY, Lin C-C, Kohbodi GA, Bhatt A, Lee R, et al. Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments. Water Res. 2006;40(14):2593–602.

    Article  CAS  Google Scholar 

  140. Haller L, Amedegnato E, Poté J, Wildi W. Influence of freshwater sediment characteristics on persistence of fecal indicator bacteria. Water Air Soil Pollut. 2009;203(1–4):217–27.

    Article  CAS  Google Scholar 

  141. Garzio A. Survival of E. coli delivered with manure to stream sediment. Environmental Science and Policy Honors thesis, University of Maryland, College Park. 2009.

  142. Desmarais TR, Solo-Gabriele HM, Palmer CJ. Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl Environ Microbiol. 2002;68(3):1165–72.

    Article  CAS  Google Scholar 

  143. Chudoba EA, Mallin MA, Cahoon LB, Skrabal SA. Stimulation of fecal bacteria in ambient waters by experimental inputs of organic and inorganic phosphorus. Water Res. 2013;47(10):3455–66.

    Article  CAS  Google Scholar 

  144. Leclerc H, Devriese LA, Mossel DAA. Taxonomical changes in intestinal (faecal) enterococci and streptococci: consequences on their use as indicators of faecal contamination in drinking water. J Appl Bacteriol. 1996;81(5):459–66.

    CAS  Google Scholar 

  145. Fujioka R, Sian-Denton C, Borja M, Castro J, Morphew K. Soil: the environmental source of Escherichia coli and enterococci in Guam’s streams. J Appl Microbiol. 1998;85(S1):83S–9S.

    Article  Google Scholar 

  146. Hardina CM, Fujioka RS. Soil: the environmental source of Escherichia coli and enterococci in Hawaii’s streams. Environ Toxicol Water Qual. 1991;6(2):185–95.

    Article  Google Scholar 

  147. Byappanahalli MN, Fujioka RS. Evidence that tropical soil environment can support the growth of Escherichia coli. Water Sci Technol. 1998;38(12):171–4.

    Article  CAS  Google Scholar 

  148. Solo-Gabriele HM, Wolfert MA, Desmarais TR, Palmer CJ. Sources of Escherichia coli in a coastal subtropical environment. Appl Environ Microbiol. 2000;66(1):230–7.

    Article  CAS  Google Scholar 

  149. Whitman RL, Nevers MB. Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan Beach. Appl Environ Microbiol. 2003;69(9):5555–62.

    Article  CAS  Google Scholar 

  150. Brennan FP, O’Flaherty V, Kramers G, Grant J, Richards KG. Long-term persistence and leaching of Escherichia coli in temperate maritime soils. Appl Environ Microbiol. 2010;76(5):1449–55.

    Article  CAS  Google Scholar 

  151. Perkins TL, Clements K, Baas JH, Jago CF, Jones DL, Malham SK, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment. PLoS One. 2014;9(11):e112951.

    Article  CAS  Google Scholar 

  152. Mitch AA, Gasner KC, Mitch WA. Fecal coliform accumulation within a river subject to seasonally-disinfected wastewater discharges. Water Res. 2010;44(16):4776–82.

    Article  CAS  Google Scholar 

  153. de Brauwere A, Ouattara NK, Servais P. Modeling fecal indicator bacteria concentrations in natural surface waters: a review. Crit Rev Environ Sci Technol. 2014;44(21):2380–453.

    Article  CAS  Google Scholar 

  154. Pandey PK, Soupir ML, Ikenberry CD, Rehmann CR. Predicting streambed sediment and water column Escherichia coli levels at watershed scale. JAWRA J Am Water Resour Assoc. 2016;52(1):184–97.

    Article  CAS  Google Scholar 

  155. Wohl E. Legacy effects on sediments in river corridors. Earth Sci Rev. 2015;147:30–53.

    Article  Google Scholar 

  156. Pettibone GW, Irvine KN, Monahan KM. Impact of a ship passage on bacteria levels and suspended sediment characteristics in the Buffalo River, New York. Water Res. 1996;30(10):2517–21.

    Article  CAS  Google Scholar 

  157. Phillip DAT, Antoine P, Cooper V, Francis L, Mangal E, Seepersad N, et al. Impact of recreation on recreational water quality of a small tropical stream. J Environ Monit. 2009;11(6):1192–8.

    Article  CAS  Google Scholar 

  158. Farnham DJ, Lall U. Predictive statistical models linking antecedent meteorological conditions and waterway bacterial contamination in urban waterways. Water Res. 2015;76:143–59.

    Article  CAS  Google Scholar 

  159. Riverkeeper. How’s the water? 2015.

  160. Juhl AR, Anderson OR. Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA). Estuar Coast Shelf Sci. 2014;151:45–53.

    Article  Google Scholar 

  161. Pandey PK, Soupir ML. Assessing the impacts of E. coli laden streambed sediment on E. coli loads over a range of flows and sediment characteristics. JAWRA J Am Water Resour Assoc. 2013;49(6):1261–9.

    Article  Google Scholar 

  162. Pandey PK, Soupir ML, Rehmann CR. A model for predicting resuspension of Escherichia coli from streambed sediments. Water Res. 2012;46(1):115–26.

    Article  CAS  Google Scholar 

  163. Brinkmeyer R, Amon RMW, Schwarz JR, Saxton T, Roberts D, Harrison S, et al. Distribution and persistence of Escherichia coli and enterococci in stream bed and bank sediments from two urban streams in Houston, TX. Sci Total Environ. 2015;502:650–8.

    Article  CAS  Google Scholar 

  164. Le Fevre NM, Lewis GD. The role of resuspension in enterococci distribution in water at an urban beach. Water Sci Technol. 2003;47(3):205–10.

    CAS  Google Scholar 

  165. Liu L, Phanikumar MS, Molloy SL, Whitman RL, Shively DA, Nevers MB, et al. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan. Environ Sci Technol. 2006;40(16):5022–8.

    Article  CAS  Google Scholar 

  166. Dorevitch S, Ashbolt NJ, Ferguson CM, Fujioka R, McGee CG, Soller JA, et al. Meeting report: knowledge and gaps in developing microbial criteria for inland recreational waters. Environ Health Perspect. 2010;118(6):871.

    Article  Google Scholar 

  167. Phillips MC, Feng Z, Vogel LJ, Reniers AJHM, Haus BK, Enns AA, et al. Microbial release from seeded beach sediments during wave conditions. Mar Pollut Bull. 2014;79(1):114–22.

    Article  CAS  Google Scholar 

  168. Phillips MC, Solo-Gabriele HM, Piggot AM, Klaus JS, Zhang Y. Relationships between sand and water quality at recreational beaches. Water Res. 2011;45(20):6763–9.

    Article  CAS  Google Scholar 

  169. Beversdorf LJ, Bornstein-Forst SM, McLellan SL. The potential for beach sand to serve as a reservoir for Escherichia coli and the physical influences on cell die-off. J Appl Microbiol. 2007;102(5):1372–81.

    Article  CAS  Google Scholar 

  170. Bonilla TD, Nowosielski K, Cuvelier M, Hartz A, Green M, Esiobu N, et al. Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Mar Pollut Bull. 2007;54(9):1472–82.

    Article  CAS  Google Scholar 

  171. Yamahara KM, Layton BA, Santoro AE, Boehm AB. Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environ Sci Technol. 2007;41(13):4515–21.

    Article  CAS  Google Scholar 

  172. Hartz A, Cuvelier M, Nowosielski K, Bonilla TD, Green M, Esiobu N, et al. Survival potential of and enterococci in subtropical beach sand: implications for water quality managers. J Environ Qual. 2008;37(3):898–905.

    Article  CAS  Google Scholar 

  173. Halliday E, Gast RJ. Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. Environ Sci Technol. 2010;45(2):370–9.

    Article  CAS  Google Scholar 

  174. De Man H, van den Berg H, Leenen E, Schijven JF, Schets FM, Van der Vliet JC, et al. Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Res. 2014;48:90–9.

    Article  CAS  Google Scholar 

  175. De Man H, Gras LM, Schimmer B, Friesema IHM, Husman ADR, van Pelt W. Gastrointestinal, influenza-like illness and dermatological complaints following exposure to floodwater: a cross-sectional survey in the Netherlands. Epidemiol Infect. 2016;144(07):1445–54.

    Article  CAS  Google Scholar 

  176. Hammond MJ, Chen AS, Djordjević S, Butler D, Mark O. Urban flood impact assessment: a state-of-the-art review. Urban Water J. 2015;12(1):14–29.

    Article  Google Scholar 

  177. Tandlich R, Ncube M, Khamanga SMM, Zuma BM. A case study on the health risks related to flood disasters in South Africa. Journal of Disaster Research. 2016;11(4):732–41.

  178. Ten Veldhuis JAE, Clemens F, Sterk G, Berends BR. Microbial risks associated with exposure to pathogens in contaminated urban flood water. Water Res. 2010;44(9):2910–8.

    Article  CAS  Google Scholar 

  179. Taylor J, Davies M, Canales M, Lai KM. The persistence of flood-borne pathogens on building surfaces under drying conditions. Int J Hyg Environ Health. 2013;216(1):91–9.

    Article  Google Scholar 

  180. Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J Aerosol Sci. 2005;36(5):801–12.

    Article  CAS  Google Scholar 

  181. Blanchard DC, Syzdek LD. Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles. Appl Environ Microbiol. 1982;43(5):1001–5.

    CAS  Google Scholar 

  182. Leeuw G, Neele FP, Hill M, Smith MH, Vignati E. Production of sea spray aerosol in the surf zone. J Geophys Res Atmos. 2000;105(D24):29397–409.

    Article  Google Scholar 

  183. Dueker ME, O’Mullan GD. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols. Sci Total Environ. 2014;478:184–9.

    Article  CAS  Google Scholar 

  184. Monahan EC, Fairall CW, Davidson KL, Boyle PJ. Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols. Q J R Meteorol Soc. 1983;109(460):379–92.

    Article  Google Scholar 

  185. Shaffer BT, Lighthart B. Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest, and coastal. Microb Ecol. 1997;34(3):167–77.

    Article  CAS  Google Scholar 

  186. Dueker ME, Weathers KC, O’Mullan GD, Juhl AR, Uriarte M. Environmental controls on coastal coarse aerosols: implications for microbial content and deposition in the near-shore environment. Environ Sci Technol. 2011;45(8):3386–92.

    Article  CAS  Google Scholar 

  187. Dueker ME, O’Mullan GD, Weathers KC, Juhl AR, Uriarte M. Coupling of fog and marine microbial content in the near-shore coastal environment. Biogeosciences. 2012;9(2):803–13.

    Article  Google Scholar 

  188. Urbano R, Palenik B, Gaston CJ, Prather KA. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. Biogeosciences. 2011;8(2):301–9.

    Article  CAS  Google Scholar 

  189. • Dueker ME, O’Mullan GD, Juhl AR, Weathers KC, Uriarte M. Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site. Environ Sci Technol. 2012;46(20):10926–33. This article demonstrates the association of culturable bacterial aerosols above a superfund polluted urban waterway to culturable bacteria in the water surface.

    Article  CAS  Google Scholar 

  190. Montero A, Dueker ME, O’Mullan, Gregory D. Culturable bioaerosols along an urban waterfront are primarily associated with coarse particles. Peer J. 2016;4(e2827).

  191. Pickup RW, Rhodes G, Arnott S, Sidi-Boumedine K, Bull TJ, Weightman A, et al. Mycobacterium avium subsp. paratuberculosis in the catchment area and water of the River Taff in South Wales, United Kingdom, and its potential relationship to clustering of Crohn’s disease cases in the city of Cardiff. Appl Environ Microbiol. 2005;71(4):2130–9.

    Article  CAS  Google Scholar 

  192. Donovan EP, Staskal DF, Unice KM, Roberts JD, Haws LC, Finley BL, et al. Risk of gastrointestinal disease associated with exposure to pathogens in the sediments of the Lower Passaic River. Appl Environ Microbiol. 2008;74(4):1004–18.

    Article  CAS  Google Scholar 

  193. Heaney CD, Sams E, Wing S, Marshall S, Brenner K, Dufour AP, et al. Contact with beach sand among beachgoers and risk of illness. Am J Epidemiol. 2009;170(2):164–72.

    Article  Google Scholar 

  194. • Heaney CD, Sams E, Dufour AP, Brenner KP, Haugland RA, Chern E, et al. Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers. Epidemiol (Cambridge, Mass). 2012;23(1):95. This article demonstrates beach sand as a source of illness among beachgoers, providing one of the few epidemiological studies to include beach sand.

    Article  Google Scholar 

  195. Sabino R, Veríssimo C, Cunha MA, Wergikoski B, Ferreira FC, Rodrigues R, et al. Pathogenic fungi: an unacknowledged risk at coastal resorts? New insights on microbiological sand quality in Portugal. Mar Pollut Bull. 2011;62(7):1506–11.

    Article  CAS  Google Scholar 

  196. Sabino R, Rodrigues R, Costa I, Carneiro C, Cunha M, Duarte A, et al. Routine screening of harmful microorganisms in beach sands: implications to public health. Sci Total Environ. 2014;472:1062–9.

    Article  CAS  Google Scholar 

  197. Whitman RL, Przybyla-Kelly K, Shively DA, Nevers MB, Byappanahalli MN. Hand–mouth transfer and potential for exposure to E. coli and F+ coliphage in beach sand, Chicago, Illinois. J Water Health. 2009;7(4):623–9.

    Article  Google Scholar 

  198. Kinzelman JL, Pond KR, Longmaid KD, Bagley RC. The effect of two mechanical beach grooming strategies on Escherichia coli density in beach sand at a southwestern Lake Michigan Beach. Aquat Ecosyst Health Manag. 2004;7(3):425–32.

    Article  Google Scholar 

  199. Kinzelman JL, Whitman RL, Byappanahalli M, Jackson E, Bagley RC. Evaluation of beach grooming techniques on Escherichia coli density in foreshore sand at North Beach, Racine. WI Lake Reserv Manag. 2003;19(4):349–54.

    Article  CAS  Google Scholar 

  200. Leonard AFC, Zhang L, Balfour AJ, Garside R, Gaze WH. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ Int. 2015;82:92–100.

    Article  CAS  Google Scholar 

  201. Eisenberg SWF, Nielen M, Santema W, Houwers DJ, Heederik D, Koets AP. Detection of spatial and temporal spread of Mycobacterium avium subsp. paratuberculosis in the environment of a cattle farm through bio-aerosols. Vet Microbiol. 2010;143(2):284–92.

    Article  CAS  Google Scholar 

  202. Haas D, Unteregger M, Habib J, Galler H, Marth E, Reinthaler FF. Exposure to bioaerosol from sewage systems. Water Air Soil Pollut. 2010;207(1–4):49–56.

    Article  CAS  Google Scholar 

  203. Nguyen TMN, Ilef D, Jarraud S, Rouil L, Campese C, Che D, et al. A community-wide outbreak of legionnaires disease linked to industrial cooling towers—how far can contaminated aerosols spread? J Infect Dis. 2006;193(1):102–11.

    Article  Google Scholar 

  204. Donaldson AI, Alexandersen S. Predicting the spread of foot and mouth disease by airborne virus. Revue Scientifique et Technique-Office International des épizooties. 2002;21(3):569–78.

    Article  CAS  Google Scholar 

  205. Hawker JI, Ayres JG, Blair I, Evans MR, Smith DL, Smith EG, et al. A large outbreak of Q fever in the west midlands: windbourne spread into a metropolitan area? Commun Dis Public Health. 1998;1:180–7.

    CAS  Google Scholar 

  206. Yamamoto N, Bibby K, Qian J, Hospodsky D, Rismani-Yazdi H, Nazaroff WW, et al. Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J. 2012;6(10):1801–11.

    Article  CAS  Google Scholar 

  207. Torbick N, Hession S, Stommel E, Caller T. Mapping amyotrophic lateral sclerosis lake risk factors across northern New England. Int J Health Geogr. 2014;13(1):1.

    Article  Google Scholar 

  208. Stommel EW, Field NC, Caller TA. Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Med Hypotheses. 2013;80(2):142–5.

    Article  CAS  Google Scholar 

  209. • Banack SA, Caller T, Henegan P, Haney J, Murby A, Metcalf JS, et al. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins. 2015;7(2):322–36. This article presents data in support of cyanobacterial blooms and airborne transport of neurotoxins, in association with a cluster of amyotrophic lateral sclerosis in proximity to a lake community. While not directly related to fecal pollution, it provides an example of another proposed airborne pathway for disease transmission from a water surface.

    Article  CAS  Google Scholar 

  210. Murby AL, Haney JF. Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins. Aerobiologia. 1–9.

  211. Benami M, Busgang A, Gillor O, Gross A. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems. Sci Total Environ. 2016;562:344–52.

    Article  CAS  Google Scholar 

  212. Lee C, Sultana CM, Collins DB, Santander MV, Axson JL, Malfatti F, et al. Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop. J Phys Chem A. 2015;119(33):8860–70.

    Article  CAS  Google Scholar 

  213. Korzeniewska E, Harnisz M. Culture-dependent and culture-independent methods in evaluation of emission of Enterobacteriaceae from sewage to the air and surface water. Water Air Soil Pollut. 2012;223(7):4039–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Anju Singh for her assistance in producing the conceptual figures for this review. Support for writing this review was partly provided by grants from Riverkeeper and the Hudson River Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. O’Mullan.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

This article is part of the Topical Collection on Sediment and Other Pollutions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Mullan, G.D., Elias Dueker, M. & Juhl, A.R. Challenges to Managing Microbial Fecal Pollution in Coastal Environments: Extra-Enteric Ecology and Microbial Exchange Among Water, Sediment, and Air. Curr Pollution Rep 3, 1–16 (2017). https://doi.org/10.1007/s40726-016-0047-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-016-0047-z

Keywords

Navigation