Skip to main content

Advertisement

Log in

Enhancing Tree Performance Through Species Mixing: Review of a Quarter-Century of TreeDivNet Experiments Reveals Research Gaps and Practical Insights

  • Ecological Function (M Watt, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

International ambitions for massive afforestation and restoration are high. To make these investments sustainable and resilient under future climate change, science is calling for a shift from planting monocultures to mixed forests. But what is the scientific basis for promoting diverse plantations, and what is the feasibility of their establishment and management? As the largest global network of tree diversity experiments, TreeDivNet is uniquely positioned to answer these pressing questions. Building on 428 peer-reviewed TreeDivNet studies, combined with the results of a questionnaire completed by managers of 32 TreeDivNet sites, we aimed to answer the following questions: (i) How and where have TreeDivNet experiments enabled the relationship between tree diversity and tree performance (including productivity, survival, and pathogen damage) to be studied, and what has been learned? (ii) What are the remaining key knowledge gaps in our understanding of the relationship between tree diversity and tree performance? and (iii) What practical insights can be gained from the TreeDivNet experiments for operational, real-world forest plantations?

Recent Findings

We developed a conceptual framework that identifies the variety of pathways through which target tree performance is related to local neighbourhood diversity and mapped the research efforts for each of those pathways. Experimental research on forest mixtures has focused primarily on direct tree diversity effects on productivity, with generally positive effects of species and functional diversity on productivity. Fewer studies focused on indirect effects mediated via biotic growing conditions (e.g. soil microbes and herbivores) and resource availability and uptake. Most studies examining light uptake found positive effects of species diversity. For pests and diseases, the evidence points mostly towards lower levels of infection for target trees when growing in mixed plantations. Tree diversity effects on the abiotic growing conditions (e.g. microclimate, soil properties) and resource-use efficiency have been less well studied to date. The majority of tree diversity experiments are situated in temperate forests, while (sub)tropical forests, and boreal forests in particular, remain underrepresented.

Summary

TreeDivNet provides evidence in favour of mixing tree species to increase tree productivity while identifying a variety of different processes that drive these diversity effects. The design, scale, age, and management of TreeDivNet experiments reflect their focus on fundamental research questions pertaining to tree diversity-ecosystem function relationships and this scientific focus complicates translation of findings into direct practical management guidelines. Future research could focus on (i) filling the knowledge gaps related to underlying processes of tree diversity effects to better design plantation schemes, (ii) identifying optimal species mixtures, and (iii) developing practical approaches to make experimental mixed plantings more management oriented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data is available in appendix.

References

  1. Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW. The global tree restoration potential. Science. 2019;365:76–9.

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Chazdon R, Brancalion P. Restoring forests as a means to many ends. Science (80-). 2019;365:24–5.

    Article  ADS  CAS  Google Scholar 

  3. Chazdon RL, Broadbent EN, Rozendaal DMA, et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv. 2016. https://doi.org/10.1126/sciadv.1501639.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lewis SL, Wheeler CE, Mitchard ETA, Koch A. Restoring natural forests is the best way to remove atmospheric carbon. Nature. 2019;568:25–8.

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Griscom BW, Adams J, Ellis PW, et al. Natural climate solutions. Proc Natl Acad Sci U S A. 2017;114:11645–50.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  6. United Nations Environment Programme (UNEP) (2011) The Bonn Challenge. https://www.bonnchallenge.org/

  7. Delang CO, Yuan Z. China’s grain for green program: a review of the largest ecological restoration and rural development program in the world. Springer Cham; Copyricht information: Springer International Publishing Switzerland; 2015. p. 230. https://doi.org/10.1007/978-3-319-11505-4

  8. Government of Canada. Canada calls for proposals to support 2 Billion Trees program. Can For Ind. (2021). https://www.canada.ca/en/campaign/2-billion-trees.html

  9. European Commission (2020) EU biodiversity strategy for 2030. https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en.

  10. Tamma P, Schaart E, Gurzu A. Europe’s green deal plan unveiled. Politico (2019). https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en

  11. Leskinen P, Cardellini G, González-García S, Hurmekoski E, Sathre R, Seppälä J, Smyth C, Stern T, Verkerk PJ. Substitution effects of wood-based products in climate change mitigation. From Sci to Policy. 2018;7:27.

    Google Scholar 

  12. Bauhus J, van der Meer PJ, Kanninen M. Ecosystem goods and services from plantation forests. Ecosyst Goods Serv from Plant For. 2010. https://doi.org/10.4324/9781849776417.

    Article  Google Scholar 

  13. Paquette A, Messier C. The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ. 2010;8:27–34.

    Article  Google Scholar 

  14. Pirard R, Dal Secco L, Warman R. Do timber plantations contribute to forest conservation? Environ Sci Policy. 2016;57:122–30.

    Article  Google Scholar 

  15. McDowell NG. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 2011;155:1051–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hubau W, Lewis SL, Phillips OL, et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature. 2020;579:80–7.

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Pecl GT, Araújo MB, Bell JD, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 2017; 355:eaai9214. https://doi.org/10.1126/science.aai9214

  18. Zhang Y, Chen HYH, Reich PB. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol. 2012;100:742–9.

    Article  Google Scholar 

  19. Liang J, Crowther TW, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:aaf8957. https://doi.org/10.1126/science.aaf8957

  20. Ray T, Delory BM, Bruelheide H, Eisenhauer N, Ferlian O, Quosh J, Oheimb G von, Fichtner A. Tree diversity increases productivity through enhancing structural complexity across mycorrhizal types. Sci Adv. 2023;9:eadi2362. https://doi.org/10.1126/sciadv.adi2362

  21. Grossman JJ, Vanhellemont M, Barsoum N, et al. Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environ Exp Bot. 2018;152:68–89.

    Article  Google Scholar 

  22. Paquette A, Hector A, Vanhellemont M, et al. A million and more trees for science. Nat Ecol Evol. 2018;2:763–6.

    Article  PubMed  Google Scholar 

  23. Verheyen K, Vanhellemont M, Auge H, et al. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio. 2016;45:29–41.

    Article  PubMed  ADS  CAS  Google Scholar 

  24. Messier, C, Bauhus, J, Sousa-Silva, R, et al. For the sake of resilience and multifunctionality, let's diversify planted forests! Conserv Lett. 2022; 15:e12829. https://doi.org/10.1111/conl.12829

  25. Kambach S, Allan E, Bilodeau-Gauthier S, et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol Evol. 2019;9:11254–65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hulvey KB, Hobbs RJ, Standish RJ, Lindenmayer DB, Lach L, Perring MP. Benefits of tree mixes in carbon plantings. Nat Clim Chang. 2013;3:869–74.

    Article  ADS  CAS  Google Scholar 

  27. Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, Gonzalez-Olabarria JR, Koricheva J, Meurisse N, Brockerhoff EG. Tree diversity drives forest stand resistance to natural disturbances. Curr For Reports. 2017;3:223–43.

    Google Scholar 

  28. Liu D, Wang T, Peñuelas J, Piao S. Drought resistance enhanced by tree species diversity in global forests. Nat Geosci. 2022;15:800–4.

    Article  ADS  CAS  Google Scholar 

  29. FAO. Global forest resources assessment 2020 – Key findings. Rome. 2020. https://doi.org/10.4060/ca8753en

  30. Yang X, Bauhus J, Both S, et al. Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur J For Res. 2013;132:593–606.

    Article  Google Scholar 

  31. Puettmann KJ, Wilson SMG, Baker SC, et al. Silvicultural alternatives to conventional even-aged forest management - what limits global adoption? For Ecosyst. 2015. https://doi.org/10.1186/s40663-015-0031-x.

    Article  Google Scholar 

  32. Paquette A, Messier C. Chapter 13 - Managing tree plantations as complex adaptive systems. In: Messier C, Puettmann KJ, Coates KD, editors. Manag. Earthscan, New York: For. as complex Adapt. Syst. Build. Resil. to challenges Glob. Chang; 2013. p. 299–326.

    Google Scholar 

  33. Fiedler S, Monteiro JAF, Hulvey KB, Standish RJ, Perring MP, Tietjen B. Global change shifts trade-offs among ecosystem functions in woodlands restored for multifunctionality. J Appl Ecol. 2021;58:1705–17.

    Article  Google Scholar 

  34. Ratcliffe S, Wirth C, Jucker T, et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol Lett. 2017;20:1414–26.

    Article  PubMed  Google Scholar 

  35. Trogisch S, Liu X, Rutten G, et al. The significance of tree-tree interactions for forest ecosystem functioning. Basic Appl Ecol. 2021;55:33–52.

    Article  Google Scholar 

  36. Forrester DI, Pretzsch H. Tamm review: on the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manage. 2015;356:41–53.

    Article  Google Scholar 

  37. Forrester DI, Bauhus J. A review of processes behind diversity—productivity relationships in forests. Curr For Reports. 2016;2:45–61.

    Google Scholar 

  38. Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol. 2008;14:1125–40.

    Article  ADS  Google Scholar 

  39. Castagneyrol B, Giffard B, Péré C, Jactel H. Plant apparency, an overlooked driver of associational resistance to insect herbivory. J Ecol. 2013;101:418–29.

    Article  Google Scholar 

  40. Dillen M, Smit C, Verheyen K. How does neighbourhood tree species composition affect growth characteristics of oak saplings? For Ecol Manage. 2017;401:177–86.

    Article  Google Scholar 

  41. Ferlian O, Lintzel EM, Bruelheide H, et al. Nutrient status not secondary metabolites drives herbivory and pathogen infestation across differently mycorrhized tree monocultures and mixtures. Basic Appl Ecol. 2021;55:110–23.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun Z, Liu X, Schmid B, Bruelheide H, Bu W, Ma K. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J Plant Ecol. 2017;10:146–57.

    Article  Google Scholar 

  43. Schwarz J, Schnabel F, Bauhus J. A conceptual framework and experimental design for analysing the relationship between biodiversity and ecosystem functioning (BEF) in agroforestry systems. Basic Appl Ecol. 2021;55:133–51.

    Article  Google Scholar 

  44. Olson DM, Dinerstein E, Wikramanayake ED, et al. Terrestrial ecoregions of the world : a new map of life on earth. BioScience. 2001;51(933):938.

    Google Scholar 

  45. Tobner CM, Paquette A, Reich PB, Gravel D, Messier C. Advancing biodiversity-ecosystem functioning science using high-density tree-based experiments over functional diversity gradients. Oecologia. 2014;174:609–21.

    Article  PubMed  ADS  Google Scholar 

  46. Dhiedt E, Verheyen K, De Smedt P, Ponette Q, Baeten L. Early tree diversity and composition effects on topsoil chemistry in young forest plantations depend on site context. Ecosystems. 2021;24:1638–53.

    Article  CAS  Google Scholar 

  47. Alberti G, Nock C, Fornasier F, Scherer-Lorenzen M, De Nobili M, Peressotti A, Hoenig L, Bruelheide H, Bauhus J. Tree functional diversity influences belowground ecosystem functioning. Appl Soil Ecol. 2017;120:160–8.

    Article  Google Scholar 

  48. Domisch T, Finér L, Dawud SM, Vesterdal L, Raulund-Rasmussen K. Does species richness affect fine root biomass and production in young forest plantations? Oecologia. 2015;177:581–94.

    Article  PubMed  ADS  Google Scholar 

  49. Martin-Guay MO, Belluau M, Côté B, Handa IT, Jewell MD, Khlifa R, Munson AD, Rivest M, Whalen JK, Rivest D. Tree identity and diversity directly affect soil moisture and temperature but not soil carbon ten years after planting. Ecol Evol. 2022;12:1–15.

    Article  Google Scholar 

  50. Potvin C, Mancilla L, Buchmann N, et al. An ecosystem approach to biodiversity effects: carbon pools in a tropical tree plantation. For Ecol Manage. 2011;261:1614–24.

    Article  Google Scholar 

  51. Sprenger M, Oelmann Y, Weihermüller L, Wolf S, Wilcke W, Potvin C. Tree species and diversity effects on soil water seepage in a tropical plantation. For Ecol Manage. 2013;309:76–86.

    Article  Google Scholar 

  52. Donfack LS, Röll A, Ellsäßer F, et al. Microclimate and land surface temperature in a biodiversity enriched oil palm plantation. For Ecol Manage. 2021. https://doi.org/10.1016/j.foreco.2021.119480.

    Article  Google Scholar 

  53. Zhang S, Landuyt D, Verheyen K, De Frenne P. Tree species mixing can amplify microclimate offsets in young forest plantations. J Appl Ecol. 2022;59:1428–39.

    Article  Google Scholar 

  54. Song Z, Seitz S, Li J, Goebes P, Schmidt K, Kühn P, Shi X, Scholten T. Tree diversity reduced soil erosion by affecting tree canopy and biological soil crust development in a subtropical forest experiment. For Ecol Manage. 2019;444:69–77.

    Article  Google Scholar 

  55. Seitz S, Goebes P, Song Z, Bruelheide H, Härdtle W, Kühn P, Li Y, Scholten T. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests. Soil. 2016;2:49–61.

    Article  ADS  Google Scholar 

  56. Goebes P, Seitz S, Kühn P, Li Y, Niklaus PA, von Oheimb G, Scholten T. Throughfall kinetic energy in young subtropical forests: investigation on tree species richness effects and spatial variability. Agric For Meteorol. 2015;213:148–59.

    Article  ADS  Google Scholar 

  57. Dillen M, Verheyen K, Smit C. Identity rather than richness drives local neighbourhood species composition effects on oak sapling growth in a young forest. For Ecol Manage. 2016;380:274–84.

    Article  Google Scholar 

  58. Schnabel F, Liu X, Kunz M, et al. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci Adv. 2021;7:eabk1643.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  59. Koczorski P, Furtado BU, Gołębiewski M, Hulisz P, Baum C, Weih M, Hrynkiewicz K. The effects of host plant genotype and environmental conditions on fungal community composition and phosphorus solubilization in willow short rotation coppice. Front Plant Sci. 2021;12:1–16.

    Article  Google Scholar 

  60. Teuscher M, Gérard A, Brose U, et al. Experimental biodiversity enrichment in oil-palm-dominated landscapes in Indonesia. Front Plant Sci. 2016;7:1–15.

    Article  Google Scholar 

  61. May-Uc Y, Nell CS, Parra-Tabla V, Navarro J, Abdala-Roberts L. Tree diversity effects through a temporal lens: implications for the abundance, diversity and stability of foraging birds. J Anim Ecol. 2020;89:1775–87.

    Article  PubMed  Google Scholar 

  62. Yang B, Li Y, Ding B, et al. Impact of tree diversity and environmental conditions on the survival of shrub species in a forest biodiversity experiment in subtropical China. J Plant Ecol. 2017;10:179–89.

    Article  Google Scholar 

  63. Germany MS, Bruelheide H, Erfmeier A. Drivers of understorey biomass: tree species identity is more important than richness in a young forest. J Plant Ecol. 2021;14:465–77.

    Article  Google Scholar 

  64. Germany MS, Bruelheide H, Erfmeier A. Limited tree richness effects on herb layer composition, richness and productivity in experimental forest stands. J Plant Ecol. 2017;10:190–200.

    Article  Google Scholar 

  65. Ampoorter E, Baeten L, Koricheva J, Vanhellemont M, Verheyen K. Do diverse overstoreys induce diverse understoreys? Lessons learnt from an experimental-observational platform in Finland. For Ecol Manage. 2014;318:206–15.

    Article  Google Scholar 

  66. Ampoorter E, Baeten L, Vanhellemont M, Bruelheide H, Scherer-Lorenzen M, Baasch A, Erfmeier A, Hock M, Verheyen K. Disentangling tree species identity and richness effects on the herb layer: first results from a German tree diversity experiment. J Veg Sci. 2015;26:742–55.

    Article  Google Scholar 

  67. Corcket E, Alard D, van Halder I, Jactel H, Garrido Diaz B, Reuzeau E, Castagneyrol B. Canopy composition and drought shape understorey plant assemblages in a young tree diversity experiment. J Veg Sci. 2020;31:803–16.

    Article  Google Scholar 

  68. Staab M, Blüthgen N, Klein AM. Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos. 2015;124:827–34.

    Article  ADS  Google Scholar 

  69. Fornoff F, Klein AM, Blüthgen N, Staab M. Tree diversity increases robustness of multi-trophic interactions. Proc R Soc B Biol Sci. 2019. https://doi.org/10.1098/rspb.2018.2399.

    Article  Google Scholar 

  70. Jouveau S, Poeydebat C, Castagneyrol B, van Halder I, Jactel H. Restoring tree species mixtures mitigates the adverse effects of pine monoculture and drought on forest carabids. Insect Conserv Divers. 2022;15:725–38.

    Article  Google Scholar 

  71. Campos-Navarrete MJ, Munguía-Rosas MA, Abdala-Roberts L, Quinto J, Parra-Tabla V. Effects of tree genotypic diversity and species diversity on the arthropod community associated with big-leaf mahogany. Biotropica. 2015;47:579–87.

    Article  Google Scholar 

  72. Patoine G, Bruelheide H, Haase J, Nock C, Ohlmann N, Schwarz B, Scherer-Lorenzen M, Eisenhauer N. Tree litter functional diversity and nitrogen concentration enhance litter decomposition via changes in earthworm communities. Ecol Evol. 2020;10:6752–68.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang MQ, Yan C, Luo A, et al. Phylogenetic relatedness, functional traits, and spatial scale determine herbivore co-occurrence in a subtropical forest. Ecol Monogr. 2022;92:1–16.

    Article  Google Scholar 

  74. Schwarz B, Dietrich C, Cesarz S, Scherer-Lorenzen M, Auge H, Schulz E, Eisenhauer N. Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Eur J Soil Biol. 2015;67:17–26.

    Article  Google Scholar 

  75. Abdala-Roberts L, Mooney KA, Quijano-Medina T, Campos-Navarrete MJ, González-Moreno A, Parra-Tabla V. Comparison of tree genotypic diversity and species diversity effects on different guilds of insect herbivores. Oikos. 2015;124:1527–35.

    Article  ADS  Google Scholar 

  76. Quinto J, Martínez-Falcón AP, Murillo-Pacheco JI, Abdala-Roberts L, Parra-Tabla V. Diversity patterns of tropical epigeal beetle assemblages associated with monoculture and polyculture plantations with big-leaf mahogany. Neotrop Entomol. 2021;50:551–61.

    Article  PubMed  Google Scholar 

  77. Guo PF, Wang MQ, Orr M, et al. Tree diversity promotes predatory wasps and parasitoids but not pollinator bees in a subtropical experimental forest. Basic Appl Ecol. 2021;53:134–42.

    Article  Google Scholar 

  78. Yeeles P, Lach L, Hobbs RJ, Van Wees M, Didham RK. Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment. Ecology. 2017;98:500–11.

    Article  PubMed  Google Scholar 

  79. Ballauff J, Zemp DC, Schneider D, Irawan B, Daniel R, Polle A. Legacy effects overshadow tree diversity effects on soil fungal communities in oil palm-enrichment plantations. Microorganisms. 2020;8:1–18.

    Article  Google Scholar 

  80. Hicks LC, Rahman MM, Carnol M, Verheyen K, Rousk J. The legacy of mixed planting and precipitation reduction treatments on soil microbial activity, biomass and community composition in a young tree plantation. Soil Biol Biochem. 2018;124:227–35.

    Article  CAS  Google Scholar 

  81. Hantsch L, Braun U, Scherer-Lorenzen M, Bruelheide H. Species richness and species identity effects on occurrence of foliar fungal pathogens in a tree diversity experiment. Ecosphere. 2013;4:1–12.

    Article  Google Scholar 

  82. Kambach S, Sadlowski C, Peršoh D, Guerreiro MA, Auge H, Röhl O, Bruelheide H. Foliar fungal endophytes in a tree diversity experiment are driven by the identity but not the diversity of tree species. Life. 2021. https://doi.org/10.3390/life11101081.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cesarz S, Craven D, Auge H, et al. Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Glob Ecol Biogeogr. 2022;31:872–85.

    Article  Google Scholar 

  84. Jewell MD, Shipley B, Low-Décarie E, Tobner CM, Paquette A, Messier C, Reich PB. Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos. 2017;126:959–71.

    Article  ADS  CAS  Google Scholar 

  85. Purahong W, Durka W, Fischer M, Dommert S, Schöps R, Buscot F, Wubet T. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest. Sci Rep. 2016;6:1–11.

    Article  Google Scholar 

  86. Ferlian O, Goldmann K, Eisenhauer N, Tarkka MT, Buscot F, Heintz-Buschart A. Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal fungi along a tree diversity gradient. ISME Commun. 2021;1:1–10.

    Article  Google Scholar 

  87. Heklau H, Schindler N, Buscot F, Eisenhauer N, Ferlian O, Prada Salcedo LD, Bruelheide H. Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecol Evol. 2021;11:5424–40.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nguyen NH, Williams LJ, Vincent JB, Stefanski A, Cavender-Bares J, Messier C, Paquette A, Gravel D, Reich PB, Kennedy PG. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment. Mol Ecol. 2016;25:4032–46.

    Article  PubMed  Google Scholar 

  89. Wu D, Pietsch KA, Staab M, Yu M. Wood species identity alters dominant factors driving fine wood decomposition along a tree diversity gradient in subtropical plantation forests. Biotropica. 2021;53:643–57.

    Article  Google Scholar 

  90. Gottschall F, Davids S, Newiger-Dous TE, Auge H, Cesarz S, Eisenhauer N. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol. 2019;9:12113–27.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Seidelmann KN, Scherer-Lorenzen M, Niklaus PA. Direct vs. Microclimate-driven effects of tree species diversity on litter decomposition in young subtropical forest stands. PLoS ONE. 2016;11:1–16.

    Article  Google Scholar 

  92. Scherer-Lorenzen M, Bonilla JL, Potvin C. Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos. 2007;116:2108–24.

    Article  ADS  Google Scholar 

  93. Rahman MM, Castagneyrol B, Verheyen K, Jactel H, Carnol M. Can tree species richness attenuate the effect of drought on organic matter decomposition and stabilization in young plantation forests? Acta Oecologica. 2018;93:30–40.

    Article  ADS  Google Scholar 

  94. Yang B, Li B, He Y, Zhang L, Bruelheide H, Schuldt A. Tree diversity has contrasting effects on predation rates by birds and arthropods on three broadleaved, subtropical tree species. Ecol Res. 2018;33:205–12.

    Article  CAS  Google Scholar 

  95. Kollberg I, Weih M, Glynn C. The effect of willow diversity on insect herbivory and predation. Agric For Entomol. 2022;24:27–39.

    Article  Google Scholar 

  96. Muiruri EW, Milligan HT, Morath S, Koricheva J. Moose browsing alters tree diversity effects on birch growth and insect herbivory. Funct Ecol. 2015;29:724–35.

    Article  Google Scholar 

  97. Esquivel-Gómez L, Abdala-Roberts L, Pinkus-Rendón M, Parra-Tabla V. Effects of tree species diversity on a community of weaver spiders in a tropical forest plantation. Biotropica. 2017;49:63–70.

    Article  Google Scholar 

  98. Dillen M, Smit C, Buyse M, Höfte M, De Clercq P, Verheyen K. Stronger diversity effects with increased environmental stress: a study of multitrophic interactions between oak, powdery mildew and ladybirds. PLoS ONE. 2017;12:1–16.

    Article  Google Scholar 

  99. Riihimäki J, Kaitaniemi P, Koricheva J, Vehviläinen H. Testing the enemies hypothesis in forest stands: the important role of tree species composition. Oecologia. 2005;142:90–7.

    Article  PubMed  ADS  Google Scholar 

  100. Kaitaniemi P, Riihimäki J, Koricheva J, Vehviläinen H. Experimental evidence for associational resistance against the European pine sawfly in mixed tree stands. Silva Fenn. 2007;41:259–68.

    Article  Google Scholar 

  101. Galmán A, Vázquez-González C, Röder G, Castagneyrol B. Interactive effects of tree species composition and water availability on growth and direct and indirect defences in Quercus ilex. Oikos. 2022;2022:1–13.

    Article  Google Scholar 

  102. Rosado-Sánchez S, Parra-Tabla V, Betancur-Ancona D, Moreira X, Abdala-Roberts L. Tree species diversity alters plant defense investment in an experimental forest plantation in southern Mexico. Biotropica. 2018;50:246–53.

    Article  Google Scholar 

  103. Moreira X, Abdala-Roberts L, Parra-Tabla V, Mooney KA. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0105438.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Milligan HT, Koricheva J. Effects of tree species richness and composition on moose winter browsing damage and foraging selectivity: an experimental study. J Anim Ecol. 2013;82:739–48.

    Article  PubMed  Google Scholar 

  105. Vehviläinen H, Koricheva J. Moose and vole browsing patterns in experimentally assembled pure and mixed forest stands. Ecography (Cop). 2006;29:497–506.

    Article  ADS  Google Scholar 

  106. Field E, Castagneyrol B, Gibbs M, Jactel H, Barsoum N, Schönrogge K, Hector A. Associational resistance to both insect and pathogen damage in mixed forests is modulated by tree neighbour identity and drought. J Ecol. 2020;108:1511–22.

    Article  CAS  Google Scholar 

  107. Barton KE, Valkama E, Vehviläinen H, Ruohomäki K, Knight TM, Koricheva J. Additive and non-additive effects of birch genotypic diversity on arthropod herbivory in a long-term field experiment. Oikos. 2015;124:697–706.

    Article  ADS  Google Scholar 

  108. Fernandez-Conradi P, Jactel H, Hampe A, Leiva MJ, Castagneyrol B. The effect of tree genetic diversity on insect herbivory varies with insect abundance. Ecosphere. 2017. https://doi.org/10.1002/ecs2.1637.

    Article  Google Scholar 

  109. Rutten G, Hönig L, Schwaß R, Braun U, Saadani M, Schuldt A, Michalski SG, Bruelheide H. More diverse tree communities promote foliar fungal pathogen diversity, but decrease infestation rates per tree species, in a subtropical biodiversity experiment. J Ecol. 2021;109:2068–80.

    Article  Google Scholar 

  110. Hantsch L, Braun U, Haase J, Purschke O, Scherer-Lorenzen M, Bruelheide H. No plant functional diversity effects on foliar fungal pathogens in experimental tree communities. Fungal Divers. 2014;66:139–51.

    Article  Google Scholar 

  111. Setiawan NN, Vanhellemont M, Baeten L, Dillen M, Verheyen K. The effects of local neighbourhood diversity on pest and disease damage of trees in a young experimental forest. For Ecol Manage. 2014;334:1–9.

    Article  Google Scholar 

  112. Wu J, Chen B, Reynolds G, Xie J, Liang S, O’Brien MJ, Hector A. Chapter Three - Monitoring tropical forest degradation and restoration with satellite remote sensing: A test using Sabah Biodiversity Experiment. In: Dumbrell AJ, Turner EC, Fayle TM, editors. Trop Ecosyst 21st Century. Academic Press; 2020. p. 117–46.

    Google Scholar 

  113. Peng S, Schmid B, Haase J, Niklaus PA. Leaf area increases with species richness in young experimental stands of subtropical trees. J Plant Ecol. 2017;10:128–35.

    Article  Google Scholar 

  114. Huang Y, Chen Y, Castro-Izaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science (80-). 2018;362:80–3.

    Article  ADS  CAS  Google Scholar 

  115. Haase J, Castagneyrol B, Cornelissen JHC, Ghazoul J, Kattge J, Koricheva J, Scherer-Lorenzen M, Morath S, Jactel H. Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos. 2015;124:1674–85.

    Article  ADS  Google Scholar 

  116. Bu W, Schmid B, Liu X, et al. Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands. J Plant Ecol. 2017;10:158–69.

    Article  Google Scholar 

  117. Williams LJ, Cavender-Bares J, Townsend PA, Couture JJ, Wang Z, Stefanski A, Messier C, Reich PB. Remote spectral detection of biodiversity effects on forest biomass. Nat Ecol Evol. 2021;5:46–54.

    Article  PubMed  Google Scholar 

  118. Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature. 2017;546:145–7.

    Article  PubMed  ADS  CAS  Google Scholar 

  119. Hoeber S, Arranz C, Nordh NE, Baum C, Low M, Nock C, Scherer-Lorenzen M, Weih M. Genotype identity has a more important influence than genotype diversity on shoot biomass productivity in willow short-rotation coppices. GCB Bioenergy. 2018;10:534–47.

    Article  Google Scholar 

  120. Li Y, Härdtle W, Bruelheide H, Nadrowski K, Scholten T, von Wehrden H, von Oheimb G. Site and neighborhood effects on growth of tree saplings in subtropical plantations (China). For Ecol Manage. 2014;327:118–27.

    Article  Google Scholar 

  121. Sinacore K, García EH, Howard T, van Breugel M, Lopez OR, Finkral AJ, Hall JS. Towards effective reforestation: growth and commercial value of four commonly planted tropical timber species on infertile soils in Panama. New For. 2023;54:125–42.

    Article  Google Scholar 

  122. Urgoiti J, Messier C, Keeton WS, Reich PB, Gravel D, Paquette A. No complementarity no gain—Net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol Lett. 2022;25:851–62.

    Article  PubMed  Google Scholar 

  123. Schnabel F, Schwarz JA, Dănescu A, Fichtner A, Nock CA, Bauhus J, Potvin C. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob Chang Biol. 2019;25:4257–72.

    Article  PubMed  ADS  Google Scholar 

  124. Maxwell TL, Fanin N, Parker WC, Bakker MR, Belleau A, Meredieu C, Augusto L, Munson AD. Tree species identity drives nutrient use efficiency in young mixed-species plantations, at both high and low water availability. Funct Ecol. 2022;36:2069–83.

    Article  CAS  Google Scholar 

  125. Huang Y, Ma K, Niklaus PA, Schmid B. Leaf-litter overyielding in a forest biodiversity experiment in subtropical China. For Ecosyst. 2018. https://doi.org/10.1186/s40663-018-0157-8.

    Article  Google Scholar 

  126. Gérard A, Wollni M, Hölscher D, Irawan B, Sundawati L, Teuscher M, Kreft H. Oil-palm yields in diversified plantations: initial results from a biodiversity enrichment experiment in Sumatra, Indonesia. Agric Ecosyst Environ. 2017;240:253–60.

    Article  Google Scholar 

  127. Lang’at JKS, Kirui BKY, Skov MW, Kairo JG, Mencuccini M, Huxham M. Species mixing boosts root yield in mangrove trees. Oecologia. 2013;172:271–8.

    Article  PubMed  ADS  Google Scholar 

  128. Madsen C, Potvin C, Hall J, Sinacore K, Turner BL, Schnabel F. Coarse root architecture: neighbourhood and abiotic environmental effects on five tropical tree species growing in mixtures and monocultures. For Ecol Manage. 2020;460:117851.

    Article  Google Scholar 

  129. Van de Peer T, Verheyen K, Baeten L, Ponette Q, Muys B. Biodiversity as insurance for sapling survival in experimental tree plantations. J Appl Ecol. 2016;53:1777–86.

    Article  Google Scholar 

  130. Mayoral C, van Breugel M, Cerezo A, Hall JS. Survival and growth of five neotropical timber species in monocultures and mixtures. For Ecol Manage. 2017;403:1–11.

    Article  Google Scholar 

  131. Van de Peer T, Mereu S, Verheyen K, María Costa Saura J, Morillas L, Roales J, Lo Cascio M, Spano D, Paquette A, Muys B. Tree seedling vitality improves with functional diversity in a Mediterranean common garden experiment. For Ecol Manage. 2018;409:614–33.

    Article  Google Scholar 

  132. Belluau M, Vitali V, Parker WC, Paquette A, Messier C. Overyielding in young tree communities does not support the stress-gradient hypothesis and is favoured by functional diversity and higher water availability. J Ecol. 2021;109:1790–803.

    Article  CAS  Google Scholar 

  133. Weih M, Nordh NE, Manzoni S, Hoeber S. Functional traits of individual varieties as determinants of growth and nitrogen use patterns in mixed stands of willow (Salix spp.). For Ecol Manage. 2021;479:118605.

    Article  Google Scholar 

  134. Grossman JJ, Cavender-Bares J, Hobbie SE, Reich PB, Montgomery RA. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology. 2017;98:2601–14.

    Article  PubMed  Google Scholar 

  135. Hahn CZ, Niklaus PA, Bruelheide H, Michalski SG, Shi M, Yang X, Zeng X, Fischer M, Durka W. Opposing intraspecific vs. interspecific diversity effects on herbivory and growth in subtropical experimental tree assemblages. J Plant Ecol. 2017;10:244–51.

    Article  Google Scholar 

  136. Shen Z, Li Y, Chen Z, et al. Neighborhood effects and environmental variables drive sapling growth in a young subtropical tree plantation. For Ecol Manage. 2021;483:118929.

    Article  Google Scholar 

  137. Schweier J, Arranz C, Nock CA, Jaeger D, Scherer-Lorenzen M. Impact of increased genotype or species diversity in short rotation coppice on biomass production and wood characteristics. Bioenergy Res. 2019;12:497–508.

    Article  CAS  Google Scholar 

  138. Van de Peer T, Verheyen K, Ponette Q, Setiawan NN, Muys B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J Ecol. 2018;106:1096–105.

    Article  Google Scholar 

  139. Oelmann Y, Potvin C, Mark T, Werther L, Tapernon S, Wilcke W. Tree mixture effects on aboveground nutrient pools of trees in an experimental plantation in Panama. Plant Soil. 2010;326:199–212.

    Article  CAS  Google Scholar 

  140. Muiruri EW, Koricheva J. Going undercover: increasing canopy cover around a host tree drives associational resistance to an insect pest. Oikos. 2017;126:339–49.

    Article  ADS  Google Scholar 

  141. Williams LJ, Cavender-Bares J, Paquette A, Messier C, Reich PB. Light mediates the relationship between community diversity and trait plasticity in functionally and phylogenetically diverse tree mixtures. J Ecol. 2020;108:1617–34.

    Article  Google Scholar 

  142. Jansen K, Von Oheimb G, Bruelheide H, Härdtle W, Fichtner A. Tree species richness modulates water supply in the local tree neighbourhood: evidence from wood δ 13 C signatures in a large-scale forest experiment. Proc R Soc B Biol Sci. 2021. https://doi.org/10.1098/rspb.2020.3100.

    Article  Google Scholar 

  143. Proß T, Bruelheide H, Potvin C, Sporbert M, Trogisch S, Haider S. Reprint of: drivers of within-tree leaf trait variation in a tropical planted forest varying in tree species richness. Basic Appl Ecol. 2021;55:6–19.

    Article  Google Scholar 

  144. Davrinche A, Haider S. Intra-specific leaf trait responses to species richness at two different local scales. Basic Appl Ecol. 2021;55:20–32.

    Article  Google Scholar 

  145. Hildebrand M, Perles-Garcia MD, Kunz M, Härdtle W, von Oheimb G, Fichtner A. Tree-tree interactions and crown complementarity: the role of functional diversity and branch traits for canopy packing. Basic Appl Ecol. 2021;50:217–27.

    Article  Google Scholar 

  146. Kunz M, Fichtner A, Härdtle W, Raumonen P, Bruelheide H, von Oheimb G. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol Lett. 2019;22:2130–40.

    Article  PubMed  Google Scholar 

  147. Duarte MM, de Moral RA, Guillemot J, Zuim CIF, Potvin C, Bonat WH, Stape JL, Brancalion PHS. High tree diversity enhances light interception in tropical forests. J Ecol. 2021;109:2597–611.

    Article  Google Scholar 

  148. Rissanen K, Martin-Guay M-O, Riopel-Bouvier A-S, Paquette A. Light interception in experimental forests affected by tree diversity and structural complexity of dominant canopy. Agric For Meteorol. 2019;278:107655.

    Article  Google Scholar 

  149. Forrester DI, Rodenfels P, Haase J, Härdtle W, Leppert KN, Niklaus PA, von Oheimb G, Scherer-Lorenzen M, Bauhus J. Tree-species interactions increase light absorption and growth in Chinese subtropical mixed-species plantations. Oecologia. 2019;191:421–32.

    Article  PubMed  ADS  Google Scholar 

  150. Lei P, Scherer-Lorenzen M, Bauhus J. Belowground facilitation and competition in young tree species mixtures. For Ecol Manage. 2012;265:191–200.

    Article  Google Scholar 

  151. Archambault C, Paquette A, Messier C, Khlifa R, Munson AD, Handa IT. Evergreenness influences fine root growth more than tree diversity in a common garden experiment. Oecologia. 2019;189:1027–39.

    Article  PubMed  ADS  Google Scholar 

  152. Lei P, Scherer-Lorenzen M, Bauhus J. The effect of tree species diversity on fine-root production in a young temperate forest. Oecologia. 2012;169:1105–15.

    Article  PubMed  ADS  Google Scholar 

  153. Grossiord C, Gessler A, Granier A, Berger S, Bréchet C, Hentschel R, Hommel R, Scherer-Lorenzen M, Bonal D. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. J Hydrol. 2014;519:3511–9.

    Article  Google Scholar 

  154. Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D. Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology. 2015;8:1–12.

    Article  Google Scholar 

  155. Reuter R, Ferlian O, Tarkka M, Eisenhauer N, Pritsch K, Simon J. Tree species rather than type of mycorrhizal association drive inorganic and organic nitrogen acquisition in tree-tree interactions. Tree Physiol. 2021;41:2096–108.

    Article  PubMed  CAS  Google Scholar 

  156. Kunert N, Brändle J, El-Madany TS. Carbon allocation and tree diversity: shifts in autotrophic respiration in tree mixtures compared to monocultures. Biologia (Bratisl). 2022;77:3385–96.

    Article  CAS  Google Scholar 

  157. Zeugin F, Potvin C, Jansa J, Scherer-Lorenzen M. Is tree diversity an important driver for phosphorus and nitrogen acquisition of a young tropical plantation? For Ecol Manage. 2010;260:1424–33.

    Article  Google Scholar 

  158. Pollastrini M, Holland V, Brüggemann W, Koricheva J, Jussila I, Scherer-Lorenzen M, Berger S, Bussotti F. Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology. Plant Biol. 2014;16:323–31.

    Article  PubMed  CAS  Google Scholar 

  159. Grossiord C, Granier A, Gessler A, Pollastrini M, Bonal D. The influence of tree species mixture on ecosystem-level carbon accumulation and water use in a mixed boreal plantation. For Ecol Manage. 2013;298:82–92.

    Article  Google Scholar 

  160. Grossiord C, Granier A, Gessler A, Scherer-Lorenzen M, Pollastrini M, Bonal D. Application of Loreau & Hector’s (2001) partitioning method to complex functional traits. Methods Ecol Evol. 2013;4:954–60.

    Article  Google Scholar 

  161. Jucker T, Bouriaud O, Coomes DA. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct Ecol. 2015;29:1078–86.

    Article  Google Scholar 

  162. Williams LJ, Paquette A, Cavender-Bares J, Messier C, Reich PB. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat Ecol Evol. 2017. https://doi.org/10.1038/s41559-016-0063.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Silva CHL, Aragão LEOC, Anderson LO, et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci Adv. 2020;6:1–10.

    Google Scholar 

  164. Príncipe A, Matos P, Sarris D, Gaiola G, do Rosário L, Correia O, Branquinho C. In Mediterranean drylands microclimate affects more tree seedlings than adult trees. Ecol Indic. 2019;106:105476.

    Article  Google Scholar 

  165. Andivia E, Rolo V, Jonard M, Formánek P, Ponette Q. Tree species identity mediates mechanisms of top soil carbon sequestration in a Norway spruce and European beech mixed forest. Ann For Sci. 2016;73:437–47.

    Article  Google Scholar 

  166. Zheng X, Wei X, Zhang S. Tree species diversity and identity effects on soil properties in the Huoditang area of the Qinling Mountains, China. Ecosphere. 2017;8:1–8.

    Article  ADS  Google Scholar 

  167. Guckland A, Jacob M, Flessa H, Thomas FM, Leuschne C. Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J Plant Nutr Soil Sci. 2009;172:500–11.

    Article  CAS  Google Scholar 

  168. Mina M, Huber MO, Forrester DI, Thürig E, Rohner B. Multiple factors modulate tree growth complementarity in Central European mixed forests. J Ecol. 2018;106:1106–19.

    Article  Google Scholar 

  169. Hodapp D, Hillebrand H, Striebel M. “Unifying” the concept of resource use efficiency in ecology. Front Ecol Evol. 2019;6:1–14.

    Article  Google Scholar 

  170. Whelan CJ, Wenny DG, Marquis RJ. Ecosystem services provided by birds. Ann N Y Acad Sci. 2008;1134:25–60.

    Article  PubMed  ADS  Google Scholar 

  171. Landuyt D, De Lombaerde E, Perring MP, et al. The functional role of temperate forest understorey vegetation in a changing world. Glob Chang Biol. 2019. https://doi.org/10.1111/gcb.14756.

    Article  PubMed  Google Scholar 

  172. King RA, Pullen J, Cook-Patton SC, Parker JD. Diversity stabilizes but does not increase sapling survival in a tree diversity experiment. Restor Ecol. 2023;31:1–11.

    Article  Google Scholar 

  173. Urgoiti J, Messier C, Keeton WS, Belluau M, Paquette A. Functional diversity and identity influence the self-thinning process in young forest communities. J Ecol. 2023;111:2010–22.

    Article  Google Scholar 

  174. Searle EB, Chen HYH, Paquette A. Higher tree diversity is linked to higher tree mortality. Proc Natl Acad Sci U S A. 2022;119:1–7.

    Article  Google Scholar 

  175. Pretzsch H, Heym M, Hilmers T, et al. Mortality reduces overyielding in mixed Scots pine and European beech stands along a precipitation gradient in Europe. For Ecol Manage. 2023. https://doi.org/10.1016/j.foreco.2023.121008.

    Article  Google Scholar 

  176. FAO and UNEP. The state of the world’s forests 2020. Forests, biodiversity and people. Rome. 2020. https://doi.org/10.4060/ca8642en

  177. Arnold M, Persson R. Reassessing the fuelwood situation in developing countries. Int For Rev. 2003;5:379–83.

    Google Scholar 

  178. Jactel H, Gritti ES, Drössler L, Forrester DI, Mason WL, Morin X, Pretzsch H, Castagneyrol B. Positive biodiversity–productivity relationships in forests: Climate matters. Biol Lett. 2018;14:12–5.

    Article  Google Scholar 

  179. Grossiord C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytol. 2020;228:42–9.

    Article  PubMed  Google Scholar 

  180. Fichtner A, Schnabel F, Bruelheide H, Kunz M, Mausolf K, Schuldt A, Härdtle W, von Oheimb G. Neighbourhood diversity mitigates drought impacts on tree growth. J Ecol. 2020;108:865–75.

    Article  Google Scholar 

  181. Poeydebat C, Jactel H, Moreira X, et al. Climate affects neighbour-induced changes in leaf chemical defences and tree diversity–herbivory relationships. Funct Ecol. 2021;35:67–81.

    Article  PubMed  CAS  Google Scholar 

  182. Bauhus J, Forrester D, Pretzsch H, Felton A, Pyttel P, Benneter A. Silvicultural options for mixed-species stands. In: Pretzsch H, Forrester DI, Bauhus J, editors. Mix. For. - Ecol. Manag: Springer Verlag Germany, Heidelberg, Berlin; 2017. p. 433–501.

    Google Scholar 

  183. Linnakoski R, Forbes KM. Pathogens—the hidden face of forest invasions by wood-boring insect pests. Front Plant Sci. 2019;10:1–5.

    Article  Google Scholar 

  184. Hietala AM, Børja I, Solheim H, Nagy NE, Timmermann V. Propagule pressure build-up by the invasive Hymenoscyphus fraxineus following its introduction to an ash forest inhabited by the native Hymenoscyphus albidus. Front Plant Sci. 2018;9:1–11.

    Article  Google Scholar 

  185. Baeten L, Ampoorter E, Bruelheide H, Van Der Plas F, Kambach S, Benavides R, Ratcliffe S, Jucker T, Allan E. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J Appl Ecol. 2019;56:733–44. https://doi.org/10.1111/1365-2664.13308.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Olga Ferlian, Jingjing Liang, Jefferson Hall, and Eric Van Beek for completing the questionnaire on managing their experimental sites.

Funding

This research was funded through the 2019–2020 BiodivERsA joint call for research proposals, under the BiodivClim ERA-Net COFUND program (MixForChange project), and with the funding organizations ANR (ANR-20-EBI5-0003), BELSPO, DFG (project number 451394862), FAPESP, FWF (l 5086-B) and FORMAS (2020–02339). This research was also funded by Fondation BNP Paribas (CAMBIO project) and the National Science Foundation Biological Integration Institute program (NSF-DBI 2021898).

Author information

Authors and Affiliations

Authors

Contributions

EDL, LD, KV, LB, HB and ED conceived and designed the study; EDL, LD and ED collected the data from the literature; EDL and LD performed the analysis; EDL and LD wrote the paper and created the figures and tables; JG, JB, MSL, ED, LB, HB, and KV commented on the first draft. All co-authors contributed to the questionnaire, commented and approved the final manuscript. KV and LB supervised the project and helped designing the conceptual framework.

Corresponding authors

Correspondence to Leen Depauw or Emiel De Lombaerde.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Leen Depauw and Emiel De Lombaerde shared first authorship. Kris Verheyen and Lander Baeten shared senior authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 453 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Depauw, L., De Lombaerde, E., Dhiedt, E. et al. Enhancing Tree Performance Through Species Mixing: Review of a Quarter-Century of TreeDivNet Experiments Reveals Research Gaps and Practical Insights. Curr. For. Rep. 10, 1–20 (2024). https://doi.org/10.1007/s40725-023-00208-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-023-00208-y

Keywords

Navigation