Advertisement

Current Pollution Reports

, Volume 3, Issue 1, pp 1–16 | Cite as

Challenges to Managing Microbial Fecal Pollution in Coastal Environments: Extra-Enteric Ecology and Microbial Exchange Among Water, Sediment, and Air

  • Gregory D. O’MullanEmail author
  • M. Elias Dueker
  • Andrew R. Juhl
Sediment and Other Pollutions (R Datta and P Zhang, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Sediment and Other Pollutions

Abstract

Human population growth, especially in coastal urban cities, increases the potential for fecal pollution of adjacent waterways, requiring continued advances in pollution monitoring and management. Infections remain the largest health risk from contact with fecal- and sewage-polluted waters, and a small number of fecal indicator bacteria (FIB) are used as primary pollution assessment tools. While FIB continue to be useful tools, some of the assumptions about the behavior of FIB in the environment, and the associated pathways for pathogen exposure, have come into question. Research into the extra-enteric ecology of these indicators has identified management-relevant complexities including particle association, prolonged environmental persistence, and multidirectional microbial exchange among water, sediment, and air. These complexities provide opportunities for improving current monitoring and modeling strategies and to better understand exposure pathways for sewage-related infections.

Keywords

Fecal indicator bacteria Water quality Microbial exchange Sewage pollution Coastal Enterococci 

Notes

Acknowledgements

The authors would like to thank Ms. Anju Singh for her assistance in producing the conceptual figures for this review. Support for writing this review was partly provided by grants from Riverkeeper and the Hudson River Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    American Association for the Advancement of Science. Rise of the city. Science. 2016;352(6288):906–7.CrossRefGoogle Scholar
  2. 2.
    Vermeulen LC, de Kraker J, Hofstra N, Kroeze C, Medema G. Modelling the impact of sanitation, population growth and urbanization on human emissions of cryptosporidium to surface waters—a case study for Bangladesh and India. Environ Res Lett. 2015;10(9):094017.CrossRefGoogle Scholar
  3. 3.
    Hetling LJ, Stoddard A, Brosnan TM, Hammerman DA, Norris TM. Effect of water quality management efforts on wastewater loadings during the past century. Water Environ Res. 2003;75(1):30–8.CrossRefGoogle Scholar
  4. 4.
    Passerat J, Ouattara NK, Mouchel J-M, Rocher V, Servais P. Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water Res. 2011;45(2):893–903.CrossRefGoogle Scholar
  5. 5.
    Eaton T, O’Mullan GD, Rouff AA. Assessing continuous contamination discharge from a combined sewer outfall (CSO) into a tidal wetland creek: bacteriological and heavy metals indicators. Annals of Env Sci. 2013;7:79–92. Google Scholar
  6. 6.
    • Young S, Juhl A, O’Mullan GD. Antibiotic-resistant bacteria in the Hudson River Estuary linked to wet weather sewage contamination. J Water Health. 2013;11(2):297–310. This article describes the correlated abundances of FIB and antibiotic-resistant bacteria in the Hudson River Estuary and their increased abundance following precipitation, demonstrating a linkage to wet weather sewage discharge.Google Scholar
  7. 7.
    Mailhot A, Talbot G, Lavallée B. Relationships between rainfall and combined sewer overflow (CSO) occurrences. J Hydrol. 2015;523:602–9.CrossRefGoogle Scholar
  8. 8.
    Shuval H. Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment. J Water Health. 2003;1(2):53–64.Google Scholar
  9. 9.
    Campos CJA, Kershaw SR, Lee RJ. Environmental influences on faecal indicator organisms in coastal waters and their accumulation in bivalve shellfish. Estuar Coasts. 2013;36(4):834–53.CrossRefGoogle Scholar
  10. 10.
    Cabelli VJ, Dufour AP, McCabe LJ, Levin MA. Swimming-associated gastroenteritis and water quality. Am J Epidemiol. 1982;115(4):606–16.CrossRefGoogle Scholar
  11. 11.
    Fleisher JM, Kay D, Salmon RL, Jones F, Wyer MD, Godfree AF. Marine waters contaminated with domestic sewage: nonenteric illnesses associated with bather exposure in the United Kingdom. Am J Public Health. 1996;86(9):1228–34.CrossRefGoogle Scholar
  12. 12.
    Leclerc H, Schwartzbrod L, Dei-Cas E. Microbial agents associated with waterborne diseases. Crit Rev Microbiol. 2002;28(4):371–409.CrossRefGoogle Scholar
  13. 13.
    Prüss A. Review of epidemiological studies on health effects from exposure to recreational water. Int J Epidemiol. 1998;27(1):1–9.CrossRefGoogle Scholar
  14. 14.
    Wade TJ, Calderon RL, Brenner KP, Sams E, Beach M, Haugland R, et al. High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality. Epidemiology. 2008;19(3):375–83.CrossRefGoogle Scholar
  15. 15.
    World Health O. Guidelines for safe recreational water environments: coastal and fresh waters: World Health Organization; 2003.Google Scholar
  16. 16.
    US-EPA. Recreational water quality criteria. Office of Water 820-F-12-058. 2012.Google Scholar
  17. 17.
    Dufour A, Schaub S. The evolution of water quality criteria in the United States. Statistical Framework for Recreational Water Quality Criteria and Monitoring. 2007;65:1.CrossRefGoogle Scholar
  18. 18.
    Dorfman MH, Stoner N, Rosselot KS. Testing the waters: a guide to water quality at vacation beaches: Natural Resources Defense Council San Francisco; 2009.Google Scholar
  19. 19.
    Wade TJ, Sams E, Brenner KP, Haugland R, Chern E, Beach M, et al. Rapidly measured indicators of recreational water quality and swimming-associated illness at marine beaches: a prospective cohort study. Environ Health. 2010;9(1):1.CrossRefGoogle Scholar
  20. 20.
    Lamparelli CC, Pogreba-Brown K, Verhougstraete M, Sato MIZ, de Castro BA, Wade TJ, et al. Are fecal indicator bacteria appropriate measures of recreational water risks in the tropics: a cohort study of beach goers in Brazil? Water Res. 2015;87:59–68.CrossRefGoogle Scholar
  21. 21.
    Wade TJ, Pai N, Eisenberg JNS, Colford Jr JM. Do US Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environ Health Perspect. 2003;111(8):1102.CrossRefGoogle Scholar
  22. 22.
    Yau V, Wade TJ, de Wilde CK, Colford Jr JM. Skin-related symptoms following exposure to recreational water: a systematic review and meta-analysis. Water Qual Expo Health. 2009;1(2):79–103.CrossRefGoogle Scholar
  23. 23.
    Arnold BF, Wade TJ, Benjamin-Chung J, Schiff KC, Griffith JF, Dufour AP, et al. Acute gastroenteritis and recreational water: highest burden among young US children. Am J Public Health. 2016;106(9):1690–7.CrossRefGoogle Scholar
  24. 24.
    Boehm AB, Keymer DP, Shellenbarger GG. An analytical model of enterococci inactivation, grazing, and transport in the surf zone of a marine beach. Water Res. 2005;39(15):3565–78.CrossRefGoogle Scholar
  25. 25.
    Davies CM, Long JA, Donald M, Ashbolt NJ. Survival of fecal microorganisms in marine and freshwater sediments. Appl Environ Microbiol. 1995;61(5):1888–96.Google Scholar
  26. 26.
    Anderson KL, Whitlock JE, Harwood VJ. Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol. 2005;71(6):3041–8.CrossRefGoogle Scholar
  27. 27.
    Stewart JR, Gast RJ, Fujioka RS, Solo-Gabriele HM, Meschke JS, Amaral-Zettler LA, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environ Health. 2008;7(2):1.Google Scholar
  28. 28.
    Boehm AB, Ashbolt NJ, Colford JM, Dunbar LE, Fleming LE, Gold MA, et al. A sea change ahead for recreational water quality criteria. J Water Health. 2009;7(1):9–20.CrossRefGoogle Scholar
  29. 29.
    Byappanahalli MN, Roll BM, Fujioka RS. Evidence for occurrence, persistence, and growth potential of Escherichia coli and enterococci in Hawaii’s soil environments. Microbes Environ. 2012;27(2):164–70.CrossRefGoogle Scholar
  30. 30.
    •• Fujioka RS, Solo-Gabriele HM, Byappanahalli MN, Kirs M. US recreational water quality criteria: a vision for the future. Int J Environ Res Public Health. 2015;12(7):7752–76. This review article describes limitations to the 2012 EPA recreational water quality criteria, including arguments for why beach sand regulations are needed.CrossRefGoogle Scholar
  31. 31.
    Whitman RL, Harwood VJ, Edge TA, Nevers MB, Byappanahalli M, Vijayavel K, et al. Microbes in beach sands: integrating environment, ecology and public health. Rev Environ Sci Biotechnol. 2014;13(3):329–68.CrossRefGoogle Scholar
  32. 32.
    Solo-Gabriele HM, Harwood VJ, Kay D, Fujioka RS, Sadowsky MJ, Whitman RL, et al. Beach sand and the potential for infectious disease transmission: observations and recommendations. J Mar Biol Assoc U K. 2016;96(01):101–20.CrossRefGoogle Scholar
  33. 33.
    Crump BC, Baross JA, Simenstad CA. Dominance of particle-attached bacteria in the Columbia River Estuary. USA Aquat Microb Ecol. 1998;14(1):7–18.CrossRefGoogle Scholar
  34. 34.
    Bouvier TC, del Giorgio PA. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr. 2002;47(2):453–70.CrossRefGoogle Scholar
  35. 35.
    Campbell BJ, Kirchman DL. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 2013;7(1):210–20.CrossRefGoogle Scholar
  36. 36.
    Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 1980;25:943–8.CrossRefGoogle Scholar
  37. 37.
    Caron DA, Davis PG, Madin LP, Sieburth JM. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science. 1982;218(4574):795–7.CrossRefGoogle Scholar
  38. 38.
    Feng F, Goto D, Yan T. Effects of autochthonous microbial community on the die-off of fecal indicators in tropical beach sand. FEMS Microbiol Ecol. 2010;74(1):214–25.CrossRefGoogle Scholar
  39. 39.
    Zhang Q, He X, Yan T. Differential decay of wastewater bacteria and change of microbial communities in beach sand and seawater microcosms. Environ Sci Technol. 2015;49(14):8531–40.CrossRefGoogle Scholar
  40. 40.
    Gonzalez JM, Iriberri J, Egea L, Barcina I. Characterization of culturability, protistan grazing, and death of enteric bacteria in aquatic ecosystems. Appl Environ Microbiol. 1992;58(3):998–1004.Google Scholar
  41. 41.
    Korajkic A, Wanjugi P, Harwood VJ. Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Appl Environ Microbiol. 2013;79(17):5329–37.CrossRefGoogle Scholar
  42. 42.
    Arana I, Irizar A, Seco C, Muela A, Fernández-Astorga A, Barcina I. gfp-tagged cells as a useful tool to study the survival of Escherichia coli in the presence of the river microbial community. Microb Ecol. 2003;45(1):29–38.CrossRefGoogle Scholar
  43. 43.
    Topp E, Scott A, Lapen DR, Lyautey E, Duriez P. Livestock waste treatment systems for reducing environmental exposure to hazardous enteric pathogens: some considerations. Bioresour Technol. 2009;100(22):5395–8.CrossRefGoogle Scholar
  44. 44.
    Kay D, Aitken M, Crowther J, Dickson I, Edwards AC, Francis C, et al. Reducing fluxes of faecal indicator compliance parameters to bathing waters from diffuse agricultural sources: the Brighouse Bay study, Scotland. Environ Pollut. 2007;147(1):138–49.CrossRefGoogle Scholar
  45. 45.
    Alderisio KA, DeLuca N. Seasonal enumeration of fecal coliform bacteria from the feces of ring-billed gulls (Larus delawarensis) and Canada geese (Branta canadensis). Appl Environ Microbiol. 1999;65(12):5628–30.Google Scholar
  46. 46.
    Grant SB, Sanders BF, Boehm AB, Redman JA, Kim JH, Mrše RD, et al. Generation of enterococci bacteria in a coastal saltwater marsh and its impact on surf zone water quality. Environ Sci Technol. 2001;35(12):2407–16.CrossRefGoogle Scholar
  47. 47.
    Schoen ME, Ashbolt NJ. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ Sci Technol. 2010;44(7):2286–91.CrossRefGoogle Scholar
  48. 48.
    Guber AK, Fry J, Ives RL, Rose JB. Escherichia coli survival in, and release from, white-tailed deer feces. Appl Environ Microbiol. 2015;81(3):1168–76.CrossRefGoogle Scholar
  49. 49.
    Wright ME, Solo-Gabriele HM, Elmir S, Fleming LE. Microbial load from animal feces at a recreational beach. Mar Pollut Bull. 2009;58(11):1649–56.CrossRefGoogle Scholar
  50. 50.
    Wang JD, Solo-Gabriele HM, Abdelzaher AM, Fleming LE. Estimation of enterococci input from bathers and animals on a recreational beach using camera images. Mar Pollut Bull. 2010;60(8):1270–8.CrossRefGoogle Scholar
  51. 51.
    Whitlock JE, Jones DT, Harwood VJ. Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis. Water Res. 2002;36(17):4273–82.CrossRefGoogle Scholar
  52. 52.
    Yan T, Sadowsky MJ. Determining sources of fecal bacteria in waterways. Environ Monit Assess. 2007;129(1–3):97–106.CrossRefGoogle Scholar
  53. 53.
    Bernhard AE, Field KG. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol. 2000;66(10):4571–4.CrossRefGoogle Scholar
  54. 54.
    Santo Domingo JW, Bambic DG, Edge TA, Wuertz S. Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res. 2007;41(16):3539–52.CrossRefGoogle Scholar
  55. 55.
    •• McLellan SL, Eren AM. Discovering new indicators of fecal pollution. Trends Microbiol. 2014;22(12):697–706. This review article evaluates emerging tools to study fecal pollution in aquatic environments, including DNA sequencing-based microbial signature tools and quantitative PCR-based MST approaches.CrossRefGoogle Scholar
  56. 56.
    Fisher JC, Eren AM, Green HC, Shanks OC, Morrison HG, Vineis JH, et al. Comparison of sewage and animal fecal microbiomes by using oligotyping reveals potential human fecal indicators in multiple taxonomic groups. Appl Environ Microbiol. 2015;81(20):7023–33.CrossRefGoogle Scholar
  57. 57.
    McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol. 2010;12(2):378–92.CrossRefGoogle Scholar
  58. 58.
    Shanks OC, Newton RJ, Kelty CA, Huse SM, Sogin ML, McLellan SL. Comparison of the microbial community structures of untreated wastewaters from different geographic locales. Appl Environ Microbiol. 2013;79(9):2906–13.CrossRefGoogle Scholar
  59. 59.
    • Newton RJ, Bootsma MJ, Morrison HG, Sogin ML, McLellan SL. A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb Ecol. 2013;65(4):1011–23. Demonstrates the use of DNA sequencing microbial signature approaches to study fecal and sewage pollution, including low concentration pollution signals in offshore water.CrossRefGoogle Scholar
  60. 60.
    VandeWalle JL, Goetz GW, Huse SM, Morrison HG, Sogin ML, Hoffmann RG, et al. Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure. Environ Microbiol. 2012;14(9):2538–52.CrossRefGoogle Scholar
  61. 61.
    Anumol T, Vijayanandan A, Park M, Philip L, Snyder SA. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai. India Environ Int. 2016;92:33–42.CrossRefGoogle Scholar
  62. 62.
    Spoelstra J, Schiff SL, Brown SJ. Artificial sweeteners in a large Canadian river reflect human consumption in the watershed. PLoS One. 2013;8(12):e82706.CrossRefGoogle Scholar
  63. 63.
    Cantwell MG, Katz DR, Sullivan JC, Borci T, Chen RF. Caffeine in Boston Harbor past and present, assessing its utility as a tracer of wastewater contamination in an urban estuary. Mar Pollut Bull. 2016.Google Scholar
  64. 64.
    Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G. Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography–triple quadrupole mass spectrometry method. J Chromatogr A. 2009;1216(7):1126–31.CrossRefGoogle Scholar
  65. 65.
    Tran NH, Li J, Hu J, Ong SL. Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Environ Sci Pollut Res. 2014;21(6):4727–40.CrossRefGoogle Scholar
  66. 66.
    Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5(10):782–91.CrossRefGoogle Scholar
  67. 67.
    Lyons MM, Ward JE, Gaff H, Hicks RE, Drake JM, Dobbs FC. Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquat Microb Ecol. 2010;60(1).Google Scholar
  68. 68.
    Simon M, Grossart H-P, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 2002;28(2):175–211.CrossRefGoogle Scholar
  69. 69.
    Shanks AL, Reeder ML. Reducing microzones and sulfide production in marine snow. Mar Ecol Prog Ser. 1993;96:43–7.CrossRefGoogle Scholar
  70. 70.
    DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr. 1993;38(5):924–34.CrossRefGoogle Scholar
  71. 71.
    Bidle KD, Fletcher M. Comparison of free-living and particle-associated bacterial communities in the Chesapeake Bay by stable low-molecular-weight RNA analysis. Appl Environ Microbiol. 1995;61(3):944–52.Google Scholar
  72. 72.
    Jamieson R, Gordon R, Joy D, Lee H. Assessing microbial pollution of rural surface waters: a review of current watershed scale modeling approaches. Agric Water Manag. 2004;70(1):1–17.CrossRefGoogle Scholar
  73. 73.
    Walters E, Graml M, Behle C, Müller E, Horn H. Influence of particle association and suspended solids on UV inactivation of fecal indicator bacteria in an urban river. Water Air Soil Pollut. 2014;225(1):1–9.CrossRefGoogle Scholar
  74. 74.
    Fries JS, Characklis GW, Noble RT. Attachment of fecal indicator bacteria to particles in the Neuse River Estuary. NC J Enviro Eng. 2006;132(10):1338–45.CrossRefGoogle Scholar
  75. 75.
    Fries JS, Characklis GW, Noble RT. Sediment–water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA. Water Res. 2008;42(4):941–50.CrossRefGoogle Scholar
  76. 76.
    • Suter E, Juhl AR, O’Mullan GD. Particle association of Enterococcus and total bacteria in the lower Hudson River Estuary, USA. J Water Resour Protect. 2011;3(10):715. This article quantifies the abundance of particle-associated FIB and total bacteria in the Hudson River Estuary and changes in abundance from the nearshore environment to mid-channel, including wastewater inputs and tributary mixing zones.CrossRefGoogle Scholar
  77. 77.
    Mote BL, Turner JW, Lipp EK. Persistence and growth of the fecal indicator bacteria enterococci in detritus and natural estuarine plankton communities. Appl Environ Microbiol. 2012;78(8):2569–77.CrossRefGoogle Scholar
  78. 78.
    Krometis L-AH, Characklis GW, Simmons OD, Dilts MJ, Likirdopulos CA, Sobsey MD. Intra-storm variability in microbial partitioning and microbial loading rates. Water Res. 2007;41(2):506–16.CrossRefGoogle Scholar
  79. 79.
    Characklis GW, Dilts MJ, Simmons OD, Likirdopulos CA, Krometis L-AH, Sobsey MD. Microbial partitioning to settleable particles in stormwater. Water Res. 2005;39(9):1773–82.CrossRefGoogle Scholar
  80. 80.
    Cizek AR, Characklis GW, Krometis L-A, Hayes JA, Simmons OD, Di Lonardo S, et al. Comparing the partitioning behavior of Giardia and Cryptosporidium with that of indicator organisms in stormwater runoff. Water Res. 2008;42(17):4421–38.CrossRefGoogle Scholar
  81. 81.
    Jeng HC, England AJ, Bradford HB. Indicator organisms associated with stormwater suspended particles and estuarine sediment. J Environ Sci Health. 2005;40(4):779–91.CrossRefGoogle Scholar
  82. 82.
    Garcia-Armisen T, Servais P. Partitioning and fate of particle-associated E. coli in river waters. Water Environ Res. 2009;81(1):21–8.Google Scholar
  83. 83.
    Jamieson R, Joy DM, Lee H, Kostaschuk R, Gordon R. Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Res. 2005;39(12):2665–75.CrossRefGoogle Scholar
  84. 84.
    Auer MT, Niehaus SL. Modeling fecal coliform bacteria—I. Field and laboratory determination of loss kinetics. Water Res. 1993;27(4):693–701.CrossRefGoogle Scholar
  85. 85.
    Schillinger JE, Gannon JJ. Bacterial adsorption and suspended particles in urban stormwater. J Water Pollut Control Fed. 1985:384–9.Google Scholar
  86. 86.
    Atwill R, Lewis D, Pereira M, Huerta M, Bond R, Ogata S, et al. Characterizing freshwater inflows and sediment reservoirs of fecal coliforms and E. coli at five estuaries in Northern California. University of California School of Veterinary Medicine and Cooperative Extension in Sonoma and Marin Counties, Davis, CA. University of California School of Veterinary Medicine and Cooperative Extension in Sonoma and Marin Counties, Davis, CA. 2007.Google Scholar
  87. 87.
    Pachepsky YA, Shelton DR. Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Crit Rev Environ Sci Technol. 2011;41(12):1067–110.CrossRefGoogle Scholar
  88. 88.
    Jamieson RC, Joy DM, Lee H, Kostaschuk R, Gordon RJ. Resuspension of sediment-associated in a natural stream. J Environ Qual. 2005;34(2):581–9.CrossRefGoogle Scholar
  89. 89.
    Fugate DC, Friedrichs CT. Controls on suspended aggregate size in partially mixed estuaries. Estuar Coast Shelf Sci. 2003;58(2):389–404.CrossRefGoogle Scholar
  90. 90.
    Fries JS, Noble RT, Paerl HW, Characklis GW. Particle suspensions and their regions of effect in the Neuse River Estuary: implications for water quality monitoring. Estuar Coasts. 2007;30(2):359–64.CrossRefGoogle Scholar
  91. 91.
    Davies CM, Bavor HJ. The fate of stormwater-associated bacteria in constructed wetland and water pollution control pond systems. J Appl Microbiol. 2000;89(2):349–60.CrossRefGoogle Scholar
  92. 92.
    Ahn JH, Grant SB, Surbeck CQ, DiGiacomo PM, Nezlin NP, Jiang S. Coastal water quality impact of stormwater runoff from an urban watershed in southern California. Environ Sci Technol. 2005;39(16):5940–53.CrossRefGoogle Scholar
  93. 93.
    Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol. 2000;66(2):578–87.CrossRefGoogle Scholar
  94. 94.
    Griffith P, Shiah F-K, Gloersen K, Ducklow HW, Fletcher M. Activity and distribution of attached bacteria in Chesapeake Bay. Mar Ecol Prog Ser. 1994;108:1.CrossRefGoogle Scholar
  95. 95.
    Hess-Erga O-K, Attramadal KJK, Vadstein O. Biotic and abiotic particles protect marine heterotrophic bacteria during UV and ozone disinfection. Aquat Biol. 2008;4(2):147–54.CrossRefGoogle Scholar
  96. 96.
    Perkins TL, Perrow K, Rajko-Nenow P, Jago CF, Jones DL, Malham SK, et al. Decay rates of faecal indicator bacteria from sewage and ovine faeces in brackish and freshwater microcosms with contrasting suspended particulate matter concentrations. Sci Total Environ. 2016.Google Scholar
  97. 97.
    •• Halliday E, McLellan SL, Amaral-Zettler LA, Sogin ML, Gast RJ. Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations. PLoS One. 2014;9(3):e90815. This article demonstrates the dry weather association of levels of FIB between beach sand and water, including tidal controls on dynamics of FIB at the beach and the role of the beach sand as a reservoir of FIB.CrossRefGoogle Scholar
  98. 98.
    Goyal SM, Gerba CP, Melnick JL. Occurrence and distribution of bacterial indicators and pathogens in canal communities along the Texas coast. Appl Environ Microbiol. 1977;34(2):139–49.Google Scholar
  99. 99.
    Shiaris MP, Rex AC, Pettibone GW, Keay K, McManus P, Rex MA, et al. Distribution of indicator bacteria and Vibrio parahaemolyticus in sewage-polluted intertidal sediments. Appl Environ Microbiol. 1987;53(8):1756–61.Google Scholar
  100. 100.
    Halliday E, Ralston DK, Gast RJ. Contribution of sand-associated enterococci to dry weather water quality. Environ Sci Technol. 2014;49(1):451–8.CrossRefGoogle Scholar
  101. 101.
    Roslev P, Bastholm S, Iversen N. Relationship between fecal indicators in sediment and recreational waters in a Danish estuary. Water Air Soil Pollut. 2008;194(1–4):13–21.CrossRefGoogle Scholar
  102. 102.
    Vogel LJ, O’Carroll DM, Edge TA, Robinson CE. Release of Escherichia coli from foreshore sand and pore water during intensified wave conditions at a recreational beach. Environ Sci Technol. 2016;50(11):5676–84.CrossRefGoogle Scholar
  103. 103.
    Feng Z, Reniers A, Haus BK, Solo-Gabriele HM, Kelly EA. Wave energy level and geographic setting correlate with Florida beach water quality. Mar Pollut Bull. 2016;104(1):54–60.CrossRefGoogle Scholar
  104. 104.
    Surbeck CQ. Factors influencing the challenges of modelling and treating fecal indicator bacteria in surface waters. Ecohydrology. 2009;2(4):399–403.CrossRefGoogle Scholar
  105. 105.
    Whitman RL, Nevers MB, Byappanahalli MN. Examination of the watershed-wide distribution of Escherichia coli along southern Lake Michigan: an integrated approach. Appl Environ Microbiol. 2006;72(11):7301–10.CrossRefGoogle Scholar
  106. 106.
    Feng Z, Reniers A, Haus BK, Solo-Gabriele HM, Wang JD, Fleming LE. A predictive model for microbial counts on beaches where intertidal sand is the primary source. Mar Pollut Bull. 2015;94(1):37–47.CrossRefGoogle Scholar
  107. 107.
    Kim J-W, Pachepsky YA, Shelton DR, Coppock C. Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT. Ecol Model. 2010;221(12):1592–604.CrossRefGoogle Scholar
  108. 108.
    Rehmann CR, Soupir ML. Importance of interactions between the water column and the sediment for microbial concentrations in streams. Water Res. 2009;43(18):4579–89.CrossRefGoogle Scholar
  109. 109.
    Litsky W, Rosenbaum MJ, France RL. A comparison of the most probable numbers of coliform bacteria and enterococci in raw sewage. Appl Microbiol. 1953;1(5):247.Google Scholar
  110. 110.
    Mitchell R. Factors affecting the decline of non-marine micro-organisms in seawater. Water Res. 1968;2(8):535–43.CrossRefGoogle Scholar
  111. 111.
    Greenberg AE. Survival of enteric organisms in sea water: a review of the literature. Public Health Rep. 1956;71(1):77.CrossRefGoogle Scholar
  112. 112.
    Troussellier M, Bonnefont J-L, Courties C, Derrien A, Dupray E, Gauthier M, et al. Responses of enteric bacteria to environmental stresses in seawater. Oceanol Acta. 1998;21(6):965–81.CrossRefGoogle Scholar
  113. 113.
    Rozen Y, Belkin S. Survival of enteric bacteria in seawater. FEMS Microbiol Rev. 2001;25(5):513–29.CrossRefGoogle Scholar
  114. 114.
    Flint KP. The long-term survival of Escherichia coli in river water. J Appl Bacteriol. 1987;63(3):261–70.CrossRefGoogle Scholar
  115. 115.
    Craig DL, Fallowfield HJ, Cromar NJ. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J Appl Microbiol. 2004;96(5):922–30.CrossRefGoogle Scholar
  116. 116.
    Rhodes MW, Kator H. Survival of Escherichia coli and Salmonella spp. in estuarine environments. Appl Environ Microbiol. 1988;54(12):2902–7.Google Scholar
  117. 117.
    Gerba CP, McLeod JS. Effect of sediments on the survival of Escherichia coli in marine waters. Appl Environ Microbiol. 1976;32(1):114–20.Google Scholar
  118. 118.
    Orlob GT. Viability of sewage bacteria in sea water. Sewage Ind Wastes. 1956;28(9):1147–67.Google Scholar
  119. 119.
    Lim CH, Flint KP. The effects of nutrients on the survival of Escherichia coli in lake water. J Appl Bacteriol. 1989;66(6):559–69.CrossRefGoogle Scholar
  120. 120.
    Boualam M, Mathieu L, Fass S, Cavard J, Gatel D. Relationship between coliform culturability and organic matter in low nutritive waters. Water Res. 2002;36(10):2618–26.CrossRefGoogle Scholar
  121. 121.
    Bolster CH, Bromley JM, Jones SH. Recovery of chlorine-exposed Escherichia coli in estuarine microcosms. Environ Sci Technol. 2005;39(9):3083–9.CrossRefGoogle Scholar
  122. 122.
    Bordalo AA, Onrassami R, Dechsakulwatana C. Survival of faecal indicator bacteria in tropical estuarine waters (Bangpakong River, Thailand). J Appl Microbiol. 2002;93(5):864–71.CrossRefGoogle Scholar
  123. 123.
    Tassoula EA. Growth possibilities of E. coli in natural waters. Int J Environ Stud. 1997;52(1–4):67–73.CrossRefGoogle Scholar
  124. 124.
    Davies CM, Evison LM. Sunlight and the survival of enteric bacteria in natural waters. J Appl Bacteriol. 1991;70(3):265–74.CrossRefGoogle Scholar
  125. 125.
    Sinton LW, Finlay RK, Lynch PA. Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl Environ Microbiol. 1999;65(8):3605–13.Google Scholar
  126. 126.
    Boehm AB, Grant SB, Kim JH, Mowbray SL, McGee CD, Clark CD, et al. Decadal and shorter period variability of surf zone water quality at Huntington Beach. Calif Environ Sci Technol. 2002;36(18):3885–92.CrossRefGoogle Scholar
  127. 127.
    Gutiérrez-Cacciabue D, Cid AG, Rajal VB. How long can culturable bacteria and total DNA persist in environmental waters? The role of sunlight and solid particles. Sci Total Environ. 2016;539:494–502.CrossRefGoogle Scholar
  128. 128.
    Cho KH, Cha SM, Kang J-H, Lee SW, Park Y, Kim J-W, et al. Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach. Water Res. 2010;44(7):2189–202.CrossRefGoogle Scholar
  129. 129.
    Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl Environ Microbiol. 2002;68(3):1122–31.CrossRefGoogle Scholar
  130. 130.
    Kay D, Stapleton CM, Wyer MD, McDonald AT, Crowther J, Paul N, et al. Decay of intestinal enterococci concentrations in high-energy estuarine and coastal waters: towards real-time T 90 values for modelling faecal indicators in recreational waters. Water Res. 2005;39(4):655–67.CrossRefGoogle Scholar
  131. 131.
    Noble RT, Lee IM, Schiff KC. Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater. J Appl Microbiol. 2004;96(3):464–72.CrossRefGoogle Scholar
  132. 132.
    Evison LM. Comparative studies on the survival of indicator organisms and pathogens in fresh and sea water. Water Sci Technol. 1988;20(11–12):309–15.Google Scholar
  133. 133.
    Sinton LW. Biotic and abiotic effects. Oceans and health: pathogens in the marine environment: Springer; 2005. pp. 69–92.Google Scholar
  134. 134.
    LaLiberte P, Grimes DJ. Survival of Escherichia coli in lake bottom sediment. Appl Environ Microbiol. 1982;43(3):623–8.Google Scholar
  135. 135.
    Erkenbrecher CW. Sediment bacterial indicators in an urban shellfishing subestuary of the lower Chesapeake Bay. Appl Environ Microbiol. 1981;42(3):484–92.Google Scholar
  136. 136.
    Van Donsel DJ, Geldreich EE. Relationships of salmonellae to fecal coliforms in bottom sediments. Water Res. 1971;5(11):1079IN31081–10801087.CrossRefGoogle Scholar
  137. 137.
    Mallin MA, Cahoon LB, Toothman BR, Parsons DC, McIver MR, Ortwine ML, et al. Impacts of a raw sewage spill on water and sediment quality in an urbanized estuary. Mar Pollut Bull. 2007;54(1):81–8.CrossRefGoogle Scholar
  138. 138.
    Haller L, Poté J, Loizeau J-L, Wildi W. Distribution and survival of faecal indicator bacteria in the sediments of the Bay of Vidy, Lake Geneva. Switzerland Ecol Indic. 2009;9(3):540–7.CrossRefGoogle Scholar
  139. 139.
    Lee CM, Lin TY, Lin C-C, Kohbodi GA, Bhatt A, Lee R, et al. Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments. Water Res. 2006;40(14):2593–602.CrossRefGoogle Scholar
  140. 140.
    Haller L, Amedegnato E, Poté J, Wildi W. Influence of freshwater sediment characteristics on persistence of fecal indicator bacteria. Water Air Soil Pollut. 2009;203(1–4):217–27.CrossRefGoogle Scholar
  141. 141.
    Garzio A. Survival of E. coli delivered with manure to stream sediment. Environmental Science and Policy Honors thesis, University of Maryland, College Park. 2009.Google Scholar
  142. 142.
    Desmarais TR, Solo-Gabriele HM, Palmer CJ. Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl Environ Microbiol. 2002;68(3):1165–72.CrossRefGoogle Scholar
  143. 143.
    Chudoba EA, Mallin MA, Cahoon LB, Skrabal SA. Stimulation of fecal bacteria in ambient waters by experimental inputs of organic and inorganic phosphorus. Water Res. 2013;47(10):3455–66.CrossRefGoogle Scholar
  144. 144.
    Leclerc H, Devriese LA, Mossel DAA. Taxonomical changes in intestinal (faecal) enterococci and streptococci: consequences on their use as indicators of faecal contamination in drinking water. J Appl Bacteriol. 1996;81(5):459–66.Google Scholar
  145. 145.
    Fujioka R, Sian-Denton C, Borja M, Castro J, Morphew K. Soil: the environmental source of Escherichia coli and enterococci in Guam’s streams. J Appl Microbiol. 1998;85(S1):83S–9S.CrossRefGoogle Scholar
  146. 146.
    Hardina CM, Fujioka RS. Soil: the environmental source of Escherichia coli and enterococci in Hawaii’s streams. Environ Toxicol Water Qual. 1991;6(2):185–95.CrossRefGoogle Scholar
  147. 147.
    Byappanahalli MN, Fujioka RS. Evidence that tropical soil environment can support the growth of Escherichia coli. Water Sci Technol. 1998;38(12):171–4.CrossRefGoogle Scholar
  148. 148.
    Solo-Gabriele HM, Wolfert MA, Desmarais TR, Palmer CJ. Sources of Escherichia coli in a coastal subtropical environment. Appl Environ Microbiol. 2000;66(1):230–7.CrossRefGoogle Scholar
  149. 149.
    Whitman RL, Nevers MB. Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan Beach. Appl Environ Microbiol. 2003;69(9):5555–62.CrossRefGoogle Scholar
  150. 150.
    Brennan FP, O’Flaherty V, Kramers G, Grant J, Richards KG. Long-term persistence and leaching of Escherichia coli in temperate maritime soils. Appl Environ Microbiol. 2010;76(5):1449–55.CrossRefGoogle Scholar
  151. 151.
    Perkins TL, Clements K, Baas JH, Jago CF, Jones DL, Malham SK, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment. PLoS One. 2014;9(11):e112951.CrossRefGoogle Scholar
  152. 152.
    Mitch AA, Gasner KC, Mitch WA. Fecal coliform accumulation within a river subject to seasonally-disinfected wastewater discharges. Water Res. 2010;44(16):4776–82.CrossRefGoogle Scholar
  153. 153.
    de Brauwere A, Ouattara NK, Servais P. Modeling fecal indicator bacteria concentrations in natural surface waters: a review. Crit Rev Environ Sci Technol. 2014;44(21):2380–453.CrossRefGoogle Scholar
  154. 154.
    Pandey PK, Soupir ML, Ikenberry CD, Rehmann CR. Predicting streambed sediment and water column Escherichia coli levels at watershed scale. JAWRA J Am Water Resour Assoc. 2016;52(1):184–97.CrossRefGoogle Scholar
  155. 155.
    Wohl E. Legacy effects on sediments in river corridors. Earth Sci Rev. 2015;147:30–53.CrossRefGoogle Scholar
  156. 156.
    Pettibone GW, Irvine KN, Monahan KM. Impact of a ship passage on bacteria levels and suspended sediment characteristics in the Buffalo River, New York. Water Res. 1996;30(10):2517–21.CrossRefGoogle Scholar
  157. 157.
    Phillip DAT, Antoine P, Cooper V, Francis L, Mangal E, Seepersad N, et al. Impact of recreation on recreational water quality of a small tropical stream. J Environ Monit. 2009;11(6):1192–8.CrossRefGoogle Scholar
  158. 158.
    Farnham DJ, Lall U. Predictive statistical models linking antecedent meteorological conditions and waterway bacterial contamination in urban waterways. Water Res. 2015;76:143–59.CrossRefGoogle Scholar
  159. 159.
    Riverkeeper. How’s the water? 2015.Google Scholar
  160. 160.
    Juhl AR, Anderson OR. Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA). Estuar Coast Shelf Sci. 2014;151:45–53.CrossRefGoogle Scholar
  161. 161.
    Pandey PK, Soupir ML. Assessing the impacts of E. coli laden streambed sediment on E. coli loads over a range of flows and sediment characteristics. JAWRA J Am Water Resour Assoc. 2013;49(6):1261–9.CrossRefGoogle Scholar
  162. 162.
    Pandey PK, Soupir ML, Rehmann CR. A model for predicting resuspension of Escherichia coli from streambed sediments. Water Res. 2012;46(1):115–26.CrossRefGoogle Scholar
  163. 163.
    Brinkmeyer R, Amon RMW, Schwarz JR, Saxton T, Roberts D, Harrison S, et al. Distribution and persistence of Escherichia coli and enterococci in stream bed and bank sediments from two urban streams in Houston, TX. Sci Total Environ. 2015;502:650–8.CrossRefGoogle Scholar
  164. 164.
    Le Fevre NM, Lewis GD. The role of resuspension in enterococci distribution in water at an urban beach. Water Sci Technol. 2003;47(3):205–10.Google Scholar
  165. 165.
    Liu L, Phanikumar MS, Molloy SL, Whitman RL, Shively DA, Nevers MB, et al. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan. Environ Sci Technol. 2006;40(16):5022–8.CrossRefGoogle Scholar
  166. 166.
    Dorevitch S, Ashbolt NJ, Ferguson CM, Fujioka R, McGee CG, Soller JA, et al. Meeting report: knowledge and gaps in developing microbial criteria for inland recreational waters. Environ Health Perspect. 2010;118(6):871.CrossRefGoogle Scholar
  167. 167.
    Phillips MC, Feng Z, Vogel LJ, Reniers AJHM, Haus BK, Enns AA, et al. Microbial release from seeded beach sediments during wave conditions. Mar Pollut Bull. 2014;79(1):114–22.CrossRefGoogle Scholar
  168. 168.
    Phillips MC, Solo-Gabriele HM, Piggot AM, Klaus JS, Zhang Y. Relationships between sand and water quality at recreational beaches. Water Res. 2011;45(20):6763–9.CrossRefGoogle Scholar
  169. 169.
    Beversdorf LJ, Bornstein-Forst SM, McLellan SL. The potential for beach sand to serve as a reservoir for Escherichia coli and the physical influences on cell die-off. J Appl Microbiol. 2007;102(5):1372–81.CrossRefGoogle Scholar
  170. 170.
    Bonilla TD, Nowosielski K, Cuvelier M, Hartz A, Green M, Esiobu N, et al. Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Mar Pollut Bull. 2007;54(9):1472–82.CrossRefGoogle Scholar
  171. 171.
    Yamahara KM, Layton BA, Santoro AE, Boehm AB. Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environ Sci Technol. 2007;41(13):4515–21.CrossRefGoogle Scholar
  172. 172.
    Hartz A, Cuvelier M, Nowosielski K, Bonilla TD, Green M, Esiobu N, et al. Survival potential of and enterococci in subtropical beach sand: implications for water quality managers. J Environ Qual. 2008;37(3):898–905.CrossRefGoogle Scholar
  173. 173.
    Halliday E, Gast RJ. Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. Environ Sci Technol. 2010;45(2):370–9.CrossRefGoogle Scholar
  174. 174.
    De Man H, van den Berg H, Leenen E, Schijven JF, Schets FM, Van der Vliet JC, et al. Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Res. 2014;48:90–9.CrossRefGoogle Scholar
  175. 175.
    De Man H, Gras LM, Schimmer B, Friesema IHM, Husman ADR, van Pelt W. Gastrointestinal, influenza-like illness and dermatological complaints following exposure to floodwater: a cross-sectional survey in the Netherlands. Epidemiol Infect. 2016;144(07):1445–54.CrossRefGoogle Scholar
  176. 176.
    Hammond MJ, Chen AS, Djordjević S, Butler D, Mark O. Urban flood impact assessment: a state-of-the-art review. Urban Water J. 2015;12(1):14–29.CrossRefGoogle Scholar
  177. 177.
    Tandlich R, Ncube M, Khamanga SMM, Zuma BM. A case study on the health risks related to flood disasters in South Africa. Journal of Disaster Research. 2016;11(4):732–41.Google Scholar
  178. 178.
    Ten Veldhuis JAE, Clemens F, Sterk G, Berends BR. Microbial risks associated with exposure to pathogens in contaminated urban flood water. Water Res. 2010;44(9):2910–8.CrossRefGoogle Scholar
  179. 179.
    Taylor J, Davies M, Canales M, Lai KM. The persistence of flood-borne pathogens on building surfaces under drying conditions. Int J Hyg Environ Health. 2013;216(1):91–9.CrossRefGoogle Scholar
  180. 180.
    Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J Aerosol Sci. 2005;36(5):801–12.CrossRefGoogle Scholar
  181. 181.
    Blanchard DC, Syzdek LD. Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles. Appl Environ Microbiol. 1982;43(5):1001–5.Google Scholar
  182. 182.
    Leeuw G, Neele FP, Hill M, Smith MH, Vignati E. Production of sea spray aerosol in the surf zone. J Geophys Res Atmos. 2000;105(D24):29397–409.CrossRefGoogle Scholar
  183. 183.
    Dueker ME, O’Mullan GD. Aeration remediation of a polluted waterway increases near-surface coarse and culturable microbial aerosols. Sci Total Environ. 2014;478:184–9.CrossRefGoogle Scholar
  184. 184.
    Monahan EC, Fairall CW, Davidson KL, Boyle PJ. Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols. Q J R Meteorol Soc. 1983;109(460):379–92.CrossRefGoogle Scholar
  185. 185.
    Shaffer BT, Lighthart B. Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest, and coastal. Microb Ecol. 1997;34(3):167–77.CrossRefGoogle Scholar
  186. 186.
    Dueker ME, Weathers KC, O’Mullan GD, Juhl AR, Uriarte M. Environmental controls on coastal coarse aerosols: implications for microbial content and deposition in the near-shore environment. Environ Sci Technol. 2011;45(8):3386–92.CrossRefGoogle Scholar
  187. 187.
    Dueker ME, O’Mullan GD, Weathers KC, Juhl AR, Uriarte M. Coupling of fog and marine microbial content in the near-shore coastal environment. Biogeosciences. 2012;9(2):803–13.CrossRefGoogle Scholar
  188. 188.
    Urbano R, Palenik B, Gaston CJ, Prather KA. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. Biogeosciences. 2011;8(2):301–9.CrossRefGoogle Scholar
  189. 189.
    • Dueker ME, O’Mullan GD, Juhl AR, Weathers KC, Uriarte M. Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site. Environ Sci Technol. 2012;46(20):10926–33. This article demonstrates the association of culturable bacterial aerosols above a superfund polluted urban waterway to culturable bacteria in the water surface.CrossRefGoogle Scholar
  190. 190.
    Montero A, Dueker ME, O’Mullan, Gregory D. Culturable bioaerosols along an urban waterfront are primarily associated with coarse particles. Peer J. 2016;4(e2827).Google Scholar
  191. 191.
    Pickup RW, Rhodes G, Arnott S, Sidi-Boumedine K, Bull TJ, Weightman A, et al. Mycobacterium avium subsp. paratuberculosis in the catchment area and water of the River Taff in South Wales, United Kingdom, and its potential relationship to clustering of Crohn’s disease cases in the city of Cardiff. Appl Environ Microbiol. 2005;71(4):2130–9.CrossRefGoogle Scholar
  192. 192.
    Donovan EP, Staskal DF, Unice KM, Roberts JD, Haws LC, Finley BL, et al. Risk of gastrointestinal disease associated with exposure to pathogens in the sediments of the Lower Passaic River. Appl Environ Microbiol. 2008;74(4):1004–18.CrossRefGoogle Scholar
  193. 193.
    Heaney CD, Sams E, Wing S, Marshall S, Brenner K, Dufour AP, et al. Contact with beach sand among beachgoers and risk of illness. Am J Epidemiol. 2009;170(2):164–72.CrossRefGoogle Scholar
  194. 194.
    • Heaney CD, Sams E, Dufour AP, Brenner KP, Haugland RA, Chern E, et al. Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers. Epidemiol (Cambridge, Mass). 2012;23(1):95. This article demonstrates beach sand as a source of illness among beachgoers, providing one of the few epidemiological studies to include beach sand.CrossRefGoogle Scholar
  195. 195.
    Sabino R, Veríssimo C, Cunha MA, Wergikoski B, Ferreira FC, Rodrigues R, et al. Pathogenic fungi: an unacknowledged risk at coastal resorts? New insights on microbiological sand quality in Portugal. Mar Pollut Bull. 2011;62(7):1506–11.CrossRefGoogle Scholar
  196. 196.
    Sabino R, Rodrigues R, Costa I, Carneiro C, Cunha M, Duarte A, et al. Routine screening of harmful microorganisms in beach sands: implications to public health. Sci Total Environ. 2014;472:1062–9.CrossRefGoogle Scholar
  197. 197.
    Whitman RL, Przybyla-Kelly K, Shively DA, Nevers MB, Byappanahalli MN. Hand–mouth transfer and potential for exposure to E. coli and F+ coliphage in beach sand, Chicago, Illinois. J Water Health. 2009;7(4):623–9.CrossRefGoogle Scholar
  198. 198.
    Kinzelman JL, Pond KR, Longmaid KD, Bagley RC. The effect of two mechanical beach grooming strategies on Escherichia coli density in beach sand at a southwestern Lake Michigan Beach. Aquat Ecosyst Health Manag. 2004;7(3):425–32.CrossRefGoogle Scholar
  199. 199.
    Kinzelman JL, Whitman RL, Byappanahalli M, Jackson E, Bagley RC. Evaluation of beach grooming techniques on Escherichia coli density in foreshore sand at North Beach, Racine. WI Lake Reserv Manag. 2003;19(4):349–54.CrossRefGoogle Scholar
  200. 200.
    Leonard AFC, Zhang L, Balfour AJ, Garside R, Gaze WH. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ Int. 2015;82:92–100.CrossRefGoogle Scholar
  201. 201.
    Eisenberg SWF, Nielen M, Santema W, Houwers DJ, Heederik D, Koets AP. Detection of spatial and temporal spread of Mycobacterium avium subsp. paratuberculosis in the environment of a cattle farm through bio-aerosols. Vet Microbiol. 2010;143(2):284–92.CrossRefGoogle Scholar
  202. 202.
    Haas D, Unteregger M, Habib J, Galler H, Marth E, Reinthaler FF. Exposure to bioaerosol from sewage systems. Water Air Soil Pollut. 2010;207(1–4):49–56.CrossRefGoogle Scholar
  203. 203.
    Nguyen TMN, Ilef D, Jarraud S, Rouil L, Campese C, Che D, et al. A community-wide outbreak of legionnaires disease linked to industrial cooling towers—how far can contaminated aerosols spread? J Infect Dis. 2006;193(1):102–11.CrossRefGoogle Scholar
  204. 204.
    Donaldson AI, Alexandersen S. Predicting the spread of foot and mouth disease by airborne virus. Revue Scientifique et Technique-Office International des épizooties. 2002;21(3):569–78.CrossRefGoogle Scholar
  205. 205.
    Hawker JI, Ayres JG, Blair I, Evans MR, Smith DL, Smith EG, et al. A large outbreak of Q fever in the west midlands: windbourne spread into a metropolitan area? Commun Dis Public Health. 1998;1:180–7.Google Scholar
  206. 206.
    Yamamoto N, Bibby K, Qian J, Hospodsky D, Rismani-Yazdi H, Nazaroff WW, et al. Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J. 2012;6(10):1801–11.CrossRefGoogle Scholar
  207. 207.
    Torbick N, Hession S, Stommel E, Caller T. Mapping amyotrophic lateral sclerosis lake risk factors across northern New England. Int J Health Geogr. 2014;13(1):1.CrossRefGoogle Scholar
  208. 208.
    Stommel EW, Field NC, Caller TA. Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Med Hypotheses. 2013;80(2):142–5.CrossRefGoogle Scholar
  209. 209.
    • Banack SA, Caller T, Henegan P, Haney J, Murby A, Metcalf JS, et al. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins. 2015;7(2):322–36. This article presents data in support of cyanobacterial blooms and airborne transport of neurotoxins, in association with a cluster of amyotrophic lateral sclerosis in proximity to a lake community. While not directly related to fecal pollution, it provides an example of another proposed airborne pathway for disease transmission from a water surface.CrossRefGoogle Scholar
  210. 210.
    Murby AL, Haney JF. Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins. Aerobiologia. 1–9.Google Scholar
  211. 211.
    Benami M, Busgang A, Gillor O, Gross A. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems. Sci Total Environ. 2016;562:344–52.CrossRefGoogle Scholar
  212. 212.
    Lee C, Sultana CM, Collins DB, Santander MV, Axson JL, Malfatti F, et al. Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop. J Phys Chem A. 2015;119(33):8860–70.CrossRefGoogle Scholar
  213. 213.
    Korzeniewska E, Harnisz M. Culture-dependent and culture-independent methods in evaluation of emission of Enterobacteriaceae from sewage to the air and surface water. Water Air Soil Pollut. 2012;223(7):4039–46.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gregory D. O’Mullan
    • 1
    • 2
    • 3
    Email author
  • M. Elias Dueker
    • 4
  • Andrew R. Juhl
    • 3
  1. 1.School of Earth and Environmental Sciences, Queens CollegeCity University of New YorkFlushingUSA
  2. 2.Earth and Environmental Sciences, Graduate CenterCity University of New YorkNew YorkUSA
  3. 3.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  4. 4.Environmental and Urban Studies and Biology ProgramsBard CollegeAnnandale-on-HudsonUSA

Personalised recommendations