Bibalani GH, Bazhrang Z, Mohsenifar H, Joodi L. The side roots pulling effect of alder (Alnus glutinosa) on river bank soil strong in North Iran. Int J Bot. 2008;4:290–6.
Article
Google Scholar
• Claessens H, Oosterbaan A, Saill P, Dondeux J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry. 2010;83(2):163–75. https://doi.org/10.1093/forestry/cpp038
This review presents a valuable synthesis of existing knowledge about the silviculture of black alder on suitable sites in relation to the production of high-quality wood.
Article
Google Scholar
Mingeot D, Husson C, Mertens P, Watillon B, Bertin P, Druart P. Genetic diversity and genetic structure of black alder (Alnus glutinosa L. Gaertn) in the Belgium-Luxembourg-France cross-border area. Tree Genet Genomes 2016:12–24.
Roussillat, M. L’ Aulne,
Actes Sud, 2001.
Demirbas A. Conversion of black alder (Alnus glutinosa L.) in supercritical solvents. Energy Sources, Part A. 2006;38(10):1393–9. https://doi.org/10.1080/15567036.2014.949918.
CAS
Article
Google Scholar
King RA, Ferris C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol Ecol. 1998;7:1151–61.
CAS
Article
Google Scholar
Funk DT. Alnus glutinosa (L.) Gaertn. European Alder, agriculture handbook. Washington, DC: U.S. Department of Agriculture, Forest Service; 1990. p. 239–56.
Google Scholar
Sopp L. Fatömeg – szamitazi tablazatok. Budapest, Hungary: Mezögazdasagi Kiado; 1974.
Google Scholar
Giurgiu V, Draghiciu D. Modele matematico-auxologice si tabele de productie pentru arborete. Bucuresti, Romania: Editura Ceres; 2004.
Google Scholar
Bolea V, Chira D, Vasile D, Ienasoiu G, Lesan M, Pop M, et al. Optimization of ecological functions of alder stands in protected area of Prejmer. Journal of Silviculture and hunting (Revista de silvicultura si cinegetica). 2013;18(32):28–39.
Google Scholar
Aosaar J, Uri V. Biomass production of grey alder, hybrid alder and silver birch stands on abandoned agricultural land. Forestry Studies Metsanduslikud Uurimused. 2008;48:53–66.
Article
Google Scholar
Lazdiņa D, Liepins K, Bardule A, Liepins J, Bardulis A. Wood ash and wastewater sludge recycling success in fast-growing deciduous tree – birch and alder plantations. Agron Res. 2013;11(2):347–56.
Google Scholar
Karaszewski Z, Mederski PS, Bembenek M, Giefing DF, Sawicka K, Gierszewska M. Factors affecting the timber quality of black alder (Alnus glutinosa (L.) Gaertn.). Ann. WULS - SGGW Wood Technol. 2015;89:70–5.
Google Scholar
Marinsek A, Kutnar L. Occurrence of invasive alien plant species in the floodplain forests along the Mura River in Slovenia. Period Biol. 2017;119(4):251–60. https://doi.org/10.18054/pb.v119i4.4933.
Article
Google Scholar
Cubry P, Gallagher E, O’Connor E, Kelleher CT. Phylogeography and population genetics of black alder (Alnus glutinosa (L.) Gaertn.) in Ireland: putting it in a European context. Tree Genet Genomes. 2015;11:99. https://doi.org/10.1007/s11295-015-0924-4.
Article
Google Scholar
Ayan S, Yahyaoglu Z, Gercek V, Sahin A, Sivacioglu A. The vegetative propagation of black alder (Alnus glutinosa susp. Barbata C. A. Mey Yalt.) by softwood cuttings. Pak J Biol Sci. 2006;9(2):238–42.
Article
Google Scholar
Mac VD. Alnus glutinosa (L) Gaertn. J Ecol. 1953;41:447–66.
Article
Google Scholar
Durrant HT, de Rigo D, Caudullo G. Alnus glutinosa in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A, editors. European Atlas of forest tree species. Luxembourg: Publ. Off. EU; 2016. e01f3c0+.
Google Scholar
Hendrickson O, Burgess D, Perinet P, Tremblay F, Chatatpaul L. Effects of Frankia on field performance of Alnus clones and seedlings. Plant Soil. 1993;150:95–302.
Article
Google Scholar
Vares A, Lohmus K, Truu M, Truu J, Tullus H, Kanal A. Productivity of black alder (Alnus glutinosa 5L Gaertn.) plant on reclaimed oil-shale mining detritus and mineral soils in relation to rhizosphere conditions. Goryuchiye Slantsy. 2004;21(1):43–58.
CAS
Google Scholar
Stochlova P, Novotna K, Cerny K. Variation in Alnus glutinosa susceptibility to Phytophthora 3alni infection and its geographic pattern in the Czech Republic. For Path. 2016;46:3–10. https://doi.org/10.1111/efp.12205.
Article
Google Scholar
Klaassen RKWM. Creemers JGM. J Cult Herit. 2012;13:S123–8.
Article
Google Scholar
Guz NR, Lorenz P, Métraux JP. Oregonin from the bark of European Alnus species. Biochem Syst Ecol. 2002;30(5):471–4.
CAS
Article
Google Scholar
Roze L, Bikovens O, Telysheva G. Determination and separation of diarylheptanoids from Alder growing in Latvia. In: Environment, technology, resources, proceedings of the 8th International Scientific and Practical Conference, vol. 1; 2011. p. 329–32. https://doi.org/10.17770/etr2011vol1.916.
Chapter
Google Scholar
Klaric M, Pervan S, Biosic M. Influence of Lyophilisation and Oven-Drying on Extraction Yield of Oregonin from European black alder (Alnus glutinosa (L.) Gaertn.) Bark. Drv Ind. 2017;68(3):205–10.
Article
Google Scholar
Filipovici J. Study on wood (Studiul lemnului), Publishing House Bucharest (Editura didactică şi pedagogică Bucureşti) 1965.
Google Scholar
Wagenfuhr R. Holzatals. 4th Edition. 1996.
Knaggs G, Xenopoulou S. Guide to Irish hardwoods. National Council for Forest Research and Development, Dublin, Ireland: Coford; 2004.
Google Scholar
Davis E. Machining and related characteristics of United States Hardwoods, Forest Products Laboratory maintained at Madison, Wis., in cooperation with the University of Wisconsin Technical Bulletin No. 1267 U.S. Department of Agriculture, Forest Service Washington, D.C. 1962.
Sell J, Kropf F. Proprietes et caracteristiques des essences de bois. Le Mont, Suisse: Lignum; 1990.
Google Scholar
Andersone I, Andersons B, et al. 1998. Investigation of the structure, composition and sorption properties of alder (Alnus) wood. In: Proceedings of the Fifth European Workshop on Lignocellulosics and Pulp 1998:41–44.
Salca EA, Gobakken RL, Gjerdrum P. Progress of discoloration in green, freshly cut veneer sheets of black alder (Alnus glutinosa L.) wood. Wood Mater SciEng J. 2015;10(2):178–84. https://doi.org/10.1080/17480272.2014.929175.
CAS
Article
Google Scholar
Hurtfiord BF, Luthi R. (1981) Chemistry of oregonin. Chemistry and morphology of wood and wood components. In: Proceedings of International Symposium on Wood and Pulping Chemistry 1 Stockholm 1981:95–96.
Hibbs D. Silviculture in red alder stands In D. N. S. Hon and N. Shiraishi (eds.) Ecology and management of B.C. hardwoods workshop proc. Dec 1–2, 1993. B.C. Ministry of Forests, FRDA Rep. Richmond B.C. 1995:137–138.
Hon DNS, Minemura N. Color and discoloration. In: Hon DNS, Shiraishi N, editors. Wood and cellulose chemistry. New York: Marcel Dekker Inc; 1991. p. 100–50.
Google Scholar
Salca EA, Cismaru I. Colour changes evaluation of freshly cut alder veneers under the influence of indoor sunlight. ProLigno. 2011;7(1):15–24.
Google Scholar
Salca EA. Study upon the colour changes of freshly cut and thermally treated black alder veneers under sunlight and dark indoor exposure. In: Proceedings of the International Conference ICWSE Transilvania University of Brasov 3-5 November 2011: 420–426.
•• Esteves MB, Pereira HM. Wood modification by heat treatment. A review. Bioresources. 2009;4(1):370–404 This review explains the interest on heat treatment of wood and synthesizes the knowledge of wood properties, chemical changes, wood uses, and quality control.
CAS
Google Scholar
Lacic R, Hasan M, Trajkovic H, Sefc B, Safran B, Despot R. Biological durability of oil heat treated alder wood. Drv Ind. 2014;65(2):143–50.
Article
Google Scholar
Salca EA, Hiziroglu S. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Mater Des. 2014;62:416–23.
Article
Google Scholar
Yildiz UC, Yildiz ED. The effects of natural weathering on the properties of heat treated alder wood. BioRes. 2011;6(3):2504–21.
CAS
Google Scholar
Bekhta P, Proszyk S, Krystofiak T. Colour in short-term thermo-mechanically densified veneer of various wood species. Eur J Wood Prod. 2014;72:785–97. https://doi.org/10.1007/s00107-014-0837-1.
Article
Google Scholar
Denes L, Lang E. Photodegradation of heat treated hardwood veneers. J Photochem Photobiol B. 2013;118:9–15.
CAS
Article
Google Scholar
Salca EA, Kobori H, Inagaki T, Kojima Y, Suzuki S. Effect of heat treatment on colour changes of black alder and beech veneers. J Wood Sci. 2016;62(4):297–304. https://doi.org/10.1007/s10086-016-1558-3.
CAS
Article
Google Scholar
Tsuchikawa S, Kobori H. A review of recent application of near infrared spectroscopy to wood science and technology. J Wood Sci. 2015;61:213–20.
CAS
Article
Google Scholar
Malkocoglu A, Ozdemir T. The machining properties of some hardwoods and softwoods naturally grown in Eastern Black Sea Region of Turkey. J Mater Process Technol. 2006;173:315–20.
Article
Google Scholar
Malkocoglu A. Machining properties and surface roughness of various wood species planed in different conditions. Build Environ. 2007;42(7):2562–7. https://doi.org/10.1016/j,buildenv.2006.08.028.
Article
Google Scholar
Salca EA, Laurenzi W, Porojan M. Study upon the roughness of straight milled surfaces made of black alder. In: Proceedings of the 16th International Scientific Conference 2010 under Knowledge-Based Organization KBO 25–27 November 2010 Sibiu Romania 2010:129–135.
Salca EA, Cismaru I, Laurenzi W. Evaluation of final roughness on longitudinal profiled surfaces of black alder wood. In: Proceedings of the International Conference ICWSE 2011 Transilvania University of Brasov 3–5 November 2011:211–216.
Aghakhani M, Abolghasem K. The effect of machining parameters on surface roughness of Alder wood. Asian J Agric Food Sci. 2014;2(6):548–53.
Google Scholar
Salca EA. Optimization of wood milling schedule – a case study. ProLigno. 2015;11(4):525–30.
Google Scholar
Bendikiene R, Keturakis G. The influence of technical characteristics of wood milling tools on its wear performance. J Wood Sci. 2017;63:606–14. https://doi.org/10.1007/s10086-017-1656-x.
CAS
Article
Google Scholar
Pahlitzsch G. International state of research in the field of sanding. Holz als Roh-und Werstoff. 1970;28(329).
•• Goli G, Sandak J. Proposal of a new method for the rapid assessment of wood machinability and cutting tool performance in peripheral milling. Eur J Wood Wood Prod. 2016;74(6):867–74. https://doi.org/10.1007/s00107-016-1053-y
This study provides an automated method to assess the quality of wood processed by peripheral milling and rapid detection of processing defects.
Article
Google Scholar
Aguilera A, Martin P. Machining qualification of solid wood of Fagus silvatica L. and Picea excelsa L.: cutting forces, power requirements and surface roughness. Holz als Roh – und Werkstoff. 2001;59:483–8.
Article
Google Scholar
Vega M, Aguilera A. Surface roughness and cutting power for machining radiata pine. Bosque. 2005;26(1):101–8.
Article
Google Scholar
Keturakis G, Juodeikienė I. Investigation of milled wood surface roughness. Mater Sci (Medžiagotyra). 2007;13(1):47–51.
Google Scholar
Hernandez RE, Llave AM, Koubaa A. Effects of cutting parameters on cutting forces and surface quality of black spruce cants. Holz als Roh- und Werkstof. 2014;72(1):107–16.
Article
Google Scholar
Kilic M. Effects of machining methods on the surface roughness values of Pinus nigra Arnold wood. BioRes. 2015;10(3):5554–62.
CAS
Article
Google Scholar
Sogutlu C. The effect of the feeding direction and feeding speed of planing on the surface roughness of oriental beech and Scotch pine woods. Wood Res. 2010;55(4):67–78.
Google Scholar
Goli G, Fioravanti M, Marchal R, Uzielli L, Busoni S. Up-milling and down-milling wood with different grain orientations – the cutting forces behavior. Eur J Wood Wood Prod. 2010;68:385–95.
Article
Google Scholar
Azemovic E, Horman I, Busuladzic I. Impact of planing treatment regime on solid fir wood surface. Proc Eng. 2014;69:1490–8.
Article
Google Scholar
Pinkowski G, Szymański W, Krauss A, Stefanowski S. Effect of sharpness angle and feeding speed on the surface roughness during milling of various wood species. BioRes. 2018;13(3):6952–62.
CAS
Google Scholar
Rousek M, Kopecky Z. Monitoring of power consumption in high-speed milling. Drv Ind. 2005;56(3):121–6.
Google Scholar
Keturakis G, Bendikiene R, Baltrusaitis A. Tool wear evolution and surface formation in milling various wood species. BioRes. 2017;12(4):7943–54.
CAS
Google Scholar
Sandak J, Goli G, Cetera P, Sandak A, Cavalli A, Todaro L. Machinability of minor wooden species before and after modification with thermo-vacuum technology. Mater (Basel). 2017;10:121. https://doi.org/10.3390/ma10020121.
Article
Google Scholar
Jaic M, Palija T, Dordevic M. The impact of surface preparation of wood on the adhesion of certain types of coatings. Zastita Mater. 2014;55:163–9.
Article
Google Scholar
Salca EA, Hiziroglu S. Analysis of surface roughness of black alder as function of various processing parameters. ProLigno. 2012;8(2):68–79.
Google Scholar
Salca EA, Krystofiak T, Lis B. Evaluation of selected properties of alder wood as functions of sanding and coating. Coatings. 2017;7(10):176. https://doi.org/10.3390/coatings7100176.
CAS
Article
Google Scholar
Varasquim FMF, Alves MC, Goncalves MTT, Santiago LF, Souza AJD. Influence of belt speed, grit sizes and pressure on the sanding of Eucalyptus grandis wood. CERNE Lavras. 2012;18:231–7.
Article
Google Scholar
Javorek L, Kudela J, Svoren J, Krajcovicova M. The influence of some factors on cutting force and surface roughness of wood after sanding. ProLigno. 2015;11:516–24.
Google Scholar
Salca EA. Optimization of the cutting schedule during sanding. In: Lesnoy vestnik / Forestry Bulletin 2017:21(4):70–72. https://doi.org/10.18698/2524-1468-2017-4-70-72.
Demirkir C, Aydin I, Colak S, Colakoglu G. Effects of plasma treatment and sanding process on surface roughness of wood veneers. Turk J Agric For. 2014;38:663–7.
CAS
Article
Google Scholar
Sofuoglu D, Kurtoglu A. Effects on machining conditions on surface roughness in planing and sanding of solid wood. Drv Ind. 2015;66:265–72.
Article
Google Scholar
• Gurau L, Irle M. Surface roughness evaluation methods for wood products: a review. Curr For Rep. 2017;3:119. https://doi.org/10.1007/s40725-017-0053-4
This review offers valuable recommendations on how to best measure and evaluate the surface roughness of wood.
Article
Google Scholar
•• Magoss E. Insight into the mechanism of wood sanding. progress report no. 3. Published by the Department of Wood Engineering University of West Hungary Sopron, Hungary. LŐVER-PRINT NYOMDAIPARI KFT. ISBN 978-963-359-062-1, 2015. This work presents experimental results in diagrams showing the basic relationships between the surface roughness parameters and grit diameters and internal relationship between roughness parameters.
Saloni D, Lemaster R, Jackson S. Abrasive machining process characterization on material removal rate, final surface texture and power consumption for wood. For Prod J. 2005;55(12):35–41.
Google Scholar
Varanda LD, Alves MCS, Goncalves MTT, Santiago LFF. Influência das varáveis no lixamento tubular na qualidade das peças de Eucalyptus grandis. CERNE Lavras. 2010;16:23–32.
Google Scholar
Javorek L, Hric J, Vacek V. The study of chosen parameters during sanding of spruce and beech wood. ProLigno. 2006;2(4):1–11.
Google Scholar
Salca EA, Krystofiak T, Lis B, Mazela B. Some coating properties of black alder wood as function of varnish type and applications method. BioRes. 2016;11(3):7580–94. https://doi.org/10.15376/biores.11.3.7580-7594.
CAS
Article
Google Scholar
Vitosyte J, Ukvalbergiene K, Keturakis G. Roughness of sanded wood surface: an impact of wood species, grain direction and grit size of abrasive material. Mater Sci (Medžiagotyra). 2015;21(2):255–9. https://doi.org/10.5755/j01.mm.21.2.5882.
Article
Google Scholar
Ozdemir T, Hiziroglu S, Kocapınar M. Adhesion strength of cellulosic varnish coated wood species as function of their surface roughness. Adv Mater Sci Eng. 2015;2015:1–5. https://doi.org/10.1155/2015/525496.
CAS
Article
Google Scholar
Vitosyte J, Ukvalbergiene K, Keturakis G. The effects of surface roughness on adhesion strength of coated ash (Fraxinus excelsior L.) and birch (Betula alba L.) wood. Mater Sci. 2012;18(4):347–50.
Google Scholar
De Moura LF, Hernandez RE. Effects of abrasive mineral, grit size and feed speed on the quality of sanded surfaces of sugar maple wood. Wood Sci Technol. 2006;40:517–30.
CAS
Article
Google Scholar
Collett BM. A review of surface and interfacial adhesion in wood science and related fields. Wood Sci Technol. 1972;6:1–42. https://doi.org/10.1007/BF00351806.
CAS
Article
Google Scholar
Sonmez A, Budakci M, Pelit H. The effect of the moisture content of wood on the layer performance of water-borne varnishes. BioRes. 2011;6:3166–77.
CAS
Google Scholar
Nejad M, Shafaghi R, Ali H, Cooper P. Coating perfomance on oil-heat treated wood for flooring. BioRes. 2013;8:1881–92.
Article
Google Scholar
Wulf M, Netuschil P, Hora G, Schmich P, Cammenga H.K. Investigation of the wetting characteristics of medium density fibreboards MDF by means of contact angle measurements. Holz Roh-Werkst 1997:55:331–335.
Bekhta P, Krystofiak T. The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers. Maderas Cienc Tecnol. 2016;2016, 18(1). https://doi.org/10.4067/S0718-221X2016005000008.
•• Petric M, Oven P. Determination of wettability of wood and its significance in wood science and technology: a critical review. Rev Adhes Adhes. 2015;3(2):121–87. https://doi.org/10.7569/RAA.2015.097304
In this work the importance of a wettability study is given as regard to wood adhesion, adhesives and surface finishes.
Article
Google Scholar
Cakicier N, Korkut S, Korkut D. Varnish layer hardness, scratch resistance, and glossiness of various wood species as affected by heat treatment. BioRes. 2011;6:1648–58.
CAS
Google Scholar
Slabejova G, Smidriakova M. Gloss of transparent coating on beech wood surface. Acta Fac Xylol. 2016;58:37–44.
Google Scholar
Ugulino B, Hernandez RE. Assessment of surface properties and solvent-borne coating performance of red oak wood produced by peripheral planning. Eur J Wood Prod. 2017;75:581–93.
CAS
Article
Google Scholar
Budakci M, Sonmez A, Pelit H. The color changing effect of the moisture content of wood materials on water borne varnishes. BioRes. 2012;7:5448–59.
Article
Google Scholar
Philipp C. The future of wood coatings. Eur Coat J. 2010;1:1–6.
Google Scholar
Gurleyen L, Ayata U, Esteves B, Cakicier N. Effects of heat treatment on the adhesion strength, pendulum hardness, surface roughness, color and glossiness of Scots pine laminated parquet with two different types of UV varnish application. Maderas Cienc Tecnol. 2017;19:213–24.
CAS
Google Scholar
Landry V, Blanchet P, Cormier LM. Water-based and solvent-based stains: impact on the grain raising in yellow birch. BioRes. 2013;8:1997–2009.
Article
Google Scholar
Demirci Z, Sonmez A, Budakci M. Effect of thermal ageing on the gloss and adhesion strength of the wood varnish layers. BioRes. 2013;8:1852–67.
Article
Google Scholar
Arnold M. Planing and sanding of wood surfaces-effects on surface properties and coating performance. In: Proceedings of the PRA’s 7th International Woodcoatings Congress, Netherlands, Coating technology Centre, Hampton, Middlesex, UK, 2010.
Salca EA, Krystofiak T, Lis B. Some aesthetic decorative features of varnished products. In: Book of abstracts of the COST action FP 1303 workshop Sofia, Bulgaria 28 February – 1 March 2017:43–44.
Salca EA, Krystofiak T, Lis B. Glossiness of coated alder wood after artificial aging. 8th Hardwood Conference, 25–26 October 2018, Sopron, Hungary, 2018 (submitted paper).
Pelit H, Budakci M, Sonmez A, Burdurlu E. Surface roughness and brightness of scots pine (Pinus sylvestris) applied with water-based varnish after densification and heat treatment. J Wood Sci. 2015;61(6):586–94.
Article
Google Scholar
Ayata U, Sahin S, Esteves B, Gurleyen L. Effect of thermal aging on colour and glossiness of UV system varnish-applied laminated parquet layers. BioRes. 2018;13(3):861–8.
CAS
Google Scholar
D’Auria M, Lovaglio T, Rita A, Cetera P, Romani A, Hiziroglu S, et al. Integrate measurements allow the surface characterization of thermo-vacuum treated alder differentially coated. Measurement. 2018;114:372–81.
Article
Google Scholar
Bekhta P, Mamonova M, Sedliacik J, Novak I. Anatomical study of short-term thermo-mechanically densified alder wood veneer with low moisture content. Eur J Wood Wood Prod. 2016;74(5):643–52.
Article
Google Scholar